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Abstract: Social sensors perceive the real world through social media and online web services, which
have the advantages of low cost and large coverage over traditional physical sensors. In intelligent
transportation researches, sensing and analyzing such social signals provide a new path to monitor,
control and optimize transportation systems. However, current research is largely focused on
using single channel online social signals to extract and sense traffic information. Clearly, sensing
and exploiting multi-channel social signals could effectively provide deeper understanding of
traffic incidents. In this paper, we utilize cross-platform online data, i.e., Sina Weibo and News,
as multi-channel social signals, then we propose a word2vec-based event fusion (WBEF) model for
sensing, detecting, representing, linking and fusing urban traffic incidents. Thus, each traffic incident
can be comprehensively described from multiple aspects, and finally the whole picture of unban
traffic events can be obtained and visualized. The proposed WBEF architecture was trained by about
1.15 million multi-channel online data from Qingdao (a coastal city in China), and the experiments
show our method surpasses the baseline model, achieving an 88.1% F1 score in urban traffic incident
detection. The model also demonstrates its effectiveness in the open scenario test.

Keywords: intelligent sensors; social transportation; multi-channel signals; event detection;
word2vec-based event fusion

1. Introduction

Intelligent transportation systems (ITS) are highly involved in improving transportation efficiency
and services [1,2]. Successful operation of ITS relies on multi-modal big data. To collect traffic data,
physical sensors like inductive loops, radars, and cameras, are deployed in real world transportation
systems [3,4]. However, such conventional physical sensors are expensive and provide limited coverage
of transportation networks.

Today, social media and online web services provide a new path to access traffic information
through the internet. Due to the widespread applications of smart devices and social networks, people
can create and diffuse user generated contents (UGC) anywhere at any time. Therefore, everyone
in such a network can be a social sensor to perceive the real world, which makes the collection of
social signals in multiple domains possible [5,6]. Compared with traditional physical traffic sensors,
social traffic sensors offer advantages of costing essentially nothing and large-scale coverage [7]. Social
media data have been applied to detect traffic events, explain traffic status, analyze traffic sentiment,
etc. [8–10].
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Twitter, Facebook, Sina Weibo, News, BBS, and official transportation administration websites
are the main data sources to generate social signals in transportation research [11–22]. However,
current research focuses on using single channel social signals to extract traffic information. Clearly,
exploiting multi-channel social signals from cross-platform online data could effectively help gain a
deeper understanding of transportation events. Such multi-channel social signals provide significant
opportunities, but are also accompanied by serious challenges.

In this paper, we utilize multi-channel social signals from cross-platform online data for more
accurate detection and more comprehensive description of urban traffic. The main challenge is how
to semantically represent and fuse the multi-channel social signals into traffic event descriptions.
We firstly detect traffic events like traffic congestion, traffic incidents and traffic accidents from the
News and Weibo platforms, respectively. Then we propose a word2vec-based event fusion (WBEF)
model to semantically fuse the same topics detected from cross-platform data into overall traffic events.
The proposed WBEF model is trained with two years’ data collected from Weibo and News platforms.
We apply the proposed methods to Qingdao, a city on China’s eastern coast. Experiments demonstrate
the effectiveness of the proposed methods in traffic event detection and fusion from cross-platform
online data.

The main contributions of this paper are as follows: (1) We exploited cross-platform online data as
multi-channel social streams to mine traffic events, which benefits from the strengths of News media’s
objectivity and social media’s timeliness. (2) We proposed a word2vec-based event fusion (WBEF)
model to fuse traffic events from cross-platform data semantically, and the WBEF model shows better
recall and F1 score compared to baseline models in the experiments. (3) We deployed the proposed
methods in an open scenario, obtained a complete picture of the city traffic situation, and qualitatively
investigated the application efforts of proposed model.

The rest of this paper is organized as follows: Section 2 reviews related work from three
perspectives which are social transportation, topic modeling and cross-platform event detection.
Section 3 presents the details of the WBEF model to detect and fuse urban traffic events from
cross-platform data. Section 4 presents details of our experiments. Section 5 demonstrates a case study
in Qingdao. Section 6 concludes this paper.

2. Related Work

Social media and online web services generate social signals via crowdsourcing technologies
supported by smart mobile devices. Mining such social signals for traffic management and control has
received increasing attention, and the number of publications in this field has grown quickly in recent
years [23–25]. Typical techniques used in current social sensor-based transportation studies include
natural language processing, social computing, machine learning, recommendation systems and expert
systems. To our knowledge, this is the first attempt to apply the cross-platform event detection and
fusion model to multi-channel social signals for urban traffic situation monitoring. In this section, we
review social mediabased transportation research, and summarize topic modeling and cross-platform
event fusion methods.

2.1. Social Media Based Transportation Research

Social mediabased transportation research mainly falls into five categories, i.e., traffic prediction,
traffic event detection, traffic sentiment, traffic reasoning, and traffic behavior analysis. Traffic
prediction has a long research history. As early as the 1970s, Ahmed and Cook applied the
autoregressive integrated moving average (ARIMA) model to predict short-term freeway flow [26].
Recently, social media data were used to improve traffic prediction. He et al. [27] developed a linear
regression model incorporating real traffic data and Twitter data for longer-term traffic flow prediction.
Ni et al. [16] showed a moderate positive correlation between subway passenger flow and Twitter post
rates and proposed a hybrid model to fuse linear regression and SARIMA models to forecast subway
passenger flow. Chaniotakis et al. [19] used social media data to analyze and visualize Twitter signals
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at both temporal and spatial levels, which showed there are indicative group mobility patterns and
behavioral characteristics in urban transportation. Zeng et al. [11] studied online transportation-related
topic features on the national holiday of China, from the perspectives of topic evolution analysis,
opinion analysis, and geographic analysis, which could potentially help administrative sectors for
traffic management.

