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Abstract: There is a need for fast and reliable quality and authenticity control tools of pharmaceutical
ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study,
terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin
and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body,
which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between
1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at
4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic
THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical
ingredient in prepared pellets is also performed, which permits spatial recognition of these different
substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool,
complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality
control of dietary supplements and other pharmaceutical products.

Keywords: hormones; terahertz spectroscopy; terahertz imaging; melatonin; active pharmaceutical
ingredient; Fourier transform infrared spectroscopy; pharmaceutical industry

1. Introduction

Hormones are crucial for the control and regulation of many different human body processes and
everyday life activities. Hormone-based drugs and their synthetic analogous produced from natural
sources, or by total synthesis, represent an important group of drug materials [1]. Novel rapid and
accurate analytical methods for the determination of hormones in biological samples, pharmaceutical
products, water and food, and to ensure product quality control are needed [2,3]. Several spectroscopic
methods including UV-VIS spectroscopy [4], nuclear magnetic resonance (NMR) spectroscopy [5],
infrared spectroscopy (IR) [6,7], and Raman spectroscopy [8,9] have been successfully applied in the
chemical analysis of hormone-based drugs. Among the IR-based methods, the emphasis has been
given to Fourier transform infrared (FTIR) spectroscopy and near-infrared (NIR) spectroscopy [9–11].
Developments in the terahertz (THz) technology show a promising potential for applications in many
fields [12–18] with great emphasis on the pharmaceutical industry [19–23], as the far-infrared frequency
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range may be employed for the chemical screening and analysis of substances. Terahertz waves lie
between the microwave and infrared region of the electromagnetic spectrum. Spectral responses in
THz frequency range contain information of intra- and inter-molecular motions, and thus reflect a
single molecular structure and molecular arrangements [8]. THz waves can penetrate through many
materials, have low photon energy that does not damage the samples, and the waves are coherent,
which gives an advantage over Raman and FTIR spectroscopies. As the THz time-domain spectroscopy
is coherent, it displays much higher sensitivity and dynamic range in comparison to FTIR [24].
Furthermore, the combination of these different techniques can provide a deeper understanding
of a sample’s structure.

Thus far, THz spectroscopy has been applied to study polymorphism [25,26], cocrystals [27],
crystallinity [28], hydrates [29], hydrogen-bonding [30], helical antennae related effects [31], and
conformational disorder [32] of pharmaceutical compounds. Furthermore, an additional modality of
systems allowing to perform THz imaging provides a visualization of individual chemical compounds
within heterogeneous samples, such as pharmaceutical pellets. A THz imaging analytical method,
known as component spatial pattern analysis [33], has been employed for chemical mapping of
cocrystals [34] and for the determination of coating layer thickness and density [35]. Since plastics are
almost transparent to THz waves, THz spectroscopic imaging can also reveal the distribution of both
active pharmaceutical ingredient (API) and other important constituents within the pharmaceutical
pellets covered by blisters. Some research on hormone-based drugs has already been performed
using THz spectroscopy, including studies of the vibrations of corticosteroids [8,36,37], the structure
of molecules in crystals of steroid hormones [38,39], and the conformation of naphthols to mimic
natural hormones with estrogenic-like activity [40] where they were able to detect hormones in
blood [41] for diagnostics of diabetes. THz spectroscopic experiments with steroid hormones including
testosterone, estradiol, and estriol were also performed comparing the obtained results with Raman
spectra [8,36,39,42].

In this paper, we demonstrate the application of THz spectroscopy and spectroscopic THz imaging
to study melatonin and its pharmaceutical product. Melatonin is one of the most studied biological
substances in the last fifty years [43]. It is a naturally occurring hormone belonging to tryptamines and
is mainly produced and released by the pineal gland, which is of great importance in the regulation of
various human body physiological functions [44]. Today, melatonin is available in two formulations,
as an immediate-release dietary supplement and a prolonged-release prescription-only pharmaceutical
drug. Recent regulations by the Food and Drug Administration (FDA) emphasize the importance
of quality control and authentications of dietary supplements such as melatonin. Fast and reliable
detection methods of melatonin in final products are needed in order to eliminate counterfeit or poor
quality products before they reach end users. To the best of our knowledge, THz spectroscopy and
THz imaging studies of melatonin and its pharmaceutical product have not been reported yet. FTIR
spectrum studies of melatonin close to THz frequency range [10] have been performed, whereby
infrared absorption spectra of melatonin in 1700–70 cm−1 were measured. The experimental FTIR
spectrum of melatonin showed one characteristic absorption peak below 137 cm−1, corresponding
to 4.11 THz. In Raman spectrum of melatonin two peaks were observed [10], one around 145 cm−1

