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Abstract: In this paper, improved Bernoulli filtering methods are developed to deal with the
problem of joint passive detection and tracking of an underwater acoustic target with multiple
arrays. Three different likelihood calculation methods based on local beamforming results are
proposed for the Bernoulli filter updating. Firstly, multiple peaks, including both mainlobe and
sidelobe peaks, are selected to form the direction-of-arrival (DOA) measurement set, and then the
Bernoulli filter is used to extract the target track. Secondly, to make full use of the informations in the
beamforming output, not only the DOAs but also their intensities, the beam powers are used as the
input measurement sets of the filter, and an approach based on Pearson correlation coefficient (PCC)
is developed for distinguishing between signal and noise. Lastly, a hybrid method of the former two
is proposed in the case of fewer then three arrays. The tracking performances of the three methods
are compared in simulations and experiment. The simulations with three distributed arrays show
that, compared with the DOA-based method, the beam-based method and the hybrid method can
both improve the target tracking accuracy. The processing results of the shallow water experimental
data collected by two arrays show that the hybrid method can achieve a better tracking performance.
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1. Introduction

In many target detection and tracking applications, detection and estimation are usually carried
out separately under the Bayes framework [1]. Hypothesis tests based on the Neyman–Pearson
or Bayes criterion [2] are applied to detect the existence of the target. Sequential probability ratio
test (SPRT) which makes full use of all collected data based on the continuity of the target state [3]
is also a detector. The estimators start working after the target has been declared to be detected.
Examples of this type of sequential estimators include the Kalman filter (KF) [4], the extended Kalman
filter (EKF) [5], the unscented Kalman filter (UKF) [6], and the particle filter (PF) [7]. Especially, the PF
is a sequential Monte Carlo (SMC) method that uses a random particle system (states and weights) to
approximate the relevant probability distribution. PF provides a generalized approximate solution
for non-linear, non-Gaussian, and unconventional measurement problems where analytical solutions
are difficult to obtain [8]. In PF applications, importance sampling is critical. To better apply the
particle filter, researchers proposed appropriate resampling methods to reduce the degeneracy of the
particle system [9,10]. Gaussian sum particle filter is a special kind of particle filter easier to implement
where the relevant probability distribution is assumed as the sum of Gaussian distributions [11].
For low signal-to-noise (SNR) scenarios, track-before-detect (TBD) algorithms arise. In the TBD
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algorithm, detection is not declared for every frame. Instead, detection is declared when the estimated
track is returned after processing of several data frames [12]. In the multi-target tracking problems,
multiple hypothesis on measure-to-track association can be filtered to achieve the tracking result.
A comparison between multiple hypothesis Kalman filter and the multi-target particle filter can be
found in Reference [13].

In passive acoustic target surveillance applications, however, a non-cooperative target may not
always radiate a signal that is observable for detection and tracking. The noisy environment increases
the uncertainty of obtaining the exact target existence information from available observations. A filter
that can distinguish the existence of a target by noisy observations and can be able to resume track
after losing the target for a while is needed.

Recently, target tracking based on random finite set (RFS) theory provides new opportunities
for state-space processing which has been widely used in many tracking examples, such as video
image recognition [14], infrared target tracking [15], and vehicle tracking detection [16]. Mahler and
Vo systematically extended RFS theory to target tracking and made great progress in both theoretical
research and applications [17]. Bernoulli filter is one of the RFS target tracking methods where the
target existence and location state is assumed to be a Bernoulli RFS. It can be used to handle a variety
of problems such as multiple on/off switching systems, detection imperfections, and inaccurate
estimates [18]. Target tracking with bearings-only measurements by RFS-based filters has been studied
from various aspects [19–22]. In Reference [23], Bernoulli filter tracking along with fusion is applied in
an active multi-static acoustic sensor network. Gune considered the problem of detecting and tracking
a high-frequency acoustic target in the frequency-azimuth plane obtained by an acoustic vector using
Bernoulli filter [24]. However, to the best of our knowledge, modeling and filtering were conducted
directly on the direction-of-arrival (DOA) estimations, and the DOA estimation process was usually
neglected in the previous research.

In active radar monitoring, the measurement set of Bernoulli filter is assumed to be composed
of a DOA estimation of the true target, whose error is a zero mean Gaussian variable, and several
DOAs generated by clutters, which form a Poisson RFS [25]. However, the physical basis is different
in the study of passive detection and tracking of an underwater target. There are no clutters, but,
in estimating target DOA by passive beamforming in a noisy environment, outputs at the sidelobes
may be higher than that at the mainlobe corresponding to the target position, resulting in significant
errors. To deal with this problem, we jointly use beamforming and Bernoulli filters. A more general
assumption is made for the underwater acoustic signal [26], where Gaussian noise is added directly to
the received sound pressure. We conduct conventional beamforming (CBF) on the target signal band
to process frequency snapshots at distributed arrays separately, and then employ the Bernoulli filter to
track the target.