Traffic event sensing and detection is one of the major tasks in social mediabased transportation
research and applications, and many scholars have proposed inspiring models. D’Andrea, et al. [13]
treated traffic event detection from Twitter as a binary classification task, which assigns
traffic/non-traffic class labels to each tweet. They compared seven different classification models, such
as SVM, NB, C4.5, KNN, and employed the SVM model in their proposed system since SVM achieved
the best accuracy value in their tests. Gu et al. [28] defined five traffic incident categories and extracted
traffic incident information on highways and arterial roads from tweet texts and they firstly used
the Semi-Naive-Bayes classifier to categorize traffic incident tweets and non-traffic incident tweets,
and then they trained the Supervised Latent Dirichlet Allocation classifier to identify traffic incident
categories. Fu et al. [29] proposed an association rule-based keyword generation scheme to iteratively
extract real time transportation incidents. Meanwhile they implemented LexRank algorithms on the
complete sentence graph to rank the most influencing node, and the ranked words are regarded as the
summarization of traffic incidents. Gutierrez et al. [30] presented a computational framework to detect
real-time traffic events in the UK from Twitter, including tweet filtering, event type classification, name
entity recognition, geo-location extraction and event tracking. Nguyen et al. [15] built a system named
TrafficWatch that leveraged twitter signals and integrated them with online clustering and classification
algorithms for traffic monitoring and event detection. TrafficWatch demonstrated the potential to
report traffic incidents earlier than other data sources when deployed in the traffic management center
of Australia. Hao et al. [31], mined the correlation between adverse weather topic heat and traffic
incidents in social media, and further proposed traffic situation awareness and alerting model assisted
by adverse weather data to provide information on city-level traffic situations.

2.2. Topic Modeling

Topic modeling tries to uncover the hidden semantic structures of different types of documents.
Topic modeling technologies can obtain traffic topics from online social media and news texts. In recent
years, Latent Dirichlet Allocation (LDA) [32] and its extension models have become dominant for topic
modeling. Zhai et al. [33] proposed an online topic model by extending LDA to draw topics from a
Dirichlet process whose base distribution is over all possible words rather than from a finite Dirichlet
distribution. They also develop an online variational inference method to heuristically expand the
set of words in vocabulary. Paisley et al. [34] proposed a nested hierarchical Dirichlet process for
hierarchical topic modeling, and developed a stochastic variational inference algorithm for the model.
The proposed method was tested on 1.8 million documents from The New York Times and 2.7 million
documents from Wikipedia.

LDA and related models are traditionally applied to long text documents like news articles,
while there are increasing needs for modeling topics in short text documents like Twitter posts.
Quan et al. [35] integrated topic modeling with automatic short text aggregation to alleviate the
sparsity problem in short and sparse texts. Their experiments indicate the proposed scheme can
extract more meaningful and interpretable topics than traditional topic models. Ramage et al. [36]
developed a partially supervised LDA model which labels the content of twitter posts with four
characteristics regarding substance, style, status and social relationship. The experiments indicated
weighted combination of L-LDA model’s latent topic features and TF-IDF feature achieve satisfactory
results for topic ranking and recommendation task. Zhao et al. [37] assumed that each tweet has
been associated with a Twitter topic, and each user has its own topic distribution. Based on such a
hypothesis, they proposed a twitter LDA generation process, and used Gibbs sampling to perform
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model inference. Experiments demonstrated the Twitter-LDA can get more meaningful topic words
than standard LDA models.

2.3. Cross-Platform Event Detection

Multi-channel social signals processing benefits from the characteristics of multi-modality and
multi-domain, which integrate different kinds of information from different sources to obtain a more
comprehensive view (“big picture”) of objects compared to a single data stream. Many models with
cross-platform data can produce better event prediction and detection results. Hou et al. [38] developed
a cross-dependence temporal topic model to extract topics, and studied the mutual influence between
news and user-generated content streams. The proposed methods were evaluated on five datasets
from Sina, The New York Times and Twitter. Oghina et al. [39] used tweets from Twitter and comments
from YouTube to predict IMDb movie ratings, and the best performance model could rate movies
close to the observed values. Bao et al. [40] used a co-clustering model to detect emerging topics
from The New York Times and Flickr which experimentally achieved effective evaluation results.
Daichi et al. [41] applied a time series topic detection model to mix news and twitter streams during
the London Olympic games, which detected 34 topics with a precision of 87.5%.

Some cross-platform event detection architectures and systems have been proposed.
Qian et al. [42] proposed a generic framework for social event detection, tracking and evolution
analysis. They developed specific models for each task. For example, they used a boosted multi-modal
supervised LDA model for social event detection, and applied an incremental topic model learning
algorithm for analyzing the evolutionary processes of social events. Li et al. [43] presented the Event
Knowledge from News and Opinions in Twitter (EKNOT) system which could extract summaries
combining an objective description from news and opinions from tweets. They used an entity graph
to link entities for an event, also used an opinion graph to get a joint summarization of an event.
Wang et al. [44] proposed an event-based multi-aspect reflection mining framework to discover, link
and present major events. News and tweets about a major event can complement each other to describe
the event.

3. Methodology

Social signals effectively connect the physical space and cyber space, which provides a new
paradigm for traffic situation awareness. The main challenges that need to be faced are how to
collect, process, analyze, and fuse several types of signals in social transportation. As mentioned
in the related works, social transportation has attracted increasing numbers of researchers, and
some frameworks/architectures were proposed for specific social transportation tasks, such as
TrafficWatch [15] for traffic incident extraction, STAR-CITY [2] for traffic flow analysis and urban
planning, Steds [29] for traffic event summarization, Hao’s framework [31] for weather-related traffic
incidents perception. However, these architectures only leverage single social signals either from news
or social media.

Meanwhile, the frameworks for multi-modal data sensing and fusion are also getting more and
more attention, with representative event detection frameworks like EKNOT [43], and the work of
Wang et al. [44] and Qian et al. [42], all of which combine objective descriptions from news and opinions
from tweets together, linking the event descriptions and reflection from a cross-platform with the entity
graphs, finally fused into a joint summary of events. Although these frameworks recognized that
fused multi-channel social signals will improve the accuracy of event detection and the diversity of
event description, the entities (words representing person, location, organization, etc.) network-based
event fusion methods are unable to deeply fuse the event description in a semantic way. Moreover, it
is very necessary to integrate the traffic domain knowledge when applying the frameworks above to
intelligent transportation systems.

To our knowledge, this is the first attempt to transfer the traffic event detection task from single
channel social signals to multi-channel social signals, the main challenge being how to sense, process,
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analyze, link and fuse several types of signals in social transportation. To address these problems,
it is necessary to integrate natural language processing, information retrieval and machine learning
methods together with transportation domain knowledge to utilize the architecture.

In this paper, by sufficiently utilizing the objectivity of news media and immediacy of social
media, a word2vec-based event fusion (WBEF) model is proposed for the urban transportation event
detection, which extracts topics from multi-channel social signals, semantically coupled and fused
topics into cross-platform urban traffic events description. Furthermore, we develop a cross-platform
traffic event detection system integrating the above methods for real world applications.

