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Abstract: The management and proper use of the Urban Public Transport Systems (UPTS) constitutes
a critical field that has not been investigated in accordance to its relevance and urgent idiosyncrasy
within the Smart Cities realm. Swarm Intelligence is a very promising paradigm to deal with such
complex and dynamic systems. It presents robust, scalable, and self-organized behavior to deal with
dynamic and fast changing systems. The intelligence of cities can be modelled as a swarm of digital
telecommunication networks (the nerves), ubiquitously embedded intelligence, sensors and tags,
and software. In this paper, a new approach based on the use of the Natural Computing paradigm and
Collective Computation is shown, more concretely taking advantage of an Ant Colony Optimization
algorithm variation and Fireworks algorithms to build a system that makes the complete control of
the UPTS a tangible reality.
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1. Introduction

Since their pioneering conception in 1829, underground trains have changed in in so many ways.
From the 47 km/h that Stephenson’s train reached in the aforementioned year, to the 310 km/h that
the Spanish AVE is capable of obtaining, trains have experienced an evident impact regarding their
technology. However, these changes have not been applied to the management system and conception
of the underground itself as it is nowadays. On the one hand, the rapidly growing massification of the
world’s urban cores together with the intensive use by citizens of the underground, is pushing the
transition of these cores to the Smart City purest concept, where every single element within the city
has ratiocination enough for it to be called intelligent. In the year 2050, 66% of the world’s population
is expected to be living in urban cores (United Nations, Department of Economic and Social Affairs,
New York, NY, USA), increasing the current percentage of 54% by 12%. In other words, the current
estimations show that the continuous urbanization process that the world is facing, along with the
overall growth of the world’s population, will add another 2.5 billion people to urban populations by
2050, with close to 90% of the increase concentrated in Africa and Asia, according to a new United
Nations report. To sum up, 66% of a world population of 9 Billion (5.94 Billion) will be living in urban
cores in 2050. The aforementioned massification can be seen in Figure 1.
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Figure 1. World Population estimated growth between the years 1950 and 2100. These charts
show estimates and probabilistic projections of the total population for countries or areas,
geographical aggregates and World Bank income groups as defined in Definition of Regions.
The population projections are based on the probabilistic projections of total fertility and life expectancy
at birth, based on estimates of the 2017 Revision of the World Population Prospects. These probabilistic
projections of total fertility and life expectancy at birth were carried out with a Bayesian Hierarchical
Model. The figures display the probabilistic median, and the 80 and 95 per cent prediction intervals
of the probabilistic population projections, as well as the (deterministic) high and low variant
(+/−0.5 child) of the 2017 Revision of the World Population Prospects [1,2].

On the other hand, it is important to note that this need has been outlined by organisms such as
C.E.O.E (Spanish Confederation of Business Organizations, Madrid, Spain). In fact, as described in
CEOE [3]:

This frame of sustainability and efficiency that must involve the Smart Cities, has a direct relationship
with other key areas, such as [...] the efficient management of the mobility of people [...] [Cities are
lacking] Indicators for the collection appropriate measures [...] [Cities systems need] real-time
knowledge about incidents, and an improved efficiency and management of the public transport.

It is, therefore, evident that cities nowadays need a deep improvement on their IT systems and
infrastructure, evolving to new schemes where data is seen as a binder for the city. To contribute to this
goal, a gathering and management system based on Natural Computing is presented on this paper.

Even the concept of Smart City is still being under constant redefinition, most authors agree that
many different individuals, agents, and devices, operate with their environment within the Smart City
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realm [4–7]. Therefore, as R. G. Hollands [8] points out, the relation among all these elements will
define the behavior of the Smart City itself. It is easy to realize that an important area of the Smart City
will be based on the interaction between its different components with their environment. This fact
disembogues in a Socio-Collective Interaction, where the Smart City in general terms, and specially
the underground system beneath, can be seen as a huge swarm, where agents collaborate with each
other [9]. The aforementioned approach justifies the present investigation project, based on a change
in the way of tackling the management processes of any underground system, using Collective
Computation algorithms [10–12] instead of the classical, graph-oriented ones [13].

2. Definition of the Problem

The underground system beneath any urban core is a living, constantly changing entity.
According to the Annual Subway Ridership of the Metropolitan Transportation Authority
(Metropolitan 2016), 3.410 billion itineraries were made last year within Beijing’s underground system,
more than the double of New York city’s subway itineraries of 1.763 billion. This number is massive
but it is expected to increase drastically in years to come. If we study the number of passengers
using Beijing’s subway, the 1800 million passengers/year it has nowadays, is expected to increase
by 700 million by the year 2050. In other words, 27% of the world population will be using Beijing
Subway by 2050. The aforementioned increase in Beijing’s subway usage is shown in Figure 2.

(a) 1965 plan (b) 1993 plan (c) 2021 plan

(d) Historical and estimated data

Figure 2. Beijing Subway estimated growth between the years 1970 and 2021. (a) Schematic map of
Beijing Subway lines in 1965. (b). Lines in operation by 1995. (c) A map showing Beijing subway lines
in operation by the end of 2017 (solid lines) and subway lines then projected for completion before the
end of 2021 (dashed lines). (d) Historical and estimated data.

