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Abstract: Pooling layer in Convolutional Neural Networks (CNNs) is designed to reduce dimensions
and computational complexity. Unfortunately, CNN is easily disturbed by noise in images when
extracting features from input images. The traditional pooling layer directly samples the input feature
maps without considering whether they are affected by noise, which brings about accumulated noise
in the subsequent feature maps as well as undesirable network outputs. To address this issue, a robust
Local Binary Pattern (LBP) Guiding Pooling (G-RLBP) mechanism is proposed in this paper to down
sample the input feature maps and lower the noise impact simultaneously. The proposed G-RLBP
method calculates the weighted average of all pixels in the sliding window of this pooling layer as
the final results based on their corresponding probabilities of being affected by noise, thus lowers
the noise impact from input images at the first several layers of the CNNs. The experimental results
show that the carefully designed G-RLBP layer can successfully lower the noise impact and improve
the recognition rates of the CNN models over the traditional pooling layer. The performance gain of
the G-RLBP is quite remarkable when the images are severely affected by noise.
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1. Introduction

Nowadays, using deep learning architectures to dig out information and extract features from
images have drawn a lot of attention in computer vision and machine learning tasks. Among them,
CNN has gradually become the most effective method since it can extract essential features quickly
from images and has been widely applied in face recognition, target tracking, expression analysis,
and other fields. For instance, in 2014, the Deepface [1] method came out and achieved 97.35% accuracy
on the LFW database [2]. In DeepID2 [3] and DeepID2+ [4] models, the authors skillfully combined
face identification and verification to increase inter-class variations and reduce intra-class variations
simultaneously. This mechanism successfully gets an obvious improvement on some typical databases.
DeepID3 [5] further enlarges and deepens the network, finally reaching a 99.53% accuracy on the LFW
database. VGGnet [6] is another influential model to learn effective features from input images which
has been used in many visual recognition tasks [7–9]. In this model, many convolutional layers are
stacked together to get some more complex features. The GoogleNet [10] was proposed which ranked
in the top in the ILSVRC 2014. There are many inception modules in this model which combine pooling
with convolutional layers to form a new feature extraction layer. Moreover, in 2014, Gong et al. [11]
proposed the Multi-scale Orderless Pooling (MOP) CNN to extract CNN activations for local patches at
multiple scale levels. Later, faster R-CNN [12] proposed in 2016 merges the Region Proposal Network
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(RPN) and Fast R-CNN [13] into a single network by sharing their convolutional features which
is not only a cost-efficient solution for practical usage but also an effective way to improve object
detection accuracy.

CNN is effective for visual recognition, but sometimes it is also very susceptible to the noise
injected into the input images in the real-world applications. Taking Alexnet [14] and ZF-5net [15]
as examples, we select 100 subjects from the CASIA-WebFace [16] to train and test the two networks
(10,900 for training and 1700 for testing). To evaluate the networks in the noisy conditions, the testing
images were injected with different intensity of Gaussian noise, as shown in Figure 1. It is clear that
the edges and other features information in the face images become more and more challenging to
recognize along with the noise intensity.

Figure 1. The sample testing images which were injected with different intensity of Gaussian noise.

Table 1 shows the recognition rates of the Alexnet and ZF-5net. In Table 1, we can see that the
recognition rates of the networks decrease drastically along with the noise intensity. When the variance
of Gaussian noise increases to 0.01, the recognition rates of both networks even drop to 50% and nearly
cannot be used in practice. However, in the real-world applications, the obtained face images would
be easily affected by various factors and finally contain some noise during the collection, processing,
and transmission.

Table 1. The recognition rates (%) of the Alexnet and ZF-5net with different intensity of Gaussian noise.

σ2 = 0 σ2 = 0.002 σ2 = 0.005 σ2 = 0.01

Alexnet 81.16 73.48 64.13 46.72
ZF-5net 81.24 75.62 67.50 49.07

A carefully designed CNN is mainly comprised of three types of layers: convolutional layer,
pooling layer, and fully-connected layer. In general terms, the objective of pooling is to transform the
common feature representations into a new, more usable one which preserves essential information
while discarding irrelevant details [17]. However, most of the pooling methods such as the max pooling
and the average pooling down sample the input feature maps in the corresponding sliding window
based on a constant criterion and all the pixels are treated equally in these cases. Once some of the
pixels in the sliding window are affected by noise, they are still probably preserved or averaged after
the pooling layer since the current pooling methods have no response to the noise injected into the
input. To address this issue, a new pooling method based on robust LBP guiding in deep CNNs is
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proposed in this paper to deal with the noise injected into the input images, which is named as RLBP
Guiding Pooling (G-RLBP).