The system architecture is shown in Figure 1. We choose news articles and Weibo posts as our
cross-platform data sources. The multi-channel social signals from cross-platform online data are
sensed through a keyword-based social sensor network configured by domain experts. The sensed
webpages are filtered and decomposed into structured data, then aggregated into data blocks assigned
to city roads. Traffic event topics from news articles are extracted with a news LDA model, and
traffic event topics from Weibo posts are extracted with a Weibo specific model named w-LDA model.
Furthermore, topic words are transformed into semantic representation with word vectors, and then
the cross-platform traffic events can be fused based on the topic distance matrix semantically. The
expressions and descriptions of variables in the following algorithms or sub-models are summarized
in Appendix A.

Figure 1. Architecture of cross-platform traffic event detection system.

3.1. Social Sensors Network

The social signals can be typically sensed by two approaches. The first approach is using API
services provided by the platform to parse the XML or JSON file, such as Twitter and Weibo. The
second approach is by deploying a web crawler that periodically monitors keywords, accounts and
URL lists. In our system, we take both approaches according to the availability and limits of service
providers. By consulting experts in traffic administrative agencies, the traffic keywords are grouped
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into four categories which are traffic event keywords, urban identity keywords, road identity keywords
and domain assistant identity keywords, respectively. Specifically, traffic event keywords are mainly
exploited to describe three types of traffic events, which are traffic accidents, traffic jams and traffic
suggestions. The identity keywords (Figure 2) describe corresponding cities, roads, and domain
assistants. All above traffic keywords are treated as search seeds that are feeding into the social
sensor network.

Figure 2. Traffic keywords for social sensors.

The News sensor perceived the latest news data according one specific keyword from the News
search engine. Correspondingly, the Weibo sensor also perceived latest Weibo data according one
specific keyword from the Weibo search engine. The News and Weibo sensors were deployed to
continuously monitor the data according to a keywords list, and the links of different sensors were built
if both sensors acquired the same News or Weibo article. Then, all the sensors and corresponding links
eventually formed a social sensors network, which dynamically adapted to perceiving multi-channel
social signals.

The keywords-based social sensors network consists of a crawler, page parser, duplicated URLs
filter, etc. [45]. Particularly, to efficiently utilize the network bandwidth and computation resources,
the social sensors network has a keywords priority adaptor, which dynamically sorts the keyword
query priorities according to the value of importance ranking for each node in the keyword network.

The keywords-based social sensors network is visualized in Figure 3. The nodes denote traffic
keywords. The size of each nodes represents the number of webpages that are collected regarding
the node’s keywords. The edges are constructed by calculating the co-occurrence of keyword pairs in
the same document. All the search keywords are aggregated into network clusters, the main clusters
include the roads cluster, the traffic incidents cluster and traffic suggestion keywords. Since the
experiment is based on a Chinese corpus, here we only show the social sensors network with Chinese
nodes and annotate the important information in English. The social sensors network can also be
analyzed by a social network algorithm, such as ranking the betweenness, closeness and degree.
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Figure 3. The keywords-based social sensors network.

3.2. Data Preprocessing

Data preprocessing is a fundamental step for traffic event sensing from cross-platform media
because raw data are unstructured and full of noise. The major preprocessing steps include meta-data
extraction, noise filtering, word segmentation and data blocks aggregation:

Noise filtering: The URL links, paragraph marks, emoji, etc. in the texts are regarded as noise
information, which negatively influence the accuracy and efficiency of word segmentation, information
processing and model training. To solve the problems, we define regular expressions to represent
various noise patterns, and then use the regex to search and delete noises in the text. Meanwhile, either
too short or too long texts are removed.

Meta-data extraction: we deployed Dom wrapper and XPath parsers to extract the title, post time
and other meta-data like authors, review number and repost number, etc. from the sensed web page
cache. Then the meta-data information is stored in databases.

Word segmentation: The space is a natural word delimiter in English texts, however, there is no
such equivalent in Chinese, so word segmentation is needed for Chinese NLP tasks. The Language
Technology Platform (LTP) [46] was deploy to segment words, remove punctuation and stop words,
and tagging the road entity with customized dictionary. The customized dictionary for LTP includes
all the keywords we used for the social sensors.

Data blocks aggregation: The sensed multi-channel social signals are aggregated into data blocks,
which are defined as a dataset containing cross-platform online data related to every urban road. With
the LTP’s entity recognition tools, the road entity of every News article or Weibo post is extracted, then
the cross-platform data are aggregated into data blocks corresponding to the road entity. Moreover,
when news articles or Weibo posts contain multiple road entities they will be assigned to each
corresponding data block separately. Each data block was fed into the event detection and fusion
models iteratively.

3.3. Word2vec Based Event Fusion Model

News articles usually describe a traffic event with relatively standard language, while Twitter and
Weibo may have posts expressing opinions/comments/discussions on the same traffic event [47,48].
Matching news articles and Twitter/Weibo posts on the same transportation topic can give a more
comprehensive description of a traffic event. Consequently, we propose to use LDA-based models to
extract topics in each respective source channels and link them together with the WBEF model.

3.3.1. Transportation Events Detection from News and Weibo

As described in the literature review section, the LDA and its variants have been widely applied
for event detection. To group transportation topics and find topic words from News, we use the
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standard LDA model for event detection. While for Weibo, we detect traffic events with a w-LDA
model which is described in details as follows:

w-LDA model: The w-LDA model is based on the USER scheme which achieves good performances
in Twitter classification [49]. The process is described as follows:

a) Combine all training messages generated by the same user into user profiles;
b) Train the w-LDA model with training user profiles;
c) Aggregate all testing messages generated by the same user into testing user profiles;
d) Use the trained w-LDA model to infer a topic mixture.

The aggregated user profiles can be viewed as a random mixture distribution over latent topics,
where each topic is characterized by a distribution over words. Both distributions are assumed to have
a sparse Dirichlet prior. Suppose the corpus consists of T Weibo posts and U users that are aggregated
into P user profiles, each user profile p contains Np words. The total number of topics denoted as K,
the unique words in vocabulary are denoted as V.

There are five latent variables and one observable variable, where latent variable α is a
K-dimensional vector giving uniform prior weight for all topics in a user profile p, latent variable β is a
V-dimensional vector with uniform prior weights for all words in a topic k, latent variable zi is the
topic for i-th word in user profile p and observable variable wi is the specific word, latent variable ϕz is
a V-dimensional vector representing the Dirichlet topic distribution for user profiles, latent variable ϑp

is a K-dimensional vector representing the Dirichlet word distribution for topics. The variable zi and
wi are drawn from multinomial distributions. The generative process can be seen in Algorithm 1.