The main contribution of our work is that three different likelihood calculation methods based
on local beamforming results are proposed for the Bernoulli filter. Firstly, we construct a DOA
measurement set from the passive beamforming results (the DOA-based method). Similar to the
method used in Reference [27], to increase the probability of selecting the target DOA, we select the
angles corresponding to multiple peaks of the beamforming results as the measurement set. The set
contains the DOA estimation corresponding to the real target (mainlobe) and several spurious peaks
caused by sidelobes. Secondly, different from the method where only DOA peaks are conserved,
we propose to use the beam power as the measurement set instead, because the beam power has
not only DOA peak position information but also peak intensity information. Hence, we can use
beam pattern to refine the target position (or DOA, or azimuth) from the data beam power. However,
the tracking results can be trapped in the end-fire direction of one array where the beam pattern is flat
and ambiguous. Therefore, at last, we propose a hybrid method, aiming to combine the advantages
of the DOA-based method and the beam-based method in different situations. We use the practical
acoustic model to generate sound pressures in the simulations to compare the proposed methods.
Filters are also used to process experimental data collected in the real world.
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Throughout this paper, we use uppercase calligraphic letters to denote the RFS variable, and ∅
denotes the emptyset. For any RFS S , the cardinality of S is denoted by |S|. Symbol \ denotes
the set-difference operation. Bold lowercase letters are used to denote column vectors, and bold
uppercase letters denote matrices. Spaces of variables are denoted by uppercase blackboard bold
letters, where N0 is the space of non-negative integers. We use blkdiag(·) to denote block diagonal
matrix, where matrices in the brackets are diagonal blocks. N (mx, Cx) is denoted as a Gaussian
distribution with mean mx and covariance matrix Cx, and the corresponding probability density
function (PDF) with respect to x is denoted as N (x; mx, Cx). We use f as a generic symbol for the
finite set statistics (FISST) PDF of the RFS variables, while p is denoted as a generic symbol for the
traditional PDF of the vector variables. For any variable or function ζ iterated in the prediction and
update process of the Bayesian filtering framework, ζk|k−1 is used to represent the prediction of ζ from
time k− 1 to time k, and ζk|k represents the update of ζ with all previous states and measurements
from the beginning to time k.

The rest of the paper is organized as follows. The Bernoulli filter are briefly reviewed in Section 2,
and the prediction step is provided. In Section 3, we establish two kinds of measurement sets derived
from beamforming in a multiple-array system, which leads to different update process refers to
DOA-based, beam-based, and hybrid Bernoulli filter, correspondingly. Section 4 presents the numerical
implementation of the filters for practical usage. The proposed filters are implemented to process data
from both simulations and real experiments. The performance results are shown in Section 5, and the
paper is finally concluded in Section 6.

2. Bernoulli RFS Target State Model and Prediction Process

The concept of RFS was introduced by Mahler to describe the state of a randomly present target
or multiple targets [17]. RFS-based Bayes filter aims to solve problems such as detection, estimation,
and data association of target tracking within a unified paradigm [17,28].

In the RFS-based Bayes filter, target states and sensor measurements are modeled as RFSs instead
of traditional vector formulation. Suppose that nk targets present in the surveillance area at time k,
and their state vectors are xk,1, . . . , xk,nk

, respectively. The state of all the targets at time k is presented
by an RFS on the state vector space, Xk = {xk,1, . . . , xk,nk

} ∈ F (X), where X is the state vector space.
All the important information about the target, including the target number (|Xk| = nk) and the
dynamic states of each target, has been contained. Likewise, the RFSs of sensor measurements are
defined as Zk = {zk,1, . . . , zk,mk

} ∈ F (Z), where Z is the measurement vector space.
The posterior probability density of the state variable is propagated in the predicting and updating

procedure of the Bayes filter. By using the RFS state and measurement sets, we can extend the
traditional Bayes filter from vector space to RFS framework. The predicting and updating process of
the RFS posterior densities fk|k(Xk|Z1:k) can be expressed as follows [18]:

fk|k−1(Xk|Z1:k−1) =
∫

φk|k−1(Xk|Xk−1) fk−1|k−1(Xk−1|Z1:k−1)δXk−1, (1)

fk|k(Xk|Z1:k) =
ϕk(Zk|Xk) fk|k−1(Xk|Z1:k−1)∫

ϕk(Zk|Xk) fk|k−1(Xk|Z1:k−1)δXk
, (2)

where Z1:k = Z1, . . . ,Zk is the collection of all the previous measurements and ϕk(Zk|Xk) is
the likelihood function of measurement set Zk, given the state Xk. The RFS state is assumed
to be Markovian with transitional density φk|k−1(Xk|Xk−1). With the updated posterior densities
fk|k(Xk|Z1:k) at every time step k, RFS state Xk can be estimated by criteria such as maximum a
posteriori probability (MAP). Although the set integrals in the RFS iteration are usually intractable,
solutions can be found for joint detection and tracking of a single target.

For the case of tracking a target which may randomly be present or disappeared in a surveillance
area, Bernoulli RFS can be adopted to model the target state, whose cardinality distribution is
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Bernoulli. Such RFS is either an empty set (with probability 1− q) or a singleton (with probability q),
whose element x is the state vector of the target distributed following the PDF p(x). Thus, the FISST
PDF of a Bernoulli RFS is completely determined by the target existence probability q as

f (X ) =


1− q, if X = ∅
q · p(x), if X = {x}
0, if |X | ≥ 2

. (3)

Apparently, the Bernoulli RFS X can be completely determined by the corresponding existence
probability q and vector PDF q(x). Therefore, predicting and updating the RFS posterior densities
fk|k(Xk|Z1:k) are equivalent to predict and update the corresponding existence probability and
vector PDF. The predicted existence probability and vector PDF are denoted by qk|k−1 and pk|k−1(x),
respectively. qk|k and pk|k(x) are denoted as the posterior existence probability and vector PDF
after update.