Thus, how can these itineraries be traced, letting the management know who is using the
underground and when? How can the users rapidly know if there is an emergency or a path, which is
not working due to technical errors within the underground? How can we analyze the massive data
that can be potentially generated by so many itineraries? The response to these questions is precisely
the reason that justifies the investigation, which aims to create a synergy of elements achieved by the
application of many innovative Computation Paradigms ([14,15]). These paradigms, in conjunction
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with strict software control, which will operate with user’s smartphones, will create to an increase in
the intelligence of the Urban Public Transport Systems (UPTS hereinafter).

Regarding the law-related aspects, it is important to remark that, according to the Regulation
2016/679 of the European Parliament and of the Council of 27 April 2016, dissociated data (that
information related to a physical person that does not allow for his direct identification) can be used in
these sort of systems [16]. As it is frequently seen and widely accepted in social networks, users will
accept the share of their dissociated data by using the application for statistical, non-commercial
purposes. This acceptance is shown in examples such as Facebook and WhatsApp, that hold 1871 and
1000 million users, respectively [17]. However, they will have the right to reject this safe data sharing.
Rights of Access, Rectification, Cancellation and Opposition regarding dissociated data, as well as any
kind of data stored, will be granted at any given time as in Spanish Organic Law 15/1999 [18] which is
aligned with European Union (EU) laws. Moreover, Data Suppression, Limitation and Portability will
be always granted as well, as data storage good practices suggest in EU.

3. Investigation Goals

One of the most important aspects in a Smart City is the optimal use of available resources.
Sensors can help to make an optimal use of resources by taking thoughtful decisions after analyzing
their environment. These sensors can control, detect, and manage the unnecessary use and make
certain adjustments as needed.

At present, the major cities waste up to 50% of water due to pipe leakages. With sensors fitted on
each pipe, water leaks can be easily detected and corrected before any heavy loss. Besides this fact,
the irrigation systems in public parks can automatically turn off whenever rain is detected to save water.
Sensors have also enabled the concept of “Advanced Metering Infrastructure (AMI)” underpinning
energy management in cities. Cities are considering the use of “Smart Meters” embedded with
Phase Measurement Unit (PMU) sensors and a communication module which facilitates a two-way
communication between the consumer and the supplier. For utility service providers, it helps check
meter status prior to sending a repair crew in response to a customer call. These checks prevent the
needless dispatch of field crews to customer sites. For consumers, it can provide the real-time energy
usage details in a way that can be easily understood. Based upon this data, users can change the
preferences and make more informed decisions about their usage without waiting for their energy
bill at the end of month. In cities, street lights remain on even when there is no activity in the area
(sometimes in daylight too). Additionally, it becomes very difficult for authorities to detect any fault
and theft of street lights. With sensors, lights can go dim when they are not needed, and authorities
can get a text message instantly whenever there is a fault or tampering in street lights. With sensors
fitted in the garbage bins, the municipal authorities can be notified when they are close to being full.
The Netherlands became the first ever to produce “Intelligent Bins” that report to the officials via text
messages, whenever the bins are either full or if there is any damage. Traffic can be reduced with
sensors that detect where the nearest available parking lot is. Motorists get timely information via text
messages so they can locate a free parking slot quickly, saving time and fuel. A similar project is being
carried out in San Francisco called SFPark, where parking spaces have been installed in 8200 on-street
places. This concept would be replicated in several other states in coming days. Sensors mounted
on poles can monitor the Ambient Air Quality (AAQ) of cities. Citizens can monitor the pollution
concentration in each street of the city or they can get automatic alarms when pollution beyond a
certain level.

The present investigation has the objective of fixing, chiefly the following goals that define an
accurate overview of the investigation:

• Investigate the Computing Paradigms according to the realm of the Collective Collaboration: As it
will be explained in further sections within this document, the Natural Computation stands as the
best ally when it comes to this investigation aspect [19]. Genetic Algorithms [20,21], Ant Colony
Optimization [22], Swarm Computing [23], Grammatical Evolution [24] and Grammatical
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Swarm [25], which have been widely investigated in order to find improvements, if any, in parallel
investigations about algorithms and optimization.

• Find a nexus between the Computing Paradigms involved and the problem to solve: Once a strong
theoretical overview has been given to the reader, the union point and nexus with the chased
system will be described. Please bear in mind that, at the time being, there is no application
of these algorithms in the UPTS context, factor that increases the innovative character of the
present investigation.

• Design and development of a system that, using the needed paradigms within Natural
Computation, allows a wide study of the behavior of the underground users: In a nutshell,
the system aims to become a tool that makes possible the study of the user’s behavior, by taking
dissociated data up in order to guard the privacy of the citizens. This objective will be possible
thanks to the UPTS users’ Smart phones, for which an application is to be developed in the
Android Operating System.

• Make precise studies about the statistical population that uses the UPTS. The dissociated data
provided by commuters is a constantly updated and accurate source of information about the
most frequent profiles in the UPTS. This information can be used as feedback for the system itself,
establishing the exact number of people using it.

• Know, in an accurate way, the most popular routes for the users, as well as their behavior
between the UPTS. It is important to note that this factor constitutes an open door for an efficient
management within the system. It is important to note that the term efficient differs to effective in
a subtle, but crucial manner; while an effective system achieves every objective, an efficient one
achieves every objective as well but, in the best, optimal way. The study of the most popular routes
can be seen as a first step to increase the frequencies of the highly crowded routes as needed.