Algorithm 1. w-LDA Generation Process

Input:K, U, T, α, β

Output: ϕz, ϑp, uProfileSet
//Step 1: User profiles data generation
For each author u = 1 . . . U

Traverse all the Weibo posts t = 1 . . . T;
Aggregate the posts generated by author u into users’ profile s uProfileSet(p)
Return uProfileSet
//Step 2: Topics generation
For each topic z = 1 . . . K

Draw ϕz ~ Dirichlet (β)// sample mix components for topic-word
//Step 3: Topic words generation
For each user profile p = 1 . . . P

Draw ϑp ~ Dirichlet (α)// sample mix components for user profile-topic
For each word in generated user profile p, i = 1 . . . Np

Draw zi ~ Multinomial (ϑp) // Sample topic zi for user profile p
Draw wi~ Multinomial (ϕzi ) //Sample word wi for topic zi

Return ϕz and ϑp

The w-LDA model focuses on finding out topics for each user profile, and we use collapsed Gibbs
sampling to inference the final goal that is to approximate the distribution of P (zi = j| Z−i, wi, pi),
which is:

P(zi = j| Z−i, wi, pi) ∝
n(wi)
−i,j + β

∑v
i=1 n(wi)

i,j + Vβ
×

n(pi)
−i,j + α

∑K
j=1 n(pi)

i,j + Kα
(1)

where P (zi = j| Z−i, wi, pi) denotes as the probability that word wi is assigned to topic j, Z−i
represents topic j assigned to all other words, wi represents the i-th word in the vocabulary, pi

represents the user profile containing the word wi. Then n(wi)
−i,j is the number of times all word W−i

assigned to the topic j excluding the current word wi, ∑v
i=1 n(wi)

i,j calculates the total number of all
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words W assigned to the topic j. n(pi)
−i,j is the number of times topic j is assigned to words in the user

profile P−i excluding the current user profile pi, ∑K
j=1 n(pi)

i,j calculates the total number of all words in
user profile pi.

ϕz represents the predictive distributions of words in topic z, ϑp represents the predictive

distributions of topics in user profile p. For any obtained sample we can estimate ϕ
(j)
z and ϑ

(j)
p by:

ϕ
(j)
z =

n(wi)
i,j + β

∑v
i=1 n(wi)

i,j + Vβ
, ϑ

(j)
p =

n(pi)
i,j + α

∑K
j=1 n(pi)

i,j + Kα
(2)

where n(wi)
i,j is number of times that word wi has been assigned to topic j, n(pi)

i,j is the number of times
topic j has been assigned to words in user profile pi.

3.3.2. Transportation Events Representation

After detecting topics from News articles and Weibo posts separately, we obtain the bags of words
as event descriptions. The widely used one hot vector presentation for each topic word is unable
to calculate the semantic similarity of topic words from different platforms efficiently, therefore, we
trained the transportation word embeddings to represent topic words and calculated the semantic
similarity between topic pairs. Finally, we linked and fused the topic pairs into event descriptions.
Traditionally, in natural language processing each word is represented as a one-hot vector which is 1
at the position associated with the word an 0 at other positions. Clearly, the one-hot representation
cannot capture any information about the semantic similarity between words. Moreover, the one-hot
vector is high-dimensional and sparse. Recently, word embedding is proposed to represent each
word in a continuous vector space and encode many semantic patterns [50,51]. Word embedding
was firstly presented by Bengio et al. in [52], and implemented by Mikolov et al. in word2vec [53].
Since then word2vec has gained popularity for natural language processing [54], question and answer
systems [55], information retrieval [56], recommending systems [57,58], sentiment analysis [59] etc.

The basic idea of word2vec is to combine a word and its contextual information together, and
encode them into a low-dimensional vector. Words with similar contexts in the corpus are located
in close proximity to each other in the representation space. Word embedding can be trained either
by the Continuous Bag of Words (CBOW) model or the Skip-gram model. Both of them are neural
networks which map word(s) to the target variable which is also a word(s), and the learned weights
are word embedding representations. Specifically, the CBOW model is learning to predict the word by
the context words, in contrast the skip-gram model is learning to predict the context words from the
current word. The simplified structure of the two models is shown in Figure 4. Herein, we choose the
CBOW model for training transportation word embedding.

However, computing probabilities in softmax layer is the most resource consuming phase when
training CBOW models, since it requires summing over all words in the large vocabulary. Therefore,
we use the Negative-Sampling [60] method to approximate the softmax layer in the CBOW model,
which moves the embedding toward the neighbor words and away from the noise words. In this
paper, the noise words are sampled from vocabulary according to their weighted the 3/4 power of
unigram probability.
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Figure 4. Model structure of CBOW and Skip-gram.

3.3.3. Transportation Events Fusion

Transportation topic clusters and corresponding topic words associated with each cluster can
be obtained through the LDA model for news articles and w-LDA model for Weibo. The topic word
clusters for Weibo and News are denoted as T(i=1...K)

w and T(j=1...K)
n , respectively, where K is the total

number of topic clusters. Each topic has a set of words, and we denote words in the given topic cluster
i and j, as WE(m=1...M,i)

w and WE(n=1...N,j)
n separately, where M, N are the total number of words in the

given topic clusters.

• Events similarity measure:

Meanwhile, each word is represented as a 200-dimensional continuous vector. Based on the
semantic representation, we define words distance disR

(
WE(m,i)

w , WE(n,j)
n

)
to measure the similarity

between words in the given topic cluster T(i)
w and T(j)

n , where R = {Cosine distance, Euclidean distance,
Manhattan distance, Chebyshev distance, Weighted Euclidean distance}.

The formulas of the above distances are listed in Table 1. Furthermore, a topic distance matrix
DR

(
T(i)

w , T(j)
n

)
can be defined as follows to measure the distance between T(i)

w and T(j)
n :

DR

(
T(i)

w , T(j)
n

)
=


disR

(
WE(1,i)

w , WE(1,j)
n

)
· · · disR

(
WE(1,i)

w , WE(N,j)
n

)
...

. . .
...

disR

(
WE(M,i)

w , WE(1,j)
n

)
· · · disR

(
WE(M,i)

w , WE(N,j)
n

)
 (3)
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Table 1. Formulas of the words vector Distance.