There are many effective hand-crafted methods to extract features from images. For instance,
HOG [18] constructs features by computing and counting histograms of gradient directions in local
regions of images. HOG features combined with SVM classifier have been widely applied in pedestrian
detection. SIFT [19] feature is a very stable local feature, which is invariant to rotation, scale scaling,
and luminance change. To address the impact of makeup on automated face recognition, Chen et al. [20]
proposed another useful method in which a set of feature descriptors such as Local Gradient Gabor
Pattern (LGGP) [21] and Densely Sampled Local Binary Pattern (DS-LBP) are utilized to represent
each patch of the face images. LBP is another representative hand-crafted feature extraction method
which has been widely used in many face recognition tasks [22–24]. Compared with other feature
extraction methods such as HOG and SIFT, LBP-based methods can extract small movements in the
facial images, and they are described in a much lower dimensional feature space which benefits the
real-time applications. In the proposed G-RLBP, the robust LBP algorithm is utilized to guide the
pooling mechanism. The proposed G-RLBP first analyses each pixel in the sliding window, calculates
their probabilities affected by noise, and gets the robust LBP (RLBP) weight maps. Then, all the pixels
are weighted averaged as the final results of the current sliding window in this pooling layer according
to the RLBP weight maps. Here, we utilize the fact that most of the LBP patterns in the face images
belong to the uniform patterns and only a small part belongs to the non-uniform patterns [22,25].
Moreover, the non-uniform patterns are usually caused by noise injected into the images. Thus, we can
utilize the pattern of the pixel to guide the pooling procession to decrease the noise injected into the
feature maps. In this way, the parameters of the input feature maps can be reduced as the traditional
pooling methods, and the impact of noise injected into the feature maps can also be effectively lowered
simultaneously. The experimental results also show that the performance of some CNNs equipped
with the G-RLBP pooling layer can be improved notably in the noisy conditions.

The remainder of this paper is organized as follows. Section 2 describes the proposed G-RLBP
pooling method, and its theoretical analysis is also carried out in this section. Section 3 reports
the experimental design and performance comparisons of the G-RLBP pooling method. Section 4
concludes this paper.

2. Proposed Method

In the traditional CNNs, the convolutional layer, pooling layer and fully-connected layer care
little about the noise injected into the input images. However, the noise impact introduced by the input
images would accumulate layer by layer. When the intensity of the noise reaches a certain degree,
the recognition rate of the network will drop sharply, as Table 1 shows. Therefore, it is highly necessary
to lower noise interference at the first several layers of the network. Figure 2 is the structure of our
designed G-RLBP pooling layer to reduce the noise impact in the first pooling layer. There are three
main modules in the G-RLBP pooling layer:

• Convolutional Feature Maps are the outputs of the first convolutional layer of the network.
• RLBP Feature Maps are the robust LBP coding results of the convolutional feature maps.
• RLBP Weight Maps are the weights of each pixel in the sliding window according to the RLBP

feature maps.

The values in the RLBP weight maps reflect the probability of each pixel affected by noise in the
convolutional feature maps. Utilizing this weight maps to down sample the convolutional feature
maps, the pixels which are more likely to be affected by noise would be assigned smaller weights to
lower the noise interference to the networks. We give a detailed description of this RLBP weight maps
in the next section.
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Figure 2. The structure of the G-RLBP pooling layer.

2.1. Robust LBP

LBP is a very effective method to extract local texture features from images. In recent years, LBP
and its variants have been successfully applied to various pattern recognition tasks, such as texture
analysis, face detection, facial expression recognition and so on.