(4.35 THz) and another around 120 cm−1 (3.60 THz).
Here, we present an experimental study of THz absorption spectra of pure melatonin and its

pharmaceutical product Circadin by applying several techniques in the THz frequency range—FTIR,
coherent THz time-domain spectroscopy (THz-TDS), and spectroscopic THz imaging. The usefulness
of THz spectroscopic methods for qualitative and quantitative analysis of melatonin and its final drug
product are demonstrated. Our work shows that THz spectroscopy can provide a complementary
analysis tool in addition to Raman and FTIR spectroscopy, to characterize hormone-based prescription
drugs and food supplements available to a wide group of end users.
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This article is organized as follows. Section 2 provides the materials selection and sample
preparation, followed by Section 3, in which the methods are described and illustrated. Section 4
summarizes and discusses the results obtained by the measurements.

2. Materials

Melatonin (N-Acetyl-5-methoxytryptamine) with purity greater than 98% and polyethylene
powder (PE) with an average particle size of 53–75 µm were purchased from Sigma-Aldrich and
used as obtained. Circadin prolonged-release tablets (2 mg) were also obtained, produced by
Neurim Pharmaceuticals. Each Circadin tablet contains 2 mg of melatonin and 80 mg of lactose
monohydrate (see structural formula and molecular 3D models in Figure 1), as well as other ingredients:
Ammonio methacrylate copolymer type B, calcium hydrogen phosphate dihydrate, silica, talc, and
magnesium stearate.
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Figure 1. Structural formula and 3D model of (a) melatonin and (b) lactose monohydrate.

PE was selected as a reference because of its negligible absorption at the THz frequencies. Circadin
pellets were first crushed to a fine powder in a mortar and pestle. All powder samples were then dried
for 24 h at 65 ◦C in an oven to reduce water content. For FTIR and THz measurements, we prepared
sample pellets by diluting the powdered materials in a reference PE material. The selected powders
for pellet compression were also mixed and grinded by pestle in a mortar. Experimental samples in
the form of pellets with a diameter of 18.4 mm were prepared by applying pressure of 18.9 kN/cm2 for
50 s at room temperature, using a manual hydraulic press. All samples had the same mass of 320 mg
and thickness of 1.5–1.7 mm. The reference PE pellet consisted of 100 wt% PE. Melatonin pellets were
prepared with a concentration of 5 wt% and 10 wt%, and Circadin pellets with 5 wt% and 10 wt% of
the substance, whereas the rest of the mixture in pellets was PE powder. The composition of different
pellets used for THz measurements is summarized in Table 1.
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Table 1. Pellets composition for THz-TDS measurements.

Sample Polyethylene Constituent 2

PE pellet 320 mg NA
Low concentration melatonin pellet 304 mg 16 mg melatonin
High concentration melatonin pellet 288 mg 32 mg melatonin

Low concentration Circadin pellet 304 mg 16 mg Circadin
(0.1 mg melatonin)

High concentration Circadin pellet 288 mg 32 mg Circadin
(0.2 mg melatonin)

3. Methods

An in-house modified TeraIMAGE system by Rainbow Photonics AG, Zurich Switzerland,
was used for spectroscopic measurements as shown in Figure 2. It allows sample investigation
in transmission geometry from 1.5 THz to 6 THz. In this experiment, the measurements were
performed up to 4.5 THz, since from this frequency onwards the signal-to-noise ratio was too
low due to the high absorption of selected samples. The system is based on a femtosecond
erbium-doped laser (Menlo Systems) with an average output power greater than 150 mW, pulse
duration of less than 90 fs, and a repetition rate of 100 MHz. In this setup, the pump beam hits the
DSTMS (4-N,N-dimethylamino-4’-N’-methyl-stilbazolium-2,4,6-trimethylbenzenesulfonate) nonlinear
electrooptic organic crystal [45] which generates THz waves by employing the optical rectification
principle. The generated THz waves are guided by elliptic mirrors through the sample compartment
to the DSTMS detector crystal which detects THz waves by the THz-induced lensing detection
principle [46]. A detailed description of the apparatus is described elsewhere [15]. Due to a strong
absorption of THz waves in water vapors, the sample compartment was purged with nitrogen gas.
Absorbance was calculated as −log(I/I0), where the terms I and I0 denote the THz beam intensity
measured in the presence and absence of a sample in the sample compartment, respectively. The THz
imaging system was based on the same TeraIMAGE in-house modified system with an addition of
a translation stage in the sample compartment. It allows for a raster-scan imaging of samples under
the investigation. Images were acquired with a resolution of 1 mm by raster scanning an area of
44 mm × 27 mm. During the scan, the sample compartment was continuously purged with the
nitrogen gas to minimize the effects of water absorption. The spatial resolution of our THz-TDS
imaging system is specified by the manufacturer, and can achieve 100 µm. The spatial resolution
here is mainly limited by the THz diffraction limit. To overcome this limit, different approaches in
improving the resolution to sub-THz wavelengths were proposed, e.g., using near-field techniques,
generating the THz signal at the surface of the investigated sample, detection of THz by very small
probes, computational imaging methods, etc. [47–49]. By using these techniques, spatial resolutions
in nanometer range were achieved. However, due to practical reasons in THz-TDS spectroscopic
raster scanning whereby each pixel acquisition could take several minutes due to the slow mechanical
delay-line operation, a spatial resolution of 1 mm was chosen here as it provides sufficient information
for the intended aim of this study.