R= Formula

Euclidean Distance
√

∑200
l=1 (WE(m,i)

w [l] + WE(n,j)
n [l])

2

Cosine Distance
∑200

l=1 WE(m,i)
w [l] × WE(n,j)

n [l]√
∑200

l=1 WE(m,i)
w [l]2 ×

√
∑200

l=1 WE(n,j)
n [l]2

Manhattan Distance ∑200
l=1

∣∣∣WE(m,i)
w [l] − WE(n,j)

n [l]
∣∣∣

Chebyshev Distance lim
k→∞

(
∑200

l=1

∣∣∣WE(m,i)
w [l] − WE(n,j)

n [l]
∣∣∣) 1

k

Standardized Euclidean Distance

√
∑200

l=1

(
WE(m,i)

w [l]+WE(n,j)
n [l]

s[l]

)2
where s[l] is standard deviation

• Events alignment:

Topic alignment is to align topics detected from different platforms. The topics from different
platforms are latent variables, thus we do not know each topic labels like traffic jam and traffic accidents.
Hence, we need to align the topic clusters detected from the News platform and Weibo platform into
topic pairs, which will support the multi-view descriptions in the fusion step.

From bottom up, we choose a WE(m,i)
w in T(i)

w to calculate the similarity with each word in T(j)
n ,

then find the most similar or closest WE(n,j)
w in T(j)

n . Based the closest word pairs, the shortest distance
between T(i)

w and T(j)
n denoted as min

m,n=1...N
disR

(
WE(m,i)

w , WE(n,j)
n

)
, the average shortest distance between

T(i)
w and T(j)

n denoted as µR

(
T(i)

w , T(j)
n

)
, the normalized average shortest distance µ∗R

(
T(i)

w , T(j)
n

)
, and

the standard deviation σ∗R

(
T(i)

w , T(j)
n

)
can be derived:

µR

(
T(i)

w , T(j)
n

)
=

∑M
m=1 min

n=1...N,n 6=m
disR

(
WE(m,i)

w , WE(n,j)
n

)
M

(4)

Next, we select a topic T(i)
w , calculate the normalized average distance µR

∗

(
T(i)

w , T(j)
n

)
between

topic T(i)
w and topics in T(j)

n ,

µ∗R

(
T(i)

w , T(j)
n

)
=

µR

(
T(i)

w , T(j)
n

)
− min

i=1...k,j=1...k
µR

(
T(i)

w , T(j)
n

)
max

i=1...k,j=1...k
µR

(
T(i)

w , T(j)
n

)
− min

i=1...k,j=1...k
µR

(
T(i)

w , T(j)
n

) (5)

Then, the topic T(i)
w was aligned with the most similar topic T(j)

n through calculating
argmin

j=1...k
µ∗R

(
T(i)

w , T(j)
n

)
. Finally, the index pair (i, j) of aligned topics was returned.

• Events fusion:

After aligning the cross-platform traffic topics for each urban road, we can fuse the aligned topic
pairs into a unified event description.

First, the anomalous words were removed. We scan the words list WE(∗,i)
w in T(i)

w , and calculate
the shortest distance min

n=1...N,n 6=m
disR

(
WE(m,i)

w , WE(n,j)
n

)
from current word WE(m,i)

w to the aligned
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topic words WE(∗,j)
n . If the shortest distance falls outside the region of three standard deviations

σ∗R

(
T(i)

w , T(j)
n

)
, WE(m,i)

w will be regard as an anomalous word:

σ∗R

(
T(i)

w , T(j)
n

)
=

√√√√∑K
i=1

(
µ∗R

(
T(i)

w , T(j)
n

)
− 1

K ∑K
j=1 µ∗R

(
T(i)

w , T(j)
n

))2

K
(6)

Second, the topic words from cross-platform were fused. If the shortest distance falls inside the
region of one standard deviation σ∗R

(
T(i)

w , T(j)
n

)
, the current word will be replaced with candidate

WE(n,j)
n for a more objective and formal event description. The detailed algorithm for event fusion is

shown in Algorithm 2.

Algorithm 2. Transportation Events Alignment and Fusion

Input: Tw, Tn, WEweibo, WEnews

Output: AlignedTopicsList, FusionEventMatrix
//Step 1: aligning the topic clusters in Tw and Tn, return AlignedTopicsList

For each T(i)
w in Tw

WeiboIndex = i

For each T(j)
n in Tn

If µ∗R

(
T(i)

w , T(j)
n

)
< minTopicDis

minTopicDis = µ∗R

(
T(i)

w , T(j)
n

)
NewsAlignedIndex = j

End for // Find the closest topic cluster
Append (WeiboIndex, NewsAlignedIndex) to AlignedTopicsList
End for // couple closet the topic clusters into pairs

//Step 2: fusing the words in the cross-paired topics, return FusionEventMatrix
For each index pair in AlignedTopicsList

i = WeiboIndex;
j = NewsAlignedIndex

LBn = µ∗R

(
T(i)

w , T(j)
n

)
− σ∗R

(
T(i)

w , T(j)
n

)
UBw = µ∗R

(
T(i)

w , T(j)
n

)
+ σ∗R

(
T(i)

w , T(j)
n

)
// calculate the low boundary and up boundary for news words

LBw = µ∗R

(
T(i)

w , T(j)
n

)
− 3σ∗R

(
T(i)

w , T(j)
n

)
UBw = µ∗R

(
T(i)

w , T(j)
n

)
+ 3σ∗R

(
T(i)

w , T(j)
n

)
// calculate the low boundary and up boundary for weibo words

For each WE(m,i)
w in T(i)

w

For each WE(n,j)
n in T(j)

n

If disR

(
WE(m,i)

w , WE(n,j)
n

)
< minWordDis

minWordDis = disR

(
WE(m,i)

w , WE(n,j)
n

)
minWordIndex = n

End for // Find the shortest word embedding distance in coupled clusters
If LBw < minWordDis < UBw // remove anomaly word in Weibo cluster

If LBn < minWordDis < UBn

Append WE(minWordIndex,j)
n to FusionEventList // append words in News cluster

Else

Append WE(m,i)
w to FusionEventList // append words in Weibo cluster

End for
Append FusionEventList to FusionEventMatrix

End for
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4. Experiments

4.1. Data Description

The proposed methodology was applied to detect and fuse urban traffic events in Qingdao
(a coastal city of China) from cross-platform social signals. Hence, first we used a social
sensors network with 337 traffic keywords to collect data from News and Weibo which related
to Qingdao transportation.