• Prepare, thanks to the estimations gathered from the statistical study of the data, the UPTS to deal
with peaks. Such scenario can be predicted by attending at atypical values within the data set
gathered by the system.

• Detect anomalous situations, such as a blocked train within a tunnel, or different scenarios where
the number of users standing at the platform is high enough to fear an accident, surpassing the
capacity of the specific dock.

• Prepare alternative routes in case of intensive use and/or fault of the UPTS systems. The system
can detect whether a route is too crowded or not, allowing the UPTS to prepare alternative routes,
if possible. The same solution applies in case of system fault.

• One of the main virtues of the system lies on it high level of customization.

4. Overview of the System

Smart Cities are environment friendly as they use sustainable materials for building facilities and
reduce energy consumption. Efficient use of technology helps create an efficient transport management
system, improve healthcare facilities, and develop a robust communication network to connect all
businesses, people and beyond the relationships between central and national levels of governments.
A network of sensors, cameras, wireless devices, data centers form the key infrastructure that allows
civic authorities to provide essential services in a faster and more efficient manner.

There will be an urban environment that permanently communicates with citizens and is capable
of managing public services in real time to improve their quality of life through traffic management,
garbage collection, waste disposal, irrigation systems, assisted parking, and that alerts the local
authority when an incident occurs so that the government can stay in touch with the people.

The platform is divided into a layered architecture associated with the different functional blocks.
The following section describes the components and main features of the architecture:

Layer 0. Integrate sensing/performance technologies. The platform will facilitate integration
sensing technologies currently available, regardless of their nature, and will provide an open
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environment that allows the dynamic addition of new sensor systems and technologies. To accomplish
this, the platform will provide data encapsulation mechanisms that standardize the information
received from sources such as Wi-Fi, ZigBee, etc. Layer 0 of the platform is a broker that defines
communication with sensor networks of different natures (Wi-Fi, ZigBee, Bluetooth, etc.), and obtains
the raw data from sensor networks. The main novelty of this layer is the ability to provide the platform
and the upper layers with openness regarding the connection to sensor networks of different natures,
and thus ensure that upper layers of the architecture have access to information and can perform data
fusion at different levels.

Layer 1. Low-level services. Given the information exchanged with the environment through
layer 0 as described above, the existing functional requirements and a set of low-level services will now
be defined; specifically, those that depend on the types of networks and technologies integrated into
every deployment. After obtaining the raw data, a gateway is provided, defined through adapters that
allow the information received to be standardized. In this first stage, the platform provides services
such as filtering of signals, normalization services or other treatment services at the basic level signals.
These services are provided by the adapters and will be associated with algorithms that perform initial
treatment of the data, so that it can be presented to higher layers in a more homogenized way.

Layer 2. Information fusion algorithms. Each organization includes the roles required to facilitate
an intelligent management of the information obtained from the lower levels of the architecture.
The MAS incorporates agents specifically designed to interact with low-level services. In addition,
we propose the design of intelligent swarm agents specialized in Information Fusion (IF) using ant
colony systems, Fireworks algorithms, and Particle Swarm Optimization. The system to be developed
formed by five groups of elements, has the main structure that can be seen in Figure 3. There are five
groups of elements within the system, which are described below:

• A: Fixed Smart dust: In wireless sensor networks terms, this smart dust element, that will be
unique in each UPTS station, will behave as the sink node. This special device will be integrated
in the dock itself, receiving information from its Bn counterparts. The sink node will be the only
element able to establish communication with the Operations and Control Center, D, and the
elements within the C set.

• B[1, 2, 3, · · · , n]: Mobile Smart dust: The present element of the system, embedded in the UPTS
trains fleet, will behave as a slave of the sink smart dust. They will establish communication with
the sink and will receive data from the elements within the C set, which will be explained below.

• C[1, 2, 3, · · · , n]: Users smart phones: This fundamental element within the system will be used
by the users to make evident their presence in the dock. The elements within this group will be
able to communicate with the sink smart dust, A, as well as with its counterparts in B, the mobile
smart dust devices, that will make possible to know the number of users in the train. Please note
that the set formed especially by A and B[1, 2, 3, · · · , n] will shape the wireless sensor network
of the system, that will operate closely with the C[1, 2, 3, · · · , n] devices. A mobile application
will be developed for the elements in C, that will retrieve the dissociated data of the users, let
them know different routes in case of massive congestion, configure itineraries and show warning
regarding abnormal situations that may occur within the UPTS.

• D: Operations and Control Center (OCC): This element will behave as the management point
within the system realm, receiving the data sent by the smart dust in every single station,
showing the pertinent status and the presence, if appropriate, of abnormal situations from the
safety/systems failure point of view.

• E: System Administrator: Evaluator of the data showed by the OCC. Will operate accordingly
to the UPTS current status and its environment, whether triggering a specific security protocol
against failure or solving the different spurious scenarios that may occur.
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Figure 3. Different views of Smart Cities. Currently in-development system, including fixed smart
dust, mobile smart dust, users’ smart phones, control center and system administrator could be
easily integrated. (Reprinted with kind permission from http://www.cnet.se/smart-cities and https:
//www.arup.com/projects/rail).