The kinetic characterization of the target is used in the prediction stage. This dynamic is described
by the Markov transitional density (from time k− 1 to k):

φk|k−1(X |∅) =


1− pb, if X = ∅

pbbk|k−1(x), if X = {x}

0, if |X | ≥ 2

, φk|k−1(X |{x′}) =


1− ps, if X = ∅

psπk|k−1(x|x′), if X = {x}

0, if |X | ≥ 2

, (4)

where φk|k−1(X |∅) describes the birth probability of target with state x, pb = Pr(|X | = 1||X ′| = 0) is
the probability of event “target birth”, and bk|k−1(x) denotes the distribution of the state of the born
target on the vector space, which is defined in advance. When prior knowledge of the target is not
available, the distribution of the born target is usually assumed to be a uniform distribution over the
vector space. φk|k−1(X |{x′}) is the survive probability, ps = Pr(|X | = 1||X ′| = 1) is the probability of
“target survive”, and πk|k−1(x|x′) is the transitional density on the vector space, which is related to the
motion characteristics of the target. A typical target motion model is the constant velocity (CV) model.
In a two-dimensional region, the target state vector is expressed by xk = [xk, ẋk, yk, ẏk]

T, where (xk, yk)

is the Cartesian coordinate of the target and (ẋk, ẏk) is the velocity component, correspondingly.
The vector state transition equation of CV model is given by:

xk = Fkxk−1 + vk, (5)

where Fk = blkdiag(Gk, Gk) is the state transition matrix, and vk is the zero-mean Gaussian process
noise with a covariance matrix Qk = blkdiag(Ξk, Ξk). The diagonal blocks are given by

Gk =

[
1 Tk
0 1

]
, Ξk =

[
T3

k /3 T2
k /2

T2
k /2 Tk

]
·v1, (6)

where Tk is the sampling interval from time k − 1 to time k, and v1 is the potential
acceleration disturbance of the moving target. Therefore, the transitional density is Gaussian,
πk|k−1(x|x′) = N (x; Fkx′, Qk).

With the definition of the Bernoulli RFS and its Markov transitional density, the prediction of RFS
state PDF can be achieved by predicting the target existence probability and vector PDF as follows [18]:

qk|k−1 = pb(1− qk−1|k−1) + psqk−1|k−1, (7)

pk|k−1(x) =
pb(1− qk−1|k−1)bk|k−1(x)

qk|k−1
+

psqk−1|k−1
∫

πk|k−1(x|x′)pk−1|k−1(x′)dx′

qk|k−1
. (8)

Equations (7) and (8) completely specify the prediction stage of the Bernoulli filter.
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In the next section, we present the update stage for the multi-array passive beamforming system.
Different kinds of measurement sets are used, which lead to different forms of the update procedure.

3. Measurement Model for Multiple Arrays and Update Process

Using a multi-array system for joint passive detection and tracking of the underwater acoustic
target, we first perform beamforming on each local array to obtain the relative DOA information of the
target to the local array. Subsequently, in the Bernoulli filter, with known array locations, the tracking
of the target state (position and velocity in two-dimensional Cartesian coordinates) is achieved using
the beamforming results of all the arrays via triangulation.

3.1. Passive Local Array Beamforming

For the convenience of practical implementation, CBF is adopted to process the collected data.
We divide the signal band of interest into multiple narrow subbands and perform narrow-band CBF
on every subband, and then sum up the subband results to obtain the final beam power.

By fast Fourier transform (FFT), the recorded time domain signal of a given S-sensor array is
converted to frequency-domain snapshots on M narrow subbands. The center frequency for the
mth subband is denoted by fm, m = 1, . . . , M. For every subband, L snapshots are collected to
form one data frame matrix, Rm = [rm1, . . . , rmL]. The lth column vector in matrix Rm is an S × 1
vector. In the plane wave assumption, for signal oriented from a target with azimuth θ, elevation ψ,
and range r, the propagation delay difference on the array is described by the steering (or replica)

vector a(θ) = 1√
S

[
e−jkTp1 , . . . , e−jkTpS

]T
, where ps, s = 1, . . . , S, are the Cartesian positions of the

array elements, and k = − 2πc
fm

[sin(ψ) cos(θ), sin(ψ) sin(θ), cos(ψ)]T is the wave number of the mth
frequency bin with c being the sound speed. In the shallow water environment, depth is negligible
compared to the range between target and array. That is, ψ ≈ π/2, which leads to cos(ψ) ≈ 0 and
sin(ψ) ≈ 1. Thus, in the local array beamforming step, we only need to estimate the azimuth (DOA)
of the target. Defining the data sample covariance matrix as Cm = 1

L RmRH
m , where the superscript

H indicates the conjugate transpose, the beam power of narrow band CBF is then wH
m(θ)Cwm(θ).

The weight vector of CBF is exactly the driving vector, wm(θ) = am(θ). Summation of the beam
powers of all the M subbands leads to the basic broadband beamforming of the form

P(θ) =
M

∑
m=1

wH
m(θ)Cmwm(θ). (9)

When the featured frequencies of the target are included in the summed subbands, the target DOA
will be enhanced in the beam power. The estimation of DOA is then given by θ̂ = arg maxθ∈(−π,π] P(θ).

In some scenarios, for example, when SNR is low or the array sensor spacing does not meet
half-wavelength requirement, strong noise at the sidelobes and grating lobes will degrade the
performance of DOA estimation. The correct peak still exists in the beam power but is usually
lower than the spurious peaks. In other words, the beam pattern corresponding to the correct azimuth
is corrupted but remains in the presence of noises and interferences. For the purpose of making full
use of the beamforming results, we propose two kinds of derivative measurements of P(θ) in the
following context and use them in the update procedure of Bernoulli filter.