After obtaining the raw webpages, we removed the News articles which content length was
greater or less than 90% of articles, and also removed the Weibo posts with a number of words of less
than 5. Meanwhile, considering there are lots of social bots or online spammers in Weibo [61–64], we
only retained the authors that published less than 10 articles in one day.

Next, we removed the punctuation, paragraph symbols, and noise patterns in the Weibo posts
and news articles. Then we segmented texts into words, removed stop words, and tagged the words
representing city roads with the LTP toolkit. After consulting the local transportation agency, we
annotated 132 main roads in Qingdao, and aggregated the preprocessed texts into road data blocks
with the criteria we mentioned in Section 3.

Finally, the multi-channel Qingdao transportation dataset from 1 August 2015 to 4 August 2017
was built. The dataset has about 1.15 million texts in total, including 301,684 News articles and 839,587
Weibo posts. The dataset was divided into training dataset, testing dataset and case study dataset, as
shown in Table 2. In the following section, we separately used the training dataset to learning WBEF
model parameters, the testing dataset to evaluate model’s performance, and the case study dataset to
discuss the practical application effect of proposed model in open scenario.

Table 2. The Dataset of cross-platform transportation in Qingdao.

Training Dataset (about 2 Years) Testing Dataset (7 Days) Case Study Dataset (1 Day)

Text Authors Roads Text Authors Roads Text Authors Roads

News Articles 301,684 - 132 2369 - 37 334 - 12
Weibo Posts 839,587 271,260 147 4072 2600 49 581 428 25

4.2. WBEF Model Verification

In this section, we first describe the implementation details of WBEF model, show the performance
of each sub-model, evaluate the entire performance of the overall WBEF model, and compare the
WBEF model with the baseline model.

4.2.1. Transportation Word Embedding

We utilized the CBOW algorithm to train transportation word embedding (200 dimensions). The
window size is 5, which indicates the maximum distance between the current and predicted word
within a sentence. The number of training epochs over the dataset is 10. The negative sampling
algorithm is used to approximate the parameters’ gradient, and the number of noise words drawn for
current word is 5.

To evaluate transportation word embedding, we selected the most representative words in
transportation events (i.e., traffic congestion, traffic accident), while searching for the most similar word
embedding semantically. Table 3 gives top five most similar words for traffic congestion and traffic
accident. The results show that our transportation word vectors contain essential semantic information.
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Table 3. Most similar words for traffic congestion and traffic accident ranked by transportation word2vec.

Traffic Words Similar Words Similarity Traffic Words Similar Words Similarity

交通拥堵
Traffic

congestion

交通拥挤
Heavy traffic 83.47%

交通事故
Traffic accident

交通事件
Traffic incident 82.19%

交通阻塞
Traffic jam 83.46% 车祸

Car accident 69.77%

堵车
Caught in

traffic
75.28%

伤亡事故
Fatality
accident

62.43%

塞车
Stuck in traffic 60.27% 碰撞

Traffic crash 60.86%

滞留
Traffic blocking 59.45% 重大事故

Major accident 59.33%

4.2.2. Transportation Event Detection

During the experiments, we tried different K values (K = 1–5) for aggregating topic clusters,
and when K = 3 we get more meaningful word clusters for every topic. We used the perplexity
value to evaluate the LDA and w-LDA models, respectively. Since there were 132 data blocks that
represent multi-channel social signal sensed from the main roads in Qingdao, so the LDA and w-LDA
model were deployed on every data block for topic generation. Hence, the LDA and w-LDA model
parameters were determined by the average perplexity of topic model on multiple data blocks as
shown in Figure 5, the average perplexity of w-LDA converge to the value of 167 after 347 training
iterations, the average perplexity of LDA converge to the value of 279 after 182 training iterations.
Considering the model generalization on different roads in Qingdao, we choose the topic model which
perplexity value was closest to the average perplexity.

Figure 5. Average Perplexity of LDA for News and w-LDA for Weibo posts.

In order to validate the LDA and w-LDA topic models, we selected the three largest data blocks in
the testing dataset to extract topics for the corresponding road. Herein, to intuitively show the results,
we list the words in the largest cluster of Tw and the words in the aligned cluster of Tn for each road
(Table 4).
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Table 4. The topic detection results from Weibo and News.

Road Tn Tw Type

抚顺路
Fushun Road

抚顺路施工现场 堵车交叉路口
缓慢 . . .

Fushun Road, construction site,
traffic jams, intersection, slow

moving . . .

交通广播抚顺路一动不动堵死
附近高峰时段疏通水泄不通

. . .
Traffic broadcast, Fushun Road,
blocked, slow moving, nearby,
peak hours, dispersion, crowd

and jam . . .

拥堵
Traffic Jam

银川西路
Yinchuan WestRoad

银川西路会场 一段路规划答复
拥堵 . . .

Yinchuan WestRoad, theater,
road section, city planning,
response, traffic jams . . .

信号灯失灵十字路口怎么回事
东向西吐槽为何 . . .

Traffic signals, not work,
crossroads, what happened, east

to west, complain, reason . . .

投诉
Traffic Complaint

人民路
RenMin Road

人民路交警民警男子驾驶撞墙
双腿受伤 . . .

RenMin Road, traffic police,
police officer, man, car driving,

hit the wall, legs, injured . . .

人民路救援现场 不慎情况危急
求助车底 . . .

RenMin Road, rescue, accident
scene, critical situation, help, car

bottom . . .

事故
Traffic Accident

4.2.3. Distance Metrics for Transportation Events Fusion

We tested different distance metrics for fusing traffic topics, and chose the proper distance metric
for semantic event fusion. The top 10 largest road data blocks in the testing dataset were selected, and
the topics were extracted from each data block with the LDA and w-LDA models, respectively. The
words in the largest topic cluster T(i)

w and the corresponding aligned cluster T(j)
n were considered as

the fusion corpus for distance comparison experiments.
For each distance measure methods we computed the average and standard deviation of topic

distances DR

(
T(i)

w , T(j)
n

)
on different data blocks, expressed as µR

(
T(i)

w , T(j)
n

)
and σ∗R

(
T(i)

w , T(j)
n

)
. For

the model robustness, we chose the distance has the minimum standard deviation on multiple roads,
which can be obtained through argmin

R
σ∗R

(
T(i)

w , T(j)
n

)
. The results in Table 5 show that the most stable

distance measure is the cosine distance for word embedding presentation.

Table 5. Average and standard deviation of topic distances for different roads.