Sensors Technology

Simulations using sensor-collected data would assist planners in identifying potential
traffic challenges at granular levels–street, intersection, freeway ramp, and other locations.
Congestion problems could be addressed more efficiently, cutting down the number of planning
errors in the process. High-tech methods leveraging the Internet of Things can aid in cutting down
traffic congestion. For example, existing technologies can detect smartphone Bluetooth signals (short
range) and Wi-Fi signals (longer range) from vehicles as they pass through points where sensors detect
and record their presence. By placing sensor detectors at key locations along roads, transportation
managers can determine the general path of vehicles as they pass through these points. Having this
greater insight into traffic flow and congestion points could help city planners to identify opportunities
to smooth traffic flows and plan the infrastructure more accurately to support a city’s growing needs.

http://www.cnet.se/smart-cities
https://www.arup.com/projects/rail
https://www.arup.com/projects/rail
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Most commuters have smartphones and many vehicles today have built-in electronics (Wi-Fi,
Bluetooth, ZigBee) emitting signals that can be captured. Scanners in the streets, typically attached
to street lights, can capture these signals. The number required will vary with the amount of traffic
flowing through an area, distances between vehicles, and the level of reflection created by nearby
signs, billboards, or any obstructions. These scanners need to be positioned in a pattern that increases
the chance of detection. Once the data is captured, the raw information contained in Bluetooth,
Wi-Fi, and ZigBee data logs can be aggregated to provide greater insights into traffic patterns.
Swarm intelligence holds a great potential to totally transform the way traffic patterns affect our
daily lives and our daily commutes. It is now up to city planners throughout our major metropolises
to recognize the benefits of these simulations and to create the necessary infrastructure.

5. Algorithms Involved

Despite its apparent disparity, the following Computation Paradigms and the Algorithmic
Techniques described below fall within the spectrum of the Natural Computation Paradigm. As long as
the investigation is currently on a medium stage, the nexus with the system of some of these paradigms,
as well as their application to the system, are still being under investigation.

As the accustomed reader will surely intuit, the algorithmic entities attached to this paradigm
have, as their main base, the logic associated with phenomena present in nature, as well as the logic
associated with the genetic-molecular base of the living beings, thus. As it can be read in Handbook
of Natural Computing [26], we can formally define Natural Computing as the set of computing
techniques that circumscribe to, at least, one characteristic defined within the following group:

• Obtain its base from observing nature, establishing a computing simile.
• Base its reasoning in the use of the computers to synthesize natural events.
• Use natural materials, from the logical or physical point of view, such as DNA strings or

chromosomes, to achieve its computational processes.

5.1. Genetic Algorithms

As stated by Charles Darwin in his opus magnum On the Origin of the Species [27],
from immemorial times living beings have been forced to a continuous evolutive process looking
for survival. Every single specie evolves from a common ancestor looking for the adaptation to
its environment and survive, following the process named natural selection. In a parallel way,
Genetic Algorithms (GA hereinafter) follows the same pattern, trying to evolve a population. Thus,
as it can be extracted from John H. Holland’s Adaptation in Natural and Artificial Systems [20,21],
a GA can be formally defined as a set of ordered instructions, that aim to achieve a specific problem,
which are based on the genetic-molecular base of the evolutive process of the living beings. It is
remarkable that, despite the paternity of the GA is attributed to Prof. Holland, his sublime work means
the colophon to the investigation cycle started by the distinguished Gregor Mendel, with his laws
stated in Experiments in Plant Hybridization [28], based on the investigation over Pisum Sativum.
In his publication, Mendel describes, using this specific pea variation, the basic rules related to the
characteristic’s transmission between individuals through genetic inheritance. Actually, a GA has
the objective of evolving certain specimens that set a population. To chase this goal, the GA uses
random operations that establish a simile with the natural processes related to biological evolution.
These methods, called genetic operators, are the following:

• Selection: In this operator, the GA chooses individual genomes from the population to start
a later breeding process. Selection can be made by means of various techniques, as seen in
A Comparison of Selection Schemes Used in Evolutionary Algorithms [29]. These techniques
can be Roulette-Wheel Selection, Selection by Truncation, Selection by Ranking or Selection by
Tournament, to quote a few of them.
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• Crossover: Process whereby a variation in the chromosomes is done from a generation towards
the following one. It is remarkable that, following the natural simile, the crossover mocks
the sexual reproduction of the living beings. Letting a binary string be the information to be
represented, there are several crossover techniques, and they all produce permutations in the
chromosome. Seeing the chromosome as a set of alleles, the technique of crossover in a point can
be an illustrative example; as shown in the following figure, once a bit within the chromosome is
selected, every successive allele is exchanged between a chromosome and its pair, generating a
new offspring in the process, see Figure 4.

• Mutation: Variation within the genotype of a living being. Represents the action of the mutagens
present in the ecosystem. It is remarkable that the genetic unit able to mutate is the gene, atomic,
inheritable unity of data that builds up an individual’s DNA.

• Recombination: Process whereby a DNA portion is cleaved to provide its further union
to a different genetic material molecule. It is important to note that this action provokes
different genetic permutations in a specie regarding its predecessors, producing chimeric alleles.
This advantage makes the sexual reproduction possible between living beings, while avoiding
Muller’s ratchet (Named after its discoverer, Hermann Joseph Muller, is the process by which the
different genomes of an asexual population accumulate deleterious mutations in an irreversible
manner, that may result in the irrevocable extinction of the specie).