To record Fourier spectra, a home-developed FTIR spectrometer with a vacuum option was
used for measurements in the THz frequency range. The THz transmission spectra I/I0 and
absorbance spectra −log(I/I0) were measured with the resolution of 1 cm−1. The terms I and I0
denote the THz beam intensity measured in the presence and absence of a sample in the sample
compartment, respectively.
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4. Results and Discussion

4.1. THz Spectroscopy Analysis

THz-TDS measurements for melatonin and Circadin were focused on a frequency range between
1.5 THz and 4.5 THz. The FTIR spectrum of melatonin does not exhibit any characteristic peaks
below 1.5 THz, as shown in Figure 3a. In case of Circadin, the peak around 1.4 THz most likely
belongs to lactose monohydrate as reported by other authors [50,51]. The spectral feature at around
3.3 THz in the FTIR spectra of melatonin is clearly observable. The same absorption line occurs in
THz-TDS spectra in Figure 3b, where the pure melatonin mixed with reference PE shows a broad
and strong absorption peak at around 3.21 THz. An additional low-intensity absorption peak can be
seen at 4.20 THz. The same absorption line was observed by Singh et al. [10] in FTIR and also Raman
experimental spectra of melatonin. The THz spectrum of Circadin pellet containing melatonin as API
is also shown in Figure 3a. The predominant absorption peak of melatonin at 3.21 THz is visible in the
THz spectrum of Circadin. In addition to this spectral feature, another absorption peak at 4.20 THz is
observed as well. The characteristic absorption features for melatonin in the THz region below 5 THz
can be assigned most probably to torsion modes, as reported by other authors [10]. In Figure 3c we
encircled the regions around a methoxy group OCH3 within the melatonin molecule to which spectral
features at 3.21 THz (red circle) and 4.20 THz (green circle) were assigned. According to the published
simulated spectra of melatonin obtained by density functional theory (DFT) [10], we assume that
bending, stretching, and wagging motions can be observed at higher THz frequencies that are beyond
the scope of this work.
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The appearance of the absorption peaks at three frequencies (2.65 THz, 2.90 THz, and 3.90 THz)
of Circadin, which were not observed at the THz spectrum of pure melatonin, are most likely the
contributions of characteristic peaks of lactose monohydrate, which is the predominant excipient in the
Circadin tablet. These spectral features of lactose monohydrate agree with the measured and already
published data [50–52]. In addition, the absorption peak of melatonin at 3.21 THz is probably shifted
to the higher frequency due to the overlapping with the spectral feature of lactose monohydrate at
3.45 THz. The absorption peak of melatonin in Circadin at 4.20 THz can also be distorted due to several
spectral lines of lactose monohydrate that are present in the frequency range from 4.0–4.5 THz [50].
The spectral features of melatonin and lactose monohydrate obtained experimentally with THz-TDS
and FTIR, as well as the published spectral data, are summarized in Table 2. From these results, it can
be concluded that the spectral contributions from melatonin are observed in the Circadin sample.
An appropriate approach of data analysis may allow the characteristic spectral lines of the melatonin
to be distinguished from the spectral features of other excipients present in Circadin.