3.2. Update Process in Multiple Array Systems

Suppose that a system equipped with N distributed arrays is deployed in the surveillance region.
Every array in the system provides a measurement set at frame k. Denote the measurement set of
the nth array at frame k by Z (n)

k , n = 1, . . . , N. As the arrays are usually spatially separated, it is
reasonable to make the assumption that measurements obtained at different arrays are statistically
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independent. Thus, the entire likelihood can be expressed as the product of local likelihood functions
of individual arrays:

ϕk(Zk|Xk) =


N

∏
n=1

η
(n)
∗,1

(
Z (n)

k

∣∣∣ x
)

, if Xk = {x}

N

∏
n=1

η
(n)
∗,0

(
Z (n)

k

)
, if Xk = ∅

, (10)

where η
(n)
∗,1 (·) and η

(n)
∗,0 (·) denote the likelihood of the nth array. η

(n)
∗,1 characterizes the similarity

between measurement sets to a target-oriented measurement with vector state x. On the contrary,
η
(n)
∗,0 is the likelihood to noise. Symbol ∗ will be replaced by specific methods in the following context.

With the definition of the Bernoulli RFS and the likelihood function of the measurement RFS in
Equation (10), the update step can be expressed by updating the target existence probability qk|k and
the posterior PDF pk|k(x) on the vector space, respectively [18],

qk|k =
qk|k−1

∫
`k(Zk|x)pk|k−1(x)dx

1− qk|k−1 + qk|k−1
∫
`k(Zk|x)pk|k−1(x)dx

, (11)

pk|k(x) =
pk|k−1(x)∏N

n=1 η
(n)
1

(
Z (n)

k

∣∣∣ x
)

∫
pk|k−1(x)∏N

n=1 η
(n)
1

(
Z (n)

k

∣∣∣ x
)

dx
, (12)

where

`k(Zk|x) =
N

∏
n=1

η
(n)
1

(
Z (n)

k

∣∣∣ x
)

η
(n)
0

(
Z (n)

k

) (13)

is the measurement likelihood ratio function.
The likelihood functions η

(n)
∗,1 and η

(n)
∗,0 are important in the update iteration, and will be introduced

in the rest part of this section.

3.3. DOA-Based Method

In this section, we discuss the construction method of a DOA-based measurement set. In the
case of low SNR, the sidelobe outputs may be higher than the mainlobe in the beam power. However,
our simulations showed that, if we conserve certain number of peaks, the correct DOA information
of the target has a high probability to be retained, which can thus be transferred to the subsequent
filter. Therefore, for each local array, we search for λ largest peaks on the beam power curve P(θ).
For an individual array, the azimuths corresponding to these peaks compose the measurement set
Z = {z1, . . . , zλ}. The measurement set can be divided into two parts Z = T ∪ F , where T is the
RFS for the true target DOA, and F is the RFS for the spurious peaks. As mentioned before, true set
T can be modeled as a Bernoulli RFS. When the true azimuth is not included in the selected peaks,
T is an empty set. At each frame, let peak number λ be randomly generated according to the Poisson
distribution with the mean of ν, so that the set F of spurious peaks is approximately a Poisson RFS
whose PDF is defined as

κ(F ) = e−ν ∏
z∈F

νu(z), (14)

where u(z) is the density of the false DOA peak z. For the target generated true azimuth set,
the conditional PDF is given by

f (T |{x}) =
{

1− pd(x), if T = ∅

pd(x)p(z|x), if T = {z}
, (15)
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where pd(x) is the probability of detecting the object in state x; that is, for a given state x, the probability
of the corresponding azimuth peak is selected. Moreover, p(z|x) is the conventional likelihood function
of true azimuth measurement due to the object x. Similar to other Bernoulli filters, p(z|x) is assumed to
follow a Gaussian distribution N (z; θ(x), σ2

B(x)). The mean value θ(x) is the correct DOA of the target
x, and the standard deviation σB(x) equals to half of the 3-dB mainlobe width of the corresponding
beam pattern [29].

In an N-array system, let Z (n) = T (n) ∪ F (n) be the azimuth peak set of the nth array. When the
target is absent, X = ∅ and the measured peak set is exactly the set of spurious peaks. Therefore,
the likelihood is given by

η
(n)
doa,0 = κ(Z (n)). (16)

When a target is present, the likelihood is given by

η
(n)
doa,1 = f (∅|{x}) · κ(Z (n)) + ∑

z∈Z (n)

f ({z}|{x}) · κ(Z (n) \ {z})

= κ
(
Z (n)

) [
1− pd(x) + pd(x) ∑

z∈Z (n)

p(z|x)
νu(z)

]
.

(17)

The update process of the DOA-based method is completed by substituting the likelihood
functions in Equations (16) and (17) into Equations (11)–(13).

3.4. Beam-Based Method

In the DOA-based method, we only retain the DOA peak positions from the beamforming
outputs for filtering, but the intensity information in the beam power can also be useful. Therefore,
we proposed a beam-based method in this section, where the entire beam power for θ ∈ (−π, π] of the
arrays are used as the measurements, that is, Z (n)

k ≡ P(n)
k (θ), n = 1, . . . , N, where P(n)

k (θ) denotes the
beam power of the signal received by the nth array at time k. According to the definition of likelihood
functions, η

(n)
∗,1 should take large value when the beam power is close to those oriented from the true

direction, while η
(n)
∗,0 gets larger when the beam power is as random as the result of the omnidirectional

noise. To get a likelihood function of these features, we propose to use the concept of correlation
between the data beam power and the beam pattern for some assumed signal arrival direction.