Figure 4. Genetic operator crossover between alleles. (a) Single point crossover in which one crossover
point is selected, binary string from beginning of chromosome to the crossover point is copied from
one parent, the rest is copied from the second parent. (b) Two-point crossover in which two crossover
point are selected, binary string from beginning of chromosome to the first crossover point is copied
from one parent, the part from the first to the second crossover point is copied from the second parent
and the rest is copied from the first parent.

5.2. Ant Colony Optimization

As Marco Dorigo and Gianni Di Caro establishes several times along [30], Ant Colony
Optimization (ACO hereinafter) is the name that refers to a multi-agent paradigm where every
agent’s behavior is inspired on the ant idiosyncrasy when searching for livelihood. The algorithms that
fall within this classification are based on the Goss Experiment (see Figure 5), using an Iridomyrmex
humilis colony. In this experiment, the ant nest is connected to a livelihood source by means of two
different paths, where one is longer than its counterpart, as the following figure shows:
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Figure 5. Goss Experiment representation (double bridge experiment). A colony of ants selecting the
best route between the nest and food, (a) Schematic of the bridge and ants in early stages, (b,c) Final
configuration where shortest path is found, note some “miss” ants due to the stochastic behavior of
the colony.

After allowing the ants to freely move themselves along the scenario, it can be seen that, after an
initial moment, they always choose the optimal, shorter path to the livelihood source. It is remarkable
that, as well, this experiment demonstrates that a route selection probability is directly proportional to
the length difference between both paths.

After studying the results thrown by Goss Experiment, a question arises; How do all the ants
know what is the shortest path? The answer to this question is based on the concept known as
stigmergy. The aforementioned concept alludes to those collaboration protocols, through the physical
medium, where the different components collaborate due to the accumulation of objects or magnitudes
in the environment, such pheromones or humidity. This concept is, precisely, the main tool within
ant’s communication; as the ants go backward and forward to the livelihood source, they deposit
a chemical substance called pheromone. As it happens in several species, this substance provokes
specific reactions and behavior in the individual counterparts, allowing to know what the shortest
path is.

It is remarkable that the directive that makes each ant k, placed in the i-th node, using a pheromone
trail τij in order to calculate the probability it has to use to choose a node j that belongs to N, as well
as the following node where it has to move along, where Ni constitutes the set of nodes adjacent to i,
is given by the equation:

pk
ij =

{
τij j ∈ Ni
0 j 6∈ Ni

(1)
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5.3. Particle Swarm Optimization

Since the dawn of science, many scientists have been intrigued by a movement, as elegant as
optimal, present in nature: The harmonious synchrony in bird flocks and fish shoals, where the
individuals are able to move without even rub with each other, despite the hundreds, thousands of
elements in certain cases, of individuals present in these sets. Thanks to scientific investigation, it has
been demonstrated that, apart from this optimal movement, these animals present certain swarm
patterns in their behavior.

Concretely, it is important to highlight the hyperbolic interest of Grenander Heppner on their
opus magnum A stochastic nonlinear model for coordinated bird flocks (Grenander, Di Caro 1999),
where both zoologists synthesize their investigation referred to the nature-hidden directives that mark
the asynchronous movement of the bird flocks, changing its direction suddenly in the presence of
predators and tacitly regrouping, among other interesting abilities. In the same line, Reynolds Flocks,
herds, and schools: a distributed behavioral model [31] stands out, aiming to the study of the interesting
choreography that birds deploy.

Clustering the aforementioned references as base, the Particle Swarm Optimization (PSO,
hereinafter) paradigm is known as the technique that pretends to optimize a problem due to a
meta-heuristic strategy, which is, due to the iterative trial of improving a candidate solution with
regards to a pre-stipulated quality criterion. Thus, in a way that reminds to GA, PSO optimizes a
problem starting from a set of candidate solutions, typically particles over the space, moving them along
through the searching space without forgetting the premises of PSO mathematical base, which involves
the position and the speed of the particles. As can be inferred, the technique mimetizes the group
behavior of the aforementioned living beings, where each individual movement is influenced by the
best local position known, while, in a parallel way, the swarm maintains a best global position known.
This best global position is updated by the best position known by all the individuals in the swarm,
fact that will guide the set to move searching for the best global position.

PSO adopts a tiny number of postulations along its execution process, exploring a large search
space. Despite from that, PSO is a meta-heuristic, so it is not possible to adamantly ensure that
the algorithm is going to find an optimal solution of the problem for every single case. In a more
mathematical, accurate way, PSO does not use the gradient of the tackled problem, which means
that this technique does not require the problem to be differentiable, as well as it happens in typical
optimization methodologies such quasi-Newtonian methods or Gradient Descent. Thus, PSO can be
used, enjoying a high success rate, in optimization problems that are especially non-regular, where there
is certain ambient noise, or those presenting a dynamic, changing-over-time behavior. PSO algorithm
pseudocode can be stated as follows:

Let the following symbols represent properties of a particle:

• xi is the current position of particle i
• vi is the current velocity of particle i
• pBest is the personal best position of the particle
• gBest is the global best particle
• c1 ∈ R is the personal influence (acceleration coefficient)
• c2 ∈ R is the global influence (acceleration coefficient)
• r1 and r2 are random numbers distributed using a uniform pattern on interval [0, 1].