Ahonen et al. [22] firstly introduced the LBP method into face recognition field. They cut
the face image into several sub-images and then calculated the LBP values of each pixel in certain
sub-image. The local and overall features of the face image are combined in this method with excellent
performance in real-world applications. However, in the coding process, the traditional LBP method
usually compares the central pixel and its neighbors to get a binary string in the sliding window.
Some small changes of the pixels finally result in very different coding results. For instance, Figure 3
shows the two coding processes of LBP; the red numbers indicate the pixels affected by noise. It is clear
that the normal LBP value of the central pixel is 1011 0000; once some neighboring pixels are slightly
affected by noise, the coding results would be very different from the normal one. Thus, the LBP is
very sensitive to noise which can easily modify the gray pixel value of the image and may result in
entirely different coding results.

Figure 3. The influence of noise to the LBP coding results.

In this section, we utilize a noise-robust LBP coding method called RLBP in which we can judge
whether the pixel value of the image is affected by noise before feeding into the network based on
its probability.



Sensors 2018, 18, 3876 5 of 18

The basic LBP algorithm encodes the signs of the pixel differences between the central pixel and
its neighboring pixels in a sliding window. The coding criterion is as follows:

b(zp) =

{
1, if zp ≥ 0
0, if zp< 0

, (1)

where zp indicates the difference between the central pixel and its neighbors in a sliding window
(e.g., 3× 3), and zp is encoded into 1 or 0 according to Equation (1). The central pixel and all of
its neighbors are compared in turn and then these 1-bit binary numbers are connected in a certain
direction to get a P-bits binary string (P is the neighbor number of the central pixel). Finally, this P-bits
binary string is converted to a decimal number between 0 and 2P which is regarded as the LBP value
of the central pixel in this 3× 3 sliding window.

There are 2P different patterns in the LBP algorithm. Among them, P× (P− 2) + 2 LBP patterns
are defined as uniform patterns with at most two circularly bitwise transitions from 0 to 1 or vice versa,
and the rest are non-uniform patterns. Most LBP values in natural images are uniform patterns [22].
Thus, uniform patterns are statistically more significant, and their occurrence probabilities can be
more reliably estimated. In contrast, non-uniform patterns are statistically insignificant, and hence
noise-prone and unreliable. Figure 4 shows some of the local primitives (spots, flat region, edges ends
and corners) represented by uniform LBP patterns [26].

Figure 4. Local primitives samples of LBP uniform patterns.

The RLBP is different from LBP in which zp is encoded to a ternary pattern (0, 1 and u) according
to Equation (2).

b(zp) =


1, if zp ≥ tp

u, if
∣∣zp
∣∣ < tp

0, if zp ≤ −tp

, (2)

where tp is the threshold, u is an uncertain binary number and encoded to 0 or 1 in a certain probability.
Obviously, a binary string which contains uncertain u is unable to be encoded into a certain decimal
number between 0 and 2P. LBP uniform patterns can capture the main structural information of
the image while reducing the noise interference in the texture. In natural images, the frequency of
the uniform patterns appears far higher than the non-uniform ones. Many experimental data show
that 90.6% of the LBP patterns in the face image belong to the uniform patterns, and only a small
part belongs to the non-uniform patterns. Moreover, these non-uniform patterns are often caused
by noise. Here is a simple experiment to explain this phenomenon in face images. For example,
injecting different intensity (d) of salt and pepper noise into the samples of the ORL database [27],
the proportion of the non-uniform patterns increases continuously along with the intensity of noise.
When d is 0.05, 0.1 and 0.15, the proportion of the non-uniform mode is 27.86%, 31.46% and 34.49%,
respectively. Based on this observation, we can preset the value of u in different coding patterns.

Generally, there are three cases in total according to the number of uniform patterns.

2.1.1. Case 1: Only One Pattern Belongs to the Uniform Patterns

Figure 5 is a comparison of LBP and RLBP coding process in a 3× 3 sliding window. Here, tp is set
to be 5. The detailed discussion of tp can be seen in the Section 3.1.1 The corresponding uncertain RLBP
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pattern collection in the RLBP algorithm is defined as C(U) = 1u1110u200. There are two uncertain
binary numbers U = {u1, u2}. According to the combinations of U, there are four different P = 8 bits
binary strings: 1011 0000, 1011 0100, 1111 0000, and 1111 0100. Among them, 1011 0000, 1011 0100 and
1111 0100 belong to the non-uniform patterns, and they are likely to be affected by noise. Therefore,
the central pixel ’90’ of the 3× 3 sliding window is encoded to 1111 0000 in the RLBP algorithm because
it is the only one uniform pattern and we can also calculate the probability of this code. Let p(u = 1)
be the probability of zp encoded to 1.

p(u = 1) = 0.5 + 0.5 ·
zp

tp
, (3)

p(u = 0) = 1− p(u = 1). (4)

We can easily get p(u1 = 1) = 0.3, p(u2 = 0) = 0.8. Finally, the probability of the central pixel
encoded to 1111 0000 is p(u1 = 1, u2 = 0) = p(u1 = 1) · p(u2 = 0) = 0.24.