For a fixed array, the element positions in the array are known a priori. Thus, we have known
beam pattern (in power) for a given DOA θx of some target state x:

B(θ; θx) =
1
M

M

∑
m=1
‖wH

m(θ)am(θx)‖2
2, (18)

where ‖ · ‖2 is to take the `2-norm of a vector. The beam pattern of the nth array is denoted by
B(n)(θ; θx). The correlation between the beam pattern and the noisy beam power can tell the likelihood
of measurements to target state. In statistics, the Pearson correlation coefficient (PCC) is a measure of
the linear correlation between two variables. The PCC between the measured beam power P(n)

k (θ) and
beam pattern B(n)(θ; θx) is given by

ρ
(n)
k (x) =

∑θ

(
P(n)

k (θ)− P̄θ,k

) (
B(n)(θ; θx)− B̄θ(θx)

)
√

∑θ

(
P(n)

k (θ)− P̄θ,k

)2√
∑θ

(
B(n)(θ; θx)− B̄θ(θx)

)2
, (19)

where P̄θ,k and B̄θ(θx) are the means of P(n)
k (θ) and B(n)(θ; θx) with respect to θ, respectively.

The PCC has a value between −1 and +1, where +1 is the perfect positive linear correlation,
0 is the no-linear correlation, and −1 is the perfect negative linear correlation. While the likelihood
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functions take values in [0, 1], mapping rules from PCC to likelihood functions are required. In our
applications, when the local beamforming result does not match the beam pattern from the assumed
direction, the PCC is negative or close to 0, indicating that there is only noise in this direction, so that
the likelihood function to noise should be larger. On contrast, when the local beamforming result
completely matches the beam pattern, PCC is equal to 1, indicating that there is a target in the assumed
direction. The closer the PCC is to 1, the larger the target likelihood function should be set.

Note that negative PCCs are considered as mismatch here. Readers may be confused because
negative correlations are usually considered as strong correlations in applications such as image
recognition. That is, if the direction of a measured image are opposite to the original one, the PCC
between them equals to −1, but they are still the same object (highly correlated). However, in our
application, the PCC between the local beamforming result and the beam pattern being negative means
that peaks appear at the DOA positions that should have been valleys, while false peaks appear at
where they should not have been existed. This is not a match in our expectation. If the negative PCC
was still considered as strong correlation, we would get wrong DOA estimation.

The desired mapping rules should satisfy the requirements listed above. For this purpose, we first
define a non-negative PCC ρ

(n)
k+ (x), where ρ

(n)
k+ (x) = ρ

(n)
k (x) if ρ

(n)
k (x) > 0 and ρ

(n)
k+ (x) = 0 if ρ

(n)
k (x) ≤ 0.

Then, we generate likelihood functions from ρ
(n)
k+ (x) as follows:

η
(n)
beam,1 =

1√
2πσρ

exp

−
(

ρ
(n)
k+ (x)− 1

)2

2σ2
ρ

 , η
(n)
beam,0 =

1√
2πσρ

exp

−
(

ρ
(n)
k+ (x)− 0

)2

2σ2
ρ

 , (20)

where σρ is an adjustable probability mapping scale parameter. The update process of the beam-based
method is completed by substituting the likelihood functions in Equation (20) into Equations (11)–(13).

3.5. Hybrid Method

The beam-based method is beneficial to improve the accuracy when the beamforming result
highly matches the beam pattern of the target DOA. However, since there are wider peaks near the
end-fire direction in the beam pattern of an individual local array, the tracking results can sometimes
be trapped in the end-fire regions. If there are more than three arrays, the effect of such error can
be eliminated thanks to the geometric relations between the arrays. In the case of fewer arrays, this
problem leads to localization error. Although the DOA-based method may also have ambiguity
problems in the end-fire direction, since only one or two DOA peaks are retained for filtering, it is less
affected than the beam-based method where the operation of calculating the PCC will aggravate the
performance degradation caused by the ambiguity in the end-fire direction. Therefore, the method
using DOA measurements only is advantageous for protecting the true value from the effects of the
end-fire direction in the filtering procedure, especially when the number of arrays is not enough.
Both methods have their own advantages and disadvantages. To complement each other, we propose a
hybrid approach combining these two choices. We define the new likelihood functions as the geometric
mean of likelihood functions of the DOA-based and beam-based methods as follows:

η
(n)
hybrid,0 =

[
η
(n)
beam,0

]α [
η
(n)
doa,0

]1−α
, η

(n)
hybrid,1 =

[
η
(n)
beam,1

]α [
η
(n)
doa,1

]1−α
, (21)

where α ∈ [0, 1] is the portion coefficient to adjust the weights of beam-based and DOA-based
likelihood in the hybrid method. When α = 1, the function is the same as the beam-based likelihood,
while α = 0, it is exactly the same as that of the DOA-based method.
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4. SMC Implementation of the Bernoulli Filter

The PF/SMC method provides a general framework for the implementation of Bernoulli filter [18].
The PDF pk|k(x) is approximated by a particle system {w(i)

k , x(i)k }
Np
i=1, where x(i)k is the state of particle i

and w(i)
k is the normalized particle weight, that is, ∑

Np
i=1 w(i)

k = 1. The PDF is approximated by

p̂k|k(x) =
Np

∑
i=1

w(i)
k δ

x(i)k
(x), (22)

where δb(·) is the Dirac function at point b. In the prediction stage, the prediction of PDF in Equation (8)
is completed by predicting the particle system

p̂k|k−1(x) =
Np+Nb

∑
i=1

w(i)
k|k−1δ

x(i)k|k−1
(x). (23)

The particles are divided into two parts: Nb newly born particles and Np

persistent particles. The states of the birth particles are drawn from a pre-defined birth
distribution, for example, uniform distribution. The birth particles are equally weighted
by w(i)

k|k−1 ∝ pb(1− qk−1|k−1) · 1
Nb

, i = 1, . . . , Nb. The persistent particles are the extension of
those particles at the previous time. Their states are drawn from the state transitional density
x(i)k|k−1 ∼ N (Fk−1x(i)k−1, Qk−1) for i = 1, . . . , Np. The relationship between the weights of the persistent

particles and the previous particle weights is given by w(i)
k|k−1 ∝ psqk−1|k−1 · w

(i)
k−1, i = 1, . . . , Np.