With these notations, the formula to calculate a particle’s velocity at time t + 1 (time is simulated
using iteration number) is:

vi(t + 1) = vi(t) + c1 ∗ r1 ∗ (pBest − xi) + c2 ∗ r2 ∗ (gBest − xi) (2)
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where, r1 and r2 are randomly generated for every velocity update and 0 ≤ r1, r2 ≤ 1. They should
both be different each iteration. In addition, c1, c2 are user defined values called acceleration coefficients
where 0 ≤ c1, c2 ≤ 2. Their value depends on the problem to be optimized.

New particle position at time t + 1 just adds the newly calculated velocity to its current position at
time t. In other words, the position now is the previous one adding its velocity, see Figure 6. Note that
gBest refers to a star topology.

xi(t + 1) = xi(t) + vi(t + 1) (3)

Figure 6. Particle swarm optimization model: position update using a star topology (gbest) and an
inertia w term. Please note that gbest, p1

best and p2
best are fixed in time t in order to make the figure as

simple as possible, their position could change (or not) depending on the fitness value of particles x1

and x2 along time in a real example.

Algorithm 1 shows the standard PSO process to update location and velocity of particles.

Algorithm 1: Standard particle swarm optimization algorithm: update process.
for Each time step t do

for Each particle i in the swarm do
update position xi(t + 1) using Equations (2) and (3)
calculate particle fitness f (xi(t + 1))
update pBest and gBest

end for
end for

5.4. Fireworks Algorithm

As history shows, mathematical optimization has always been a field under investigation (Boyd,
2004). More concretely, and due to its vital importance on Computer Science, the search processes
involved in computing problems have been widely investigated. These processes are highly related to
sorting algorithms too.

A search algorithm is a set of mathematical instructions aiming to place a custom order between
the elements within a collection. Optimization techniques, as well as efficient sorting, has been the
main objective when it comes to these kinds of algorithms since the first investigations on the field [32].

In a similar way, Fireworks Algorithm (FWA onwards) belongs to the Swarm Intelligence spectrum
and takes its inspiration by observing fireworks explosion [33,34]. This algorithm is proposed for the
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optimization of complex functions, and its implemented following an accurate simulation of fireworks
explosion process. FWA takes special attention to keep the diversity of sparks as it will be explained,
by maintaining two different search processes. In general, terms, FWA constitutes an approach to
explore a massive search space. This search is based on the search of random points confined by a
certain distance measure that hopes one or more of the points of interest will yield promising results.
Once these points give interesting results in terms of the mathematical function to be optimized,
a more concentrated search will be spawned in the near points, iterating through the algorithm until
an optimal solution is found.

Regarding FWA operating mode, the algorithm starts with the selection of a concrete number, N,
of initial locations. N fireworks will be thrown at these locations, and the fireworks will consequently
throw sparks. The location of these sparks will be retrieved to evaluate its quality, and in case the
optimal solution has been found, the algorithm will finish. Otherwise, FWA will set another N
fireworks at N locations, spawning and iterating repeatedly over the aforementioned process until the
optimal solution is found.

To validate the convergence curves of FWA, Clonal Particle Swarm Optimization (CPSO) and
Standard Particle Swarm Optimization (SPSO) are taken [33]. A set of eight different benchmark
functions (Sphere, Rosenbrock, Ellipse, Cigar, Rastrigin, Griewank, Tablet and Schwefel) averaged
over 20 independent runs are thrown on these algorithms, reaching the conclusion that FWA presents
a higher speed compared to CPSO and SPSO, see Figure 7.

(a) Sphere and Rosenbrock functions (b) Ellipse and Cigar functions

(c) Rastrigin and Griewank functions (d) Table and Schwefel functions

Figure 7. Convergence curves of the FA, the CPSO and the SPSO on eight benchmark functions.
The function fitness is averaged over 20 independent runs. Reprinted from [35], with kind permission
from Springer Science + Business Media. Copyright c© Springer-Verlag Berlin Heidelberg 2010.

The information shown in the last figure, with the addition of Ackley benchmark function, can be
analyzed in the following figure, where the Statistical Mean and Standard Deviation for FWA are far
more agile compared to CPSO and SPSO, see Table 1.
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Table 1. Statistical mean and standard deviation of solutions found by the FA, the CPSO and the SPSO
on nine benchmark functions over 20 independent runs of 10000 function evaluations [34]. Copyright
c© IGI Global 1988-2018.