Distance
Measure

(R=)

Average
and

Standard
Deviation

人人人民民民路路路
RenMin

Road

伊伊伊春春春路路路
YiChun

Road

山山山东东东路路路
ShanDong

Road

延延延吉吉吉路路路
JiYan
Road

延延延安安安三三三
路路路Yan’

An San
Road

抚抚抚顺顺顺路路路
FuShun

Road

敦敦敦化化化路路路
AnHua
Road

登登登州州州路路路
DengZhou

Road

银银银川川川西西西路路路
YinChuan
Xi Road

鞍鞍鞍山山山路路路
AnShan

Road

Euclidean
µR

(
T(i)

w , T(j)
n

)
0.896 1.088 1.03 1.09 0.973 0.986 1.101 0.96 1.083 0.916

σ∗R

(
T(i)

w , T(j)
n

)
0.07278

Cosine
µR

(
T(i)

w , T(j)
n

)
0.0031 0.0041 0.0033 0.0036 0.0029 0.0032 0.0071 0.0034 0.0036 0.0029

σ∗R

(
T(i)

w , T(j)
n

)
0.00117

Manhattan
µR

(
T(i)

w , T(j)
n

)
10.15 12.33 11.31 12.28 10.97 11.12 12.36 10.81 12.21 10.32

σ∗R

(
T(i)

w , T(j)
n

)
0.8176

Chebyshev µR

(
T(i)

w , T(j)
n

)
0.169 0.206 0.191 0.207 0.185 0.189 0.207 0.181 0.208 0.174

σ∗R

(
T(i)

w , T(j)
n

)
0.01386

Weighted
Euclidean

µR

(
T(i)

w , T(j)
n

)
19.78 19.99 19.68 19.54 19.91 19.6 19.54 20 19.91 20

σ∗R

(
T(i)

w , T(j)
n

)
0.17455

4.3. Overall Performance

To evaluate the overall performance of the proposed model, we selected 10 roads in Qingdao with
the most frequently occurring traffic events, checked the content of News and Weibo articles in every
road data block, and manually annotated the traffic events including traffic accidents, traffic jams and
traffic complements in the testing dataset. By consulting a traffic domain expert from the Qingdao
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Transportation Committee, the traffic events annotation results which consisted of 27 traffic accidents,
47 traffic jams, and 13 traffic complaints in testing dataset were finally confirmed.

Moreover, the dataset was built with keywords-based social sensors, thus there will be non-traffic
News and Weibo articles which also contain traffic keywords, such as traffic products release, traffic
safety lectures, and civilized traffic initiative, etc. Hence, if the events were widespread in social media
or news, the model may also falsely flag these non-traffic events. In that case, the precision, recall
and F1 Score were adopted to evaluate the model performance. The proposed model was applied to
detect and fuse traffic events on the 10 roads during one week. Meanwhile, we selected the “standard
LDA + keywords matching” approach as the baseline model. Experimental results are given in Figure 6
and Table 6. Although the precision value of our proposed model (91.4%) is less than baseline model
(92.6%), the recall value (85.1%) and F1 score (88.1%) is much better than baseline. Overall the WBEF
model surpassed the baseline model.

Figure 6. Comparison of detected and annotated number of traffic events.

Table 6. Performance comparison of Baseline and the proposed model.

Hits Miss False Alarm Precision Recall F1 Score

Baseline Model 50 37 4 92.6% 57.4% 70.9%
The Proposed Model 74 13 7 91.4% 85.1% 88.1%

The experimental results shows that the baseline model “standard LDA + keywords matching”
is unable to effectively process short content in Weibo, and also lacks semantic meaning when the
different word styles from cross-platform media are fused, so fewer traffic events have been sensed.
However, the event words both exactly occurred in News articles and Weibo posts imply the traffic
events have been confirmed by both officials and the masses, which leads to higher accuracy of the
baseline model. Compared to the baseline model, the WBEF model grouped the short messages
into user profiles, then processed and clustered user-central context through the w-LDA scheme,
hence traffic topics in Weibo can be detected more effectively. Meanwhile, with the WBEF model, the
detected cross-platform topics can be embedded with semantics, which guarantees topic similarity
calculation and event fusion, so more traffic events can be detected, resulting in much higher recall
value, which effectively solves the problem of missing detection in the baseline model. However, the
noise information in the dataset that is collected by the keywords-based social network sensors, also
caused bias in the processing and fusion step, which leads to slightly lower precision.

Quantitatively evaluation, the F1 score of WBEF model exceeded the baseline model by nearly
17 percentage points, which means the proposed model is much superior to the baseline model in
sensing and detecting traffic events from multi-channel social signals. In the next section, we will
choose one case, qualitatively study and discuss the traffic event detection effects of WBEF approaches
in open scenario.
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5. Case Study in Application Scenario

In this section, we chose the traffic situation in Qingdao on 4 August 2017 as one case, sensed
multi-channel social transportation signals and deployed the WBEF model in the open scenario. As
shown in Table 2, the case study dataset contains about one thousand articles. The WBEF model
successfully identified 11 traffic events, missed two traffic events and false alarmed one traffic event,
finally achieving 91.6% precision, 84.6% recall and an 87.9% F1 score.

All the traffic events were mapped to the city roads, as shown in Figure 7, and the overall urban
transportation situation can be visualized, which will intuitively support traffic management and traffic
plan decisions. Meanwhile, in order to qualitatively investigate the practical usability and effectiveness
of the proposed model, we chose the Top 3 hottest events (largest clusters) that occurred on different
roads, and imported the corresponding road block data into the baseline and WBEF models. Although
both models successfully detected Top 3 hottest events, the baseline model generated fewer words
with less semantic. In contrast, the WBEF model presented more comprehensible and understandable
words description of transportation events.

Figure 7. Overview of Qingdao transportation on 4 August 2017.

Furthermore, we investigated event detail and corresponding causal factors. To clearly
demonstrate event words, we manually categorized and tagged event words into target road words,
relevant location words, traffic words, reason words, and other words (shown in Table 7). We also
double-checked News and Weibo data related to the event and got insights into the event details.
Three target roads with detected traffic events are detailed in the following.
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Table 7. Top 3 hottest fused traffic events in Qingdao on 4 August 2017.

Target Road Relevant Locations Traffic Words Traffic Causal Words Other Words

金沙滩路
Gold Beach Road

黄岛区啤酒城隧道
Huangdao District, Beer

Square, Cross-sea
Tunnel.