Note that we use proportion rather than equality, because the weights will also be normalized in the
prediction stage.

In the update equations of target existence probability, the integrals can be approximated using
predicted particles as

∫
`k(Zk|x)pk|k−1(x)dx ≈

Np+Nb

∑
i=1

`k(Zk|x
(i)
k|k−1)w

(i)
k|k−1. (24)

To update PDF pk|k(x), the weights of particles are updated by

w(i)
k|k ∝ ϕ(Zk|{x

(i)
k|k−1})w

(i)
k|k−1. (25)

At the end of the update procedure, sampling importance resampling (Np particles persist) is
adopted to regularize the particle system [9]. With all these particles, the MAP estimation of the target
state is approximately the weighted summation of the updated particles at time k, that is, ∑

Np
i w(i)

k x(i)k .

5. Performance Tests

In this section, performance of the three Bernoulli filters is evaluated using simulational and
experimental data.

5.1. Simulation Results

In the simulations, we test the performance of the DOA-based, beam-based and hybrid methods
in a shallow water environment, as depicted in Figure 1. As shown in Figure 1a, in a 10 km × 10 km
surveillance region, three horizontal line arrays (HLA) of length 256 m each with 24 uniformly
spaced hydrophones are deployed at the seabed (of depth about 200 m). The centers of the HLAs
are (6.0, 7.0) km (HLA1), (2.0, 2.0) km (HLA2) and (7.5, 3.5) km (HLA3), respectively. The HLAs are
drawn as black dots in the figure. An acoustic target at depth 50 m moves with a constant velocity
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ẋt = 1.5 m/s and ẏt = 1.6 m/s. The source trace used is also presented by the red line. The source we
test starts to appear from frame k = 10 at (3.0, 2.0) km and finally disappears at frame k = 185.

(a) Simulation track and array deployment.

0m

196.5m

224m

1024m

Water

Column

Sediment

Mudstone

Basement

1520m/s

1572m/s

1593m/s

1490m/s

1881m/s

3246m/s

5200m/s

ρ1=1.76g/cm
3
, α1=0.2dB/kmHz

ρ2=2.06g/cm
3
, α2=0.06dB/kmHz

ρ3=2.66g/cm
3
, α3=0.02dB/kmHz

(b) Sound speed profile and sediment parameters.

Figure 1. Simulation environment: (a) The surveillance region with three HLAs shown by black
dots, and the red line is the target track. (b) The shallow water environment used in the simulation.
The sound speed profile is chosen from the SWellEx96 experiment scenarios. The bottom is modeled as
a sediment overlying a mudstone layer. The layer parameters are shown in the figure.

The featured frequency of the target signal is 50, 60, 70 and 80 Hz. The frequency snapshot of
the received signal of the nth array at time k is given by r(n)k = Akg(n)

k + n(n)
k , where Ak is the complex

Gaussian random amplitude of the source signal following the distribution CN (0, σ2
s ). The Greens’

function vector g(n)
k represents the transmission loss from target location xk to the sensors in array

n. Additive complex Gaussian noise is denoted by n(n)
k which follows the distribution CN (0, σ2

nI),
where 0 is a zero mean vector and I is the identity matrix of compatible dimension. Noises at different
arrays are assumed to be independent and identically distributed. The source level and noise level
are given by SL = 10 log σ2

s and NL = 10 log σ2
n , respectively. The received data are generated on the

frequency band from 40 Hz to 100 Hz with interval ∆ f = 1 Hz. For the featured frequencies of the
target, the simulated frequency snapshots are generated containing the signal component, and for
simplicity the level of the source signal of each featured frequency is assumed to be identical, i.e.,
σ2

s ( fm) = σ2
s . To get data that better fit the realistic shallow water environment, normal mode model

KRAKEN is used to generate the transmission loss g(n)
k at signal frequencies for all the arrays with

environment parameters shown in Figure 1b. For the other frequency bins in the received bandwidth,
noise-only data snapshots are generated. In processing, sliding window is used to pick the snapshots.
One single frame k with L = 11 snapshots are used for beamforming at one time with five snapshots
overlapping between the adjacent frames. The sample time interval between snapshots are set to be
2.5 s and thus the time interval in between frames equals to 15 s.

There are two kinds of criteria here to evaluate the filter performance. Optimal subpattern
assignment (OSPA) is a measure that is used to analyze the estimation error of the target state
and target number at the same time. The OSPA distance between two RFS X = {x1, . . . , xnx}
and Y = {y1, . . . , yny

}, nx, ny ∈ N0, is given by

d̄(c)p (X ,Y) =
(

1
ny

(
min

π

nx

∑
i=1

d(c)(xi, yπ(i))
p + cp(ny − nx)

))1/p

, (26)
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if nx ≤ ny, where d(c)(x, y) = min(c, d(x, y)) is the distance between x and y, and d(x, y) is the

traditional distance between vectors. If ny ≤ nx, then d̄(c)p (X ,Y) = d̄(c)p (Y ,X ). The summation is

taken over all permutations π on {1, 2, . . . , ny}. d̄(c)p is the OSPA metric of order p with cut-off c.
Here, we use the Euclidean distance d(x, y) = ‖x− y‖2. The cut-off distance c represents the upper
bound of the estimation error of the state vector.