Function FA’s Mean CPSO’s Mean SPSO’s Mean
(StD) (StD) (StD)

Sphere 0.000000 11,857.425781 24,919.099609
(0.000000) (3305.973067) (3383.241523)

Rosenbrock 19.38330 2,750,997,504.000000 5,571,942,400.000000
(11.94373) (1,741,747,548.420642) (960,421,617.568024)

Rastrigin 0.000000 10,940.148438 24,013.001953
(0.000000) (3663.484331) (4246.961530)

Griewank 0.000000 3.457273 7.125976
(0.000000) (0.911027) (0.965788)

Ellipse 0.000000 2,493,945.500000 5,305,106.500000
(0.000000) (1,199,024.648305) (1,117,954.409340)

Cigar 0.000000 122,527,168.000000 149,600,864.000000
(0.000000) (28,596,381.089661) (13,093,322.778560)

Tablet 0.000000 15,595.107422 42,547.488281
(0.000000) (8086.792234) (8232.221882)

Schwefel 4.353733 8,775,860.000000 6,743,699.000000
(1.479332) (1,217,609.288290) (597,770.084232)

Ackley 0.000000 15.907665 18.423347
(0.000000) (1.196082) (0.503372)

To sum up, FWA finds brilliant solutions with 1000 times of function evaluations, reflecting the
quick convergence speed of the algorithm against CPSO and SPSO. This algorithm is therefore a
strong ally when it comes to Smart Cities environment applications in a computing-related way,
being currently investigated to create a system capable of searching lost people in the Smart City rural
surroundings.

FWA has multiple applications, as [34] shows with a system for data mining low-rank applications
such web search. These systems reduce storage and requirements at runtime, as well as the
noise regarding data representation when it comes to essential associations. The Non-negative
Matrix Factorization, whose parameters are widely explained at (NMF, [36]) arrives to a low-rank
approximation that verifies that non-negativity constraints are satisfied. NMF approximates a
data matrix by where and are the NMF factors. NMF requires all entries in, and to be zero
or positive. The following figure shows the FWA-based optimization algorithm pseudo code for
NMF—see Algorithm 2-, showing explicitly the high level of configurability associated with FWA,
where SIO stands for Swarm Intelligence Optimization.
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Algorithm 2: Pseudo code for the initialization procedure for NMF factors W and H. The two
for-loops in lines 4 and 10 can be executed concurrently [33].

Given matrix A ∈ Rm×n

H0 = rand(k, n)
% Compute in parallel
for i = 1 to m do

Use SIO to find wr
i that minimizes ||ar

i − wr
i H0||F, (min||.||F of row i of D)

end for
% Gather
W = [wr

1, · · · , wr
m]

% Compute in parallel
for j = 1 to m do

Use SIO to find hc
j that minimizes ||ac

j −Whc
j ||F, (min||.||F of col j of D)

end for
% Gather
H = [hc

1, · · · , hc
n]

6. Application to the Smart Cities Realm and Potential Results

It is inferred from this paper that the wide spectrum of applications that can be extracted from
Natural Computing and applied to the Smart City is massive, see [37,38]. Moreover, as it has been
pointed out along the paper, the cities need deep changes to be called ”smart”. If in short terms Natural
Computing mimics phenomena present in nature, it turns out to be an excellent ally when improving
the different systems that belong to a city: A city can be seen as a swarm of individuals that operate
among a system. Thus, following a bottom-up scheme, when it comes to a city’s realm, the citizens can
be seen as particles, therefore they conform a swarm, atomic work element of the Natural Computing
paradigm. This simile opens the Smart City concept to be widely improved by applying Natural
Computing, where Genetic Algorithms, ACO, PSO and Fireworks Algorithm especially stand out. It is
important to point, though, that this paper has motivated parallel investigation lines in the authors, and
thus another way of thinking when it comes to the particle-people simile is being under investigation.
In this parallel approach, people that share the same information is being grouped in sets of particles,
spawning the concept of a more complex type of ’super-particles’ among the swarm [39].

On the one hand, the efforts under the current investigation are being currently driven into the
ACO Algorithm spectrum: Even efficient, ant pheromone is simple, primitive; it only marks the shortest
path to the livelihood source, but; what if this pheromone concept is extended to a super-pheromone?
A super-pheromone will store dissociated data of a person (i.e., age, gender, education level, etc.), thus,
it will be possible to know which person profile is transiting for each UPTS section by seeing the user
as an ant. More concretely, by applying the schema shown in Figure 3. Overview of the currently
under development system, under the Section 4, the UPTS will improve its perception, knowing who
is circulating where, and consequently showing publicity screens according the relevant information
for the public. (For instance, it will be more effective to show the publicity related to a new video-game
near an institute area when the train is crowded by young people, while a new credit card with certain
bonuses will be more appropriate in the UPTS section beneath the financial area of the city.)

On the other hand, GA paradigm is being used to evolve a route instead of a chromosome
population: by means of a Smartphone application, users will be able to quickly know the best
route between two points in the UPTS, as well as backup routes in case of systems breakdown. PSO
can be used for studying the data retrieved in the OCC. This will make possible to optimize the
system by applying a statistical investigation over the data, detecting statistical outliers, and acting in
consequence. It is remarkable that the investigation regarding this slope and other Natural Computing
paradigms is in an early stage, thus new applications are susceptible to emerge.
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6.1. Wireless Sensor Networks

Wireless Sensor Networks consists of spatially distributed autonomous sensors to monitor
physical or environmental conditions, such as temperature, sound, vibration, pressure, etc., and to
cooperatively pass their data through the network. Researchers of wireless sensor networks face
challenges such as communication failures, memory/computational constraints, and limited energy.
Many issues in wireless sensor networks could be formulated as multidimensional optimization
problems, and approached through bio-inspired techniques.

• PSO is a simple, effective, and computationally efficient optimization algorithm. It could be
applied to address WSN issues [40] such as optimal deployment, node localization, etc.