Figure 5. The comparison of LBP and RLBP patterns in a 3× 3 sliding window with only one pattern
in uncertain RLBP pattern collection belongs to the uniform patterns.

2.1.2. Case 2: More Than One Patterns Belong to the Uniform Patterns

Figure 6 shows another case when more than one patterns belongs to the uniform patterns.
The uncertain RLBP pattern in this case is: 11u100u200. According to the values of u1 and u2, there are
four candidate binary strings: 1110 0000, 1110 0100, 1100 0100, and 1100 0000. Two binary strings
belong to the uniform patterns: 1110 0000 and 1100 0000. Here, according to Equations (3) and (4),
we have:

p(u1 = 0) = 0.9,
p(u1 = 1) = 0.1,
p(u2 = 0) = 0.8,
p(u2 = 1) = 0.2.

(5)

Then, the encoding probability of 1110 0000 and 1100 0000 are, respectively: p(u1 = 1, u2 = 0) =
p(u1 = 1) · p(u2 = 0) = 0.08 and p(u1 = 0, u2 = 0) = p(u1 = 0) · p(u2 = 0) = 0.72. In the RLBP
algorithm, the binary strings with the max probability is defined as the final coding result, thus the
central pixel in Figure 6 is encoded as 1100 0000 with a probability of 0.72.
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Figure 6. The comparison of LBP and RLBP patterns in a 3× 3 sliding window with more than one
patterns in uncertain RLBP pattern collection belong to the uniform patterns.

2.1.3. Case 3: None Pattern Belongs to the Uniform Patterns

In the third case, no pattern belongs to the uniform patterns, as Figure 7 shows. In Figure 7,
the uncertain RLBP pattern is C(U) = u10110110. There are two binary strings when u1 is set to 0 or 1:
0011 0110 and 1011 0110. They both belong to the non-uniform patterns. Therefore, the central pixel
can only be encoded to 1011 0110 with a probability of p(u1 = 1) = 0.7.

Figure 7. The comparison of LBP and RLBP patterns in a 3× 3 sliding window with none pattern in
uncertain RLBP pattern collection belongs to the uniform patterns.

In conclusion, the RLBP value of the central pixel in any sliding windows can be summarized
as follows:

1. Calculating all the uncertain RLBP values of the central pixel according to Equation (2).

URLBPΦu =
{

C(U)|U ∈ {0, 1}n, C(U) ∈ Φu
}

, (6)

URLBPΦ̄u
=
{

C(U)|U ∈ {0, 1}n, C(U) ∈ Φ̄u
}

, (7)

where Φu and Φ̄u are the collections of the uncertain uniform patterns and non-uniform patterns.
U = {u1, u2, . . . , un}.

2. If URLBPΦu == None and URLBPΦ̄u
6= None, then calculate the probabilities of all non-uniform

patterns in URLBPΦ̄u
according to Equation (7). Otherwise, calculate the probabilities of all

uniform patterns in URLBPΦu .

p(C(U)) =
n

∏
i=1

p(ui|ui ∈ {0, 1}). (8)



Sensors 2018, 18, 3876 8 of 18

3. Finally, the pattern with the max probability is regarded as the RLBP value of the central pixel.

RLBPR,P = arg max
C(U)

({p(C(U))}), (9)

where R indicates the radius of the current sliding window and P is the neighbor number of the
central pixel.

2.2. RLBP Weight Maps

We have given a detailed discussion of the RLBP coding process. There are three cases to be
considered to generate the RLBP weight maps in our G-RLBP method.

• Case 1: If the center pixel of the sliding window is encoded as only one uniform pattern according
to Equation (2), the corresponding RLBP weight of the center pixel is defined as 1.