缓慢交通拥堵高峰客流车流量停车
交警

Slow, traffic jam, rush hour, passenger flow,
traffic flow, parking, traffic polices

啤酒节开幕式开园
Beer festival, opening

ceremony, park opening

黄晓明明星直播
Xiaoming Huang,

Superstar, live show

同安路
Tong An Road

国信体育场 银川东路
劲松七路海尔路

Guoxin Stadium, Yin
Chuan Xi Road, Jin Song

Qi Road, Hai Er Road

绕行高峰慢行管制拥堵停车调流
交通广播预案

Passing round, rush hour, slow, traffic
control, traffic jam, parking, traffic flow

regulation, traffic broadcast, Traffic plan.

五月天演唱会
Mayday singer group,

concert

门票五迷提示
Tickets, fans, notice

延安三路
Yan An San Road

石油大厦
Petroleum Building

交通拥堵交警交通广播道路封锁
车辆疏导疏散

Traffic jam, traffic policies, traffic broadcast,
road closed, traffic dispersion, evacuation

火情火警起火扑灭
Fire situation, fire alarm,

catch fire, Fire
extinguished

伤亡电梯井
Casualties, elevator hoist

way

Gold Beach Road (金沙滩路): on this road, event fusion words included traffic words “parking
place (停车场)”, “traffic jam (交通拥堵)”, “slow down (慢行)”, “traffic broadcast (交通广播)”, social
activity words like “beer festival (啤酒节)”, “opening ceremony (开幕式)”, and famous star words
like “Xiaoming Huang (黄晓明)”. After referring to Weibo and News data associated to this event, we
found that the annual Qingdao International Beer Festival was opening on the square of Qingdao Beer
City, where the film star Xiaoming Huang and other famous stars presented a show for the celebration.
In addition, the ceremony was opening at the evening rush hour (7 p.m.) which caused a heavy traffic
jam on Gold Beach Road.

Tong An Road (同安路): with the proposed methods, we observed the location words “GuoXin
stadium (国信体育场)” and traffic irrelevant words “Mayday (五月天, a singer group)”, “concert (演唱
会)” in the event description. However, there was no words about traffic jams or accidents, but only
traffic words like “detour (绕行)”, “control (管制)”, “dispatch (调流)”, “plan (预案)” etc. We further
checked the relevant Weibo and News data, then found that a concert would be held on the next day,
so the traffic agency was providing early alerts about the traffic situation on the road, releasing the
traffic control notice through social media and news. Massive fans and audiences forwarded and
disseminated these posts.

Yan An San Road (延安三路): The event words include traffic words like “traffic jam (交通拥堵)”,
“evacuation (疏散), and also fire emergency words like “fires (火情)”, “fireman (火警)”. Associated with
the location word “Petroleum Building (石油大厦)”, we inferred there was a traffic jam on “Yan’An
San Road (延安三路)” which was caused by a fire emergency. After further checked, the real fact was
consistent with the detected results from cross-platform media. The elevator in the Petroleum Building
caught fire at 7 p.m. Lots of citizens posted the live fire and traffic situation, gave notices and conveyed
safety messages to their family. The official announcement also reported the event through news and
social media.

6. Conclusions and Future Work

In Intelligent transportation systems, the method of analyzing social signals (social transportation)
offers advantages of low cost and large coverage over traditional methods which depend on physical
sensors. In this paper, we addressed the challenges of cross-platform traffic event detection when
shifting the social signals from a single channel to multiple channels. The WBEF model for urban
transportation event detection has been proposed, which benefits from comprehensive social signals,
domain knowledge and semantic representation. The model was trained with about 1.15 million
News and Weibo data from the past 2 years, and deployed to assess the traffic situation in Qingdao.
Experiments show that the sub-models of WBEF achieved the expected performance, and the overall
performance of WBEF is much superior to the baseline model. Moreover, from the case study in the
open scenario, the accuracy and robustness of WBEF have been further demonstrated.

Further investigation can be conducted: firstly, more social signal sources can be involved into
the WBEF model, such as Instagram, Facebook, Quora, etc., which will make traffic incident detection
more accurate and comprehensive. Secondly, powerful deep learning methods have highly potentials
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to improve accuracy and robustness for cross-platform event detection. Thirdly, the WBEF model can
be extended to heterogeneous recommending system [65,66], which will achieve more personalized
and accurate information services in transportation domain. Furthermore, social sensors combine with
physical sensors (Cyber-Physical-Social-System, CPSS) will lead a novel way to monitor, control, and
optimize intelligent transportation systems.
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Appendix A. Table of Variables

Symbol Description Data Structure Supporting Process

T Number of Weibo posts Int T

w-LDA

U Number of Weibo users Int U
K Number of topics Int K
V Number of words in the vocabulary Int V
V Number of uers profiles Int V
Np Number of words in p-th user profile Int N[P]
α K-dimensional prior weight vectors of topics in a document, Float a[K]
β V-dimensional vector prior weight of words in a topic Float b[V]

ϕz
V-dimensional vector of probabilities, represents

distribution of words in topic z
Double phi [Z][V]

ϑp
K-dimensional vector of probabilities, represents

distribution of topics in user profile p
Double theta

[P][K]
zi Identity of current topic of word wi in user profile pi Int 1 . . . K
wi Identity of current word in user profile pi Int 1 . . . V
pi Identity of current user profiles Int 1 . . . P

n(pi)
i,j

Document-Topic matrix, the number of times topic j has
been assigned to words in user profile pi.

int npt [P][K]

n(wi)
i,j

Topic-Word matrix, Number of times that word wi has been
assigned to topic j

int ntw [K][V]

Wi
Identity of current word vector (200 dimensions) trained by

traffic word2vec
Double [200]

Similarity measure
T(i=1...K)

w Identity of current topic word cluster detected from Weibo Double tw[K]

T(j=1...K)
n Identity of current topic word cluster detected from News Double tn[K]

WE(m,i)
w

Word embedding- cluster tensor, identity of the current
word embedding in i-th cluster detected from Weibo

Double cew[K]
[Wi]

WE(n,j)
n

Word embedding- cluster tensor, identity of the current
word embedding in i-th cluster detected from News

Double cen [K]
[Wi]

disR

(
WE(m,i)

w , WE(n,j)
n

) Words similarity, measure the similarity between word

embedding WE(m,i)
w and WE(n,j)

n
Double wd

DR

(
T(i)

w , T(j)
n

) Topic similarity matrix, measure the distances between each
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