• ACO is based on ants that are mobile agents that migrate from one node to an adjacent one
searching for feasible paths between source and destination nodes [41]. Ant colony solution
components correspond to network nodes, and, accordingly, routing tables correspond to
pheromone tables in which each pheromone variable holds the estimated goodness of selecting a
neighbor to forward a data packet [42,43].

Routing, Energy and Deployment Using Ant Colony Optimization

Like all routing algorithms, ant colony algorithms for mobile ad hoc networks, the information
related to routing is organized into the so-called routing tables. These tables contain the used
information by the algorithm in its forwarding of local decisions. The kind of information contained,
as well as the way in which it is used and updated depend solely on the characteristics of the algorithm.
The routing table is in turn a local database and a local model of the global state of the network [43].

A local routing, instead of storing the whole network graph, will be more suitable to keep track of
the information going to a destination node. The local routing table in every node/mote keeps the
following information:

• A list of neighborhood nodes/motes that have Internet connection or act a sink node, see Table 2.
This table is build using a discovery ant that every node will run, when the ant reaches the Internet
sink a backward ant will be sent back to the source node that updates the probability and lookup
table of nodes. These discovery ants could start at regular time intervals or when a network
configuration change happens.

• To be able to send back data packets, the MAC address or ID of the source node must be kept in
the path of the route to the Internet sink. That is, every node/mote stores the pair:

– the MAC/ID of the source of every transmitted packet (to be able to send data back to
the source),

– and the MAC/ID of the connected node/mote of transmitted packet (to send data back).

Data packets are sent using the Internet lookup table, according to the probability of the node.
When the echo information passes a node and reaches the source, then the probabilities are
also updated.

Table 2. Sample of a local routing table store in a random sensor. Please note that (Mote ID:Probability)
is the routing forward data and (Source Mote, Route) is the routing backward information.

Internet Lookup Table Data Packet Information
(Mote ID: Probability) (Source Mote, Route)

7 : 0.9 (2, 3)
5 : 0.6 (2, 5)
3 : 0.3 (2, 1)
1 : 0.4 (2, 6)
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The probability of Internet lookup table at node i that has a radio link with node j is updated
using the following equation:

pij =
τjαijβ j

∑j τjαijβ j
, (4)

where τj is the pheromone information updated by backward ants, αij is the radio link power between
nodes and β j is the node power status.

This approach does not consider low power consumption [44,45] and does not consider memory
limitations, this can be solved using a circular table to remove low probabilities. Real-time information
is not need and backward information could also use a circular table when there are a lot of nodes.

Energy of optimization path in WSN using ACO could be compared to energy of gradient-based
routing [46,47]. Based on simulation results the energy-aware routing protocol with optimization
scheme shows better performance than gradient-based routing protocol with optimization scheme [42].
It offered an efficient multi-path data broadcast to achieve reliable transmission in the case of node
error. It has been managed to enhance the life time of the wireless sensor network by efficiently
broadcasting the data. This implies that an ACO could be efficiently used to solve the network routing
problem with reduction in energy consumption to maximize the lifetime of the wireless sensor network.
Energy routing protocol with ACO gives best performance as compared to gradient-based routing
protocol using ACO.

Wireless sensor networks deployment problem refers to determining positions for sensor nodes
such that the desired coverage, connectivity, and energy efficiency can be done with as few nodes as
possible [47]. Events in an area devoid of an adequate number of sensor nodes remain unnoticed;
and the areas having dense sensor populations suffer from congestions and delays. Optimally deployed
WSN assures adequate quality of service, long network life and energy saving. Available PSO solutions
to the deployment problem are computed centrally on a base station for determining positions of
sensors, mobile nodes, or base stations.

Scale and density of deployment, environmental uncertainties and constraints in energy, memory,
bandwidth, and computing resources pose serious challenges to the developers of WSNs. Issues of
node deployment, localization, energy-aware clustering, and data-aggregation are often formulated
as optimization problems. Most analytical methods suffer from slow or lack of convergence to the
final solutions. This calls for fast optimization algorithms that produce quality solutions using less
resources. PSO has been a popular technique used to solve optimization problems in WSNs due
to its simplicity, high quality of solution, fast convergence, and insignificant computational burden.
However, iterative nature of PSO can prohibit its use for high-speed real-time applications, especially if
optimization needs to be carried out frequently. PSO requires large amounts of memory, which may
limit its implementation to resource-rich base stations.

7. Conclusions and Discussion

In this paper, a new scheme for endowing intelligence to a city UPTS is given, chasing the
transition of the city to a Smart City. In this approach, Natural Computing paradigm will be applied
to the system, after a deep investigation that aims to improve the involved paradigms, if possible.
Despite the investigation still being in an early stage, the system is likely to improve the data gathering
related to the UPTS, allowing the pertinent authorities to improve the system and even monetize the
information gathered by the system under development. Moreover, users will be able to enjoy a better
use of UPTS, knowing alternative routes in case of systems breakdown and being able to travel in an
efficient way. Swarm intelligence holds a great potential to totally transform the way traffic patterns
affect our daily lives and our daily commutes. It is now up to city planners throughout our major
metropolises to recognize the benefits of these simulations and to create the necessary infrastructure.
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