Figure 4a shows concentration-dependent THz absorption spectra in the frequency range
1.5–4.5 THz of melatonin obtained by FTIR spectrometer at room temperature. For two samples with
various concentrations of melatonin (2 wt% and 5 wt%), a common absorption peak at around 3.20 THz
was observed, which dominated in both spectra. In addition, the comparison of the FTIR spectra of
melatonin with two different concentrations shows that the absorbance increased with the increased
concentration of melatonin. Figure 4b shows a comparison of the THz spectra of Circadin with
two different concentrations within the PE matrix. Several absorption peaks in both spectra are
observable. Of these, two belonging to melatonin might also be assigned to lactose monohydrate as
reported by other authors (Table 2). Figure 4c shows THz spectra of melatonin and Circadin with two
concentrations obtained by THz-TDS. The absorption peaks of melatonin coincide with the absorption



Sensors 2018, 18, 4098 7 of 12

lines of Circadin for both concentrations. As it can be seen, the THz spectroscopy is able to identify
different concentrations of the melatonin in a mixed form, and thus allows for a qualitative and
quantitative analysis of APIs like melatonin within pharmaceutical products.

Table 2. Absorption peaks for melatonin and lactose monohydrate in frequency range 1.0–4.5 THz
obtained by THz-TDS and FTIR in this research and summarized from other sources.

Chemical Compound
Absorption

PeakTHz-TDS
(This Work)

Absorption Peak FTIR
(This Work)

Absorption PeakFTIR
(Published 1–3)

THz cm−1 THz cm−1 THz cm−1

Melatonin
3.21 107 3.35 112 3.60 1 120
4.20 140 4.11 1 137

Lactose Monohydrate 1.42 2,3 47
1.85 3 62
2.65 3 88
2.95 3 98
3.45 3 115
3.90 3 130
4.0 3 133
4.2 3 140

Circadin (melatonin) 3.25 108 3.25 108
4.25 142 4.25 142

Circadin (lactose monohydrate)

1.40
2.65 88 2.65 88
2.90 97 2.90 97
3.90 130 3.90 130

1 summarized from [10], 2 summarized from [47], 3 summarized from [50].
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4.2. THz Imaging Analysis

Spectroscopic THz imaging is a convenient tool for security systems, allowing us to distinguish
packaged materials if their spectra are known in advance [12,53]. Spectroscopic THz images can show
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not only the location of chemicals within the heterogeneous tablet but also identify each individual
chemical compound within, as demonstrated by Kawase et al. [33]. Hereby, the THz spectroscopic
imaging is used to identify melatonin-related pharmaceutical drugs as well as to detect its location
within the pellet. The dimensions of the sample holder used for the acquisition of the images was
44 mm × 27 mm. First, THz pulse transmission through the sample was measured pixel-by-pixel in the
time domain. In total, 1188 waveforms were recorded, each of them containing 360 points, an equivalent
to a temporal scan length of 10 ps. For each waveform, the Fourier transform spectrum was calculated,
as well as the absorption spectrum by computing the negative logarithm of the observed image intensity
divided by the reference illumination THz intensity. Next a three-dimensional (3D) matrix data set
was constructed, where two axes described the horizontal and vertical dimensions, while the third
axis described the spectral frequency dimension. The spectral range of the measurements in the 3D
matrix was set from 1.5 THz to 4.5 THz, according to the above described THz spectroscopic analysis.

Figure 5 shows THz spectroscopic images at the most representative discrete frequencies obtained
from a 3D absorption matrix data set at 2.68 THz, 3.25 THz, and 3.81 THz. Images were interpolated
by a factor of 4 to improve the resolution. The yellow color represents the maximum absorption at the
selected frequency, whereas the dark blue color indicates a region with low THz absorption. Note that
there is no significant absorption at 2.68 THz in pellets as the samples are almost transparent to these
THz waves, hence blue color dominates for all three samples. The absorption of melatonin pellets
increases up to ~3.25 THz, where the characteristic peak is seen in Figure 5a (green curve). In the
case of Circadin, the absorption at this frequency is less expressed, since the Circadin with melatonin
and other constituents is more transparent than the pure melatonin of the same concentration in the
PE pellets. Above the characteristic peak of melatonin, the absorption of melatonin pellet decreases,
whereas in Circadin pellets the THz spectra have an intense spectral feature around 3.90 THz (red
and blue curves in Figure 5a), which likely belongs to lactose monohydrate. Therefore, the absorption
intensity of Circadin pellets is close to the absorption of melatonin pellet at this frequency, and thus
yellow shades can also be observed in the Circadin pellets (Figure 5d).
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spectroscopic images at the most representative discrete frequencies. On each THz image the
samples/pellets are arranged as follows: Top left—PE, top right—Circadin 5 wt%, bottom
left—melatonin 10 wt%, bottom right—Circadin 10 wt%.
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These results show that THz spectroscopy and THz spectroscopic imaging can become an
indispensable analytical tool in the recognition and identification of API in pharmaceutical products
and counterfeits, thus complementing other known methods such as FTIR, NMR, vibrational
spectroscopy, Raman spectroscopy, nuclear quadrupole spectroscopy, chromatography, and mass
spectroscopy [20,54–56]. The spectroscopic THz approach is capable of detecting very small quantities,
so that for substances with high absorption in THz range and signal post-processing algorithms, traces
even below 1 mg could be identified. Combined with the simple system setup, this offers a practical
tool in the analysis of pharmaceuticals and chemicals.