Another metric used is to measure the probability of target lost in the tracking problem, called
circular position error probability (CPEP), defined as

CPEP(r) =
1
|X | ∑

x∈X
Pr
{
‖Hx̂−Hx‖ > r, ∀x̂ ∈ X̂

}
, (27)

where matrix H is used to extract components of state vector for performance analysis, and r is the
pre-defined position error radius, outside which the estimation is regarded as target missing.

Given the target track in Figure 1a, we set NL = 70 dB, and Bernoulli SMC filters are applied
for SL =130 dB and SL = 120 dB, respectively. Based on experience, the Bernoulli filter parameters
are set to Np = 5000, Nb = 5000, ps = 0.99 and pb = 0.01. When calculating the particle weights for
DOA-based method, we set ν = 6 and u(z) = 1/2π (uniform distribution of azimuth). Probability
of detection is assumed to be constant pd = 0.2. Probability of target existence, CPEP, and OSPA
of both location and velocity tracking are compared for the DOA-based, beam-based and hybrid
methods. To eliminate the variation caused by SMC implementation, results are averaged over
500 trails with the same filter parameters. Probability of target existence is the updated probability qk|k
in the filter iteration. Target is declared when qk|k > 0.5 and the state vector estimation is accepted.
For qk|k <= 0.5, target is not detected and the RFS state is an empty set. When calculating CPEP,
we use H = diag(1, 0, 1, 0) and r = 2 km. That is, when the positioning error exceeds 2 km, the target
is regarded as lost. At last, we extract the position and velocity components of the state estimate to
calculate the OSPA separately so that the location and the speed estimation error can be compared
individually. The error cut-off is c = 4 km for location and c = 0.1 m/s for velocity.

Results are shown in Figures 2 and 3. Both beam-based and hybrid methods can better capture
the appearance and disappearance of the target signal. The DOA-based method fails to detect the
disappearance of the target after k = 185. When the target appears, it takes several frames for the
beam-based and hybrid filters to detect the target. After the target is detected, the tracking precision of
the beam-based and hybrid methods is better than that of the DOA-based method in the simulations.
The target track after appearance can be roughly divided into three parts. In the first part, the target
is close to HLA2 and is far away from the other two HLAs. As the target moving away from HLA1,
the tracking performance degrades (OSPA increases and CPEP decreases). In the middle of the
track where target is not close to any of the three arrays, the tracking performance is relatively poor.
When the target comes into the area near HLA1 and HLA3, performance improvement can be observed.
The performance change is more pronounced when SL = 120 dB. In Figure 3, a possible reason for
the sudden change around k = 150 is that the target enters a relatively high SNR region of HLA3
(the relationship between performance and SNR is not linear), so the target location is corrected.
However, while the target location is corrected, the filter actually detects a large change in the received
signal, so that the target existence probability decreases in a short time. The sudden correction of
the target position increases the estimation error of target velocity. These errors are corrected after
a short period of time. When SL = 130 dB, similar but insignificant performance changes can be
observed in the same period. Both beam-based and hybrid methods, where the amplitude information
of beamforming is used, are more sensitive to degradation of signal quality. However, in most frames,
both beam-based and hybrid methods still outperform the DOA-based method.
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(a) Probability of existence (b) OSPA of velocity

(c) CPEP of localization (d) OSPA of localization

Figure 2. Simulation results with SL = 130 dB and NL = 70 dB: (a) probability of existence; (b) OSPA
error (m/s) of target velocity tracking; (c) CPEP of target location tracking; and (d) OSPA error (m) of
target location tracking. Results of the DOA-based Bernoulli filter are shown in blue lines, results of
the beam-based method are presented by green lines, and results of the hybrid method with α = 0.5
are shown in red lines.

(a) Probability of existence (b) OSPA of velocity

(c) CPEP of localization (d) OSPA of localization

Figure 3. Simulation results when SL = 120 dB and NL = 70 dB: (a) probability of existence; (b) OSPA
error (m/s) of target velocity tracking; (c) CPEP of target location tracking; and (d) OSPA error (m) of
target location tracking. Results of the DOA-based Bernoulli filter are shown in blue lines, results of
the beam-based method are presented by green lines, and results of the hybrid method with α = 0.5
are shown in red lines.
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5.2. Experiment Data Processing Results

The experiment dataset used to evaluate the performance was collected in the experiment
SWellEx-96 Event S5 [30]. In this event, sound pressure was recorded by multiple arrays, a vertical
line array (VLA), a tilted line array (TLA) and two HLAs. The experiment area along with the array
locations and ship-recorded target trace are shown in Figure 4. The locations of arrays and target trace
with recorded data (in the red box) in latitude and longitude are converted to Cartesian coordinates
and a surveillance region of size 2 km × 8 km is formed. The corresponding latitude and longitude
of the Cartesian origin are 32◦37.25′ N and 117◦21.82′ W. For the purpose of tracking the target in
the XY-plane, only the data collected by 2 HLAs, referred to as HLA north (HLAn) and HLA south
(HLAs), are used. Those arrays are deployed at the seabed with the water depth of 213 m (HLAn)
and 198 m (HLAs), respectively. The number of effective array elements for processing is 27 (HLAn)
and 28 (HLAs), respectively. Two multi-tone sources travel in the region at speed around 5 knots.
The respective source depths are 54 m and 9 m, and their transmitted tone frequencies are listed in
Table 1. Data from frequency band of 40–150 Hz are used to test our Bernoulli tracking algorithms.
Array element locations as provided on the dataset website are used to calculate the beam pattern
in advance.