5. Conclusions

Terahertz spectra of melatonin and its pharmaceutical product Circadin have been measured
in this work for the first time by using THz spectroscopy in the spectral range of 1.5–4.5 THz.
Two characteristic spectral features were found, a predominant feature at 3.21 THz and a weaker
one at 4.20 THz. The characteristic THz spectral feature of melatonin were also hereby verified with
FTIR spectroscopy. We showed that THz spectroscopic imaging can be used to distinguish samples
with different concentrations of an active pharmaceutical ingredient, in our case whole melatonin
and Circadin pellets. Additionally, we demonstrated the feasibility of utilizing THz spectroscopy and
spectroscopic imaging as a complementary method to FTIR in applications of identification and quality
control in the pharmaceutical industry.
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Investigation of pharmaceutical drugs and caffeine-containing foods using Fourier and terahertz
time-domain spectroscopy. In Proceedings of the Terahertz Emitters, Receivers, and Applications VI,
San Diego, CA, USA, 31 August 2015; Volume 9585, p. 95850U.

24. Zhao, G.; Wang, H.; Liu, L.; Wang, X. THz spectra of parabens at low temperature. Sci. China Inf. Sci. 2012,
55, 114–119. [CrossRef]

25. Ajito, K.; Ueno, Y.; Song, H.-J.; Tamechika, E.; Kukutsu, N. Terahertz Spectroscopic Imaging of Polymorphic
Forms in Pharmaceutical Crystals. Mol. Cryst. Liq. Cryst. 2011, 538, 33–38. [CrossRef]

26. Chieng, N.; Rades, T.; Aaltonen, J. An overview of recent studies on the analysis of pharmaceutical
polymorphs. J. Pharm. Biomed. Anal. 2011, 55, 618–644. [CrossRef] [PubMed]

27. Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: Advanced
characterization techniques. Adv. Drug Deliv. Rev. 2017, 117, 111–146. [CrossRef] [PubMed]

28. Strachan, C.J.; Rades, T.; Newnham, D.A.; Gordon, K.C.; Pepper, M.; Taday, P.F. Using terahertz pulsed
spectroscopy to study crystallinity of pharmaceutical materials. Chem. Phys. Lett. 2004, 390, 20–24. [CrossRef]

29. Zeitler, J.A.; Kogermann, K.; Rantanen, J.; Rades, T.; Taday, P.F.; Pepper, M.; Aaltonen, J.; Strachan, C.J. Drug
hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy. Int. J. Pharm. 2007,
334, 78–84. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/jrs.1239
http://dx.doi.org/10.1016/j.saa.2013.08.077
http://www.ncbi.nlm.nih.gov/pubmed/24041531
http://dx.doi.org/10.1038/srep32264
http://www.ncbi.nlm.nih.gov/pubmed/27577974
http://dx.doi.org/10.1109/JSEN.2012.2223459
http://dx.doi.org/10.1366/000370210790619663
http://www.ncbi.nlm.nih.gov/pubmed/20149285
http://dx.doi.org/10.1366/000370206778664635
http://www.ncbi.nlm.nih.gov/pubmed/17059664
http://dx.doi.org/10.1016/j.polymertesting.2013.03.004
http://dx.doi.org/10.3390/s16040432
http://www.ncbi.nlm.nih.gov/pubmed/27023551
http://dx.doi.org/10.1063/1.4896194
http://dx.doi.org/10.1117/1.3592779
http://www.ncbi.nlm.nih.gov/pubmed/21721827
http://dx.doi.org/10.1016/j.saa.2017.12.055
http://www.ncbi.nlm.nih.gov/pubmed/29290567
http://dx.doi.org/10.1016/j.ejpb.2016.06.007
http://www.ncbi.nlm.nih.gov/pubmed/27288937
http://dx.doi.org/10.1007/s11432-011-4511-5
http://dx.doi.org/10.1080/15421406.2011.563625
http://dx.doi.org/10.1016/j.jpba.2010.12.020
http://www.ncbi.nlm.nih.gov/pubmed/21237609
http://dx.doi.org/10.1016/j.addr.2017.09.014
http://www.ncbi.nlm.nih.gov/pubmed/28931472
http://dx.doi.org/10.1016/j.cplett.2004.03.117
http://dx.doi.org/10.1016/j.ijpharm.2006.10.027
http://www.ncbi.nlm.nih.gov/pubmed/17129691


Sensors 2018, 18, 4098 11 of 12

30. Takahashi, M.; Ishikawa, Y. Translational vibrations between chains of hydrogen-bonded molecules in
solid-state aspirin form I. Chem. Phys. Lett. 2013, 576, 21–25. [CrossRef]

31. Ney, M.; Abdulhalim, I. Does human skin truly behave as an array of helical antennae in the millimeter and
terahertz wave ranges? Opt. Lett. 2010, 35, 3180. [CrossRef] [PubMed]

32. Delaney, S.P.; Pan, D.; Galella, M.; Yin, S.X.; Korter, T.M. Understanding the Origins of Conformational
Disorder in the Crystalline Polymorphs of Irbesartan. Cryst. Growth Des. 2012, 12, 5017–5024. [CrossRef]

33. Kawase, K.; Ogawa, Y.; Watanabe, Y.; Inoue, H. Non-destructive terahertz imaging of illicit drugs using
spectral fingerprints. Opt. Express 2003, 11, 2549–2554. [CrossRef] [PubMed]

34. Charron, D.M.; Ajito, K.; Kim, J.-Y.; Ueno, Y. Chemical Mapping of Pharmaceutical Cocrystals Using Terahertz
Spectroscopic Imaging. Anal. Chem. 2013, 85, 1980–1984. [CrossRef] [PubMed]

35. Sakamoto, T.; Portieri, A.; Arnone, D.D.; Taday, P.F.; Kawanishi, T.; Hiyama, Y. Coating and Density
Distribution Analysis of Commercial Ciprofloxacin Hydrochloride Monohydrate Tablets by Terahertz Pulsed
Spectroscopy and Imaging. J. Pharm. Innov. 2012, 7, 87–93. [CrossRef] [PubMed]

36. Cherkasova, O.P.; Nazarov, M.M.; Sapozhnikov, D.A.; Man’kova, A.A.; Fedulova, E.V.; Volodin, V.A.;
Minaeva, V.A.; Minaev, B.F.; Baryshnikov, G.V. Vibrational spectra of corticosteroid hormones in the terahertz
range. In Proceedings of the Laser Applications in Life Sciences, Oulu, Finland, 9–11 June 2010; Volume 7376,
p. 73760P.

37. Minaeva, V.A.; Cherkasova, O.P.; Minaev, B.F.; Baryshnikov, G.V.; Khmara, A.V. Features of terahertz
adsorption and Raman scattering of mineralocorticoid hormones. Bull. Russ. Acad. Sci. Phys. 2015, 79,
1196–1201. [CrossRef]

38. Angeluts, A.A.; Balakin, A.V.; Evdokimov, M.G.; Esaulkov, M.N.; Nazarov, M.M.; Ozheredov, I.A.;
Sapozhnikov, D.A.; Solyankin, P.M.; Cherkasova, O.P.; Shkurinov, A.P. Characteristic responses of biological
and nanoscale systems in the terahertz frequency range. Quantum Electron. 2014, 44, 614. [CrossRef]

39. Cherkasova, O.P.; Nazarov, M.M.; Smirnova, I.N.; Shkurinov, A.P. THz and Raman Spectroscopy in Steroid
Chemistry. ALT Proc. 2012, 1. [CrossRef]

40. Quema, A.; Takahashi, H.; Sakai, M.; Goto, M.; Ono, S.; Sarukura, N.; Shioda, R.; Yamada, N. Identification
of Potential Estrogenic Environmental Pollutants by Terahertz Transmission Spectroscopy. Jpn. J. Appl. Phys.
2003, 42, L932. [CrossRef]

41. Cherkasova, O.P.; Nazarov, M.M.; Shkurinov, A.P. Terahertz spectroscopy for diabetes diagnostics. EPJ Web
Conf. 2017, 149, 05013. [CrossRef]
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