Table 1. Frequencies of the Multi-tone sources.

Deep Source (54 m) Frequencies (Hz)

49 64 79 94 112 130 148 166 201 235 283 338 388 High Signal Level
52 67 82 97 115 133 151 169 204 238 286 341 391 2nd Set of Tonals
55 70 85 100 118 136 154 172 207 241 289 344 394 3rd Set of Tonals
58 73 88 103 121 139 157 175 210 244 292 347 397 4th Set of Tonals
61 76 91 106 124 142 160 178 213 247 295 350 400 5th Set of Tonals

Shallow Source (54 m) Frequencies (Hz)

109 127 145 163 198 232 280 335 385

Corresponding 

track with data 

recorded

Figure 4. The experiment setup of SWellEx-96 Event S5 is shown in the left figure. The deployed
arrays are represented by the stars and the ship-recorded target trace is the blue line. The area in the
red rectangle is zoomed in with converted Cartesian coordinates. The data recorded by two HLAs
are used for analysis and the HLAs are black lines in the right figure. The red line is the target track
corresponding to the data for analysis.
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The recorded sound pressure is sampled at 3276.8 Hz. Data flow is transformed to
frequency-domain snapshots with 8192-point FFT. The snapshots length is thus 2.5 s (0.4 Hz frequency
bin widths). Similar to the simulations in the previous section, in beamforming, one single frame k
contains L = 11 snapshots with 5 snapshots overlapping between the adjacent frames. A total of 199
frames were processed. During the experiment, for frames 48∼54, 120∼123 and 131∼134, the deep
source stopped projecting continuous wave (CW) tones and started projected chirps that are not on
the processed frequency bands. Target is treated as absent during those frames for that only noise is
contained in the data for processing.

In the experiment data processing, the Bernoulli filter parameters are set to Np = 10,000,
Nb = 8000, ps = 0.9 and pb = 0.1. In DOA-based method, ν = 6 and u(z) = 1/2π (uniform
distribution of azimuth). Probability of detection is pd = 0.9. Probability of target existence, CPEP,
OSPA of both location and velocity tracking are presented in Figure 5. Results are the average of
500 trails with the same filter parameters. Probability of target existence is the updated probability qk|k
in the filter iteration. Target is declared when qk|k > 0.5 and the state vector estimation is accepted.
For qk|k <= 0.5, target is not detected and the RFS state is an empty set. H = diag(1, 0, 1, 0) and
location error radius r = 1 km in CPEP metric. Position and velocity OSPA cut-off are set to c = 2 km
for location and c = 0.1 m/s for velocity.

(a) Probability of existence (b) OSPA of velocity

(c) CPEP of localization (d) OSPA of localization

Figure 5. Processing results of data from 2 HLAs in SWellEx-96 Event S5: (a) probability of existence;
(b) OSPA error (m/s) of target velocity tracking; (c) CPEP of target location tracking; and (d) OSPA
error (m) of target location tracking. Results of the DOA-based Bernoulli filter are shown in blue lines,
and results of the hybrid method with α = 0.4 are shown in red lines.

Only two arrays in the experiment led to wrong estimation when the correlation deviated for any
of the arrays. This deviation should have been eliminated if we had one more array. Besides, for many
frames, the target is in the end-fire direction of HLAs, where the performance of the beam-based
method is not satisfactory. In Figure 5, the performance results of the DOA-based method and the
hybrid method with α = 0.4 are presented. The performance of the beam-based method decreases
dramatically, because of the lack of arrays and the effect of the end-fire direction, and is thus not shown.
Similar to the simulation results, compared to the DOA-based algorithm, the hybrid method is better
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at detection, i.e., capturing the appearance and disappearance of the target signal. This can be seen
between frames 48∼54, 120∼123 and 131∼134 when the target signal is not included in the processed
data. Correspondingly, when using the hybrid method, the convergence rate for the relatively more
precise estimation is slower than that of the DOA-based method (for frames 1∼26 at the beginning).
From frames 62∼118, both tracking algorithms achieve good performance. Near the end of the track
(frames 135∼199), the hybrid method outperforms the DOA-based method.

6. Conclusions

We studied the passive joint detection and tracking problem of underwater targets using multiple
arrays. The beamforming results obtained by the spatially distributed arrays were used as inputs
to the Bernoulli filter to track the target presence, target position, and velocity. Three different
likelihood calculation methods, the DOA-based, beam-based and hybrid methods are proposed for the
Bernoulli filter. In the DOA-based Bernoulli filter, measurement sets were composed of DOA peak
positions of beam power. The beam-based Bernoulli filter adopted the entire beam power as the input
measurement set. The hybrid method was proposed to complement the advantages of the DOA-based
and the beam-based method in the case of fewer arrays. We used a realistic underwater acoustic
waveguide model to generate simulation data and evaluate the performance of the three methods.
We also compared their performance using the low-frequency portion of the real data collected in the
SWell-Ex96 experiment. The simulation results with three arrays showed that the proposed beam-based
method and hybrid method can improve the tracking performance compared with the DOA-based
filter. In the experimental data processing with two arrays, results also indicate that the proposed
hybrid method has a better ability of detection, as well as a better tracking precision after convergence.
It is worth noting that the RFS-based Bernoulli filter has great potential in multi-target tracking.
We wish to extend the proposed methods to track multiple acoustic targets in future efforts.
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