• Case 2: If the center pixel of the sliding window is encoded as more than one uniform patterns,
then the probabilities of each uncertain RLBP in the URLBPΦu are calculated, and the max
probability is taken as the RLBP weight corresponding to the central pixel.

• Case 3: If all the uncertain RLBP patterns belong to the non-uniform, the RLBP weight of this
central pixel is set to be 0.

Figure 8 visualizes the pooling process in our G-RLBP layer. After the RLBP pooling weight maps
are generated, we can down sample the convolutional feature maps according to Equation (10):

y =
1
N

N

∑
i=1

wi · xi, (10)

where N is the pixel number in a sliding window, and wi and xi indicate the RLBP weight and the
corresponding value in the input feature maps respectively. Here, N is set to 9. y is the output of the
current sliding window after the G-RLBP pooling.

Figure 8. The visualization of the G-RLBP pooling process in the designed network.
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3. Experimental Analysis

3.1. Baseline Network Architectures

The Alexnet, ZF-5net, and GoogleNet are three baseline network architectures studied in the
experiments. The specific configurations of the Alexnet and ZF-5net are shown in Table 2. In contrast
to the Alexnet, the ZF-5net uses smaller filters in Conv1 to preserve more original pixels information.
In our models, the Pool1 layers of the three baseline networks are replaced by the proposed G-RLBP
layers. One point needs to be emphasized: only the Pool1 layer is replaced by the proposed G-RLBP
layer. Most of the noise in the feature maps could be reduced after the first G-RLBP layer in the
network which would be verified in the following sections. It fails to bring too much good effect when
other pooling layers are all replaced. Besides, the G-RLBP layers need to calculate the weight maps
of each pooling window, which is time-consuming to some extent. In particular, to further evaluate
the proposed G-RLBP layer, we also used data augmentation by injecting different random noise into
the training data as another experiment. The three networks are transferred to face recognition task
through fine-tuning. The networks are implemented by Caffe toolbox [28]. Stochastic Gradient Descent
(SGD) is used for optimizing in our model with back propagation. We set the weight decay and
momentum to 0.005 and 0.9, respectively. The base learning rate is initially set to be 0.001 for training
the original ZF-5net and Alexnet models. All networks in our experiments are trained 80 epochs.
The evaluation is performed on a machine with 64G memory Xeon CPU 2.1GHz and GPU GeForce
GTX1080Ti. The training database used in the experiments is the CASIA-WebFace database including
10,575 subjects with 494,414 face images which are collected from the website. We selected 100 subjects
from the CASIA-WebFace database to train the models. The testing data were selected from the ORL
and AR database [29]. The output of the fc6 layer is regarded as the feature extracted from the networks
with a feature dimension of 4096.

Table 2. The configurations of the Alexnet and ZF-5net.

Model

Alexnet ZF-5net

Filter
Size/Stride

Output
Size

Filter
Size/Stride

Output
Size

Conv1 11× 11/4 96× 55× 55 7× 7/2 96× 111× 111
Pool1 3× 3/2 96× 27× 27 3× 3/2 96× 55× 55
Conv2 5× 5/1 256× 27× 27 5× 5/1 256× 55× 55
Pool2 3× 3/2 256× 13× 13 3× 3/2 256× 27× 27
Conv3 3× 3/1 384× 13× 13 3× 3/2 512× 13× 13
Conv4 3× 3/1 384× 13× 13 3× 3/1 1024× 13× 13
Conv5 3× 3/1 256× 13× 13 3× 3/1 512× 13× 13
Pool5 3× 3/2 256× 6× 6 3× 3/2 256× 6× 6
Fc5 - 4096 - 4096
Fc6 - 4096 - 4096
Fc7 - 100 - 100

In the recognition stage, the nearest neighbor classifier is introduced to calculate the distance
between two feature vectors with three different distance measures: the Chi-Square distance,
the Euclidean distance, and the Cosine distance. During the experiment, the AR and ORL databases
were injected with different intensity of Gaussian noise and salt and pepper noise to test the
performance of the G-RLBP pooling method.

3.1.1. The Discussion of tp

tp is one of the important parameters in our method which affect the algorithm complexity and
performance. We conducted an experiment on the ORL database to give a simple discussion of it.
The histogram of the RLBP patterns was regarded as the feature of each face image. For brevity,
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only Euclidean distance was utilized to measure the similarity of two features. In this experiment,
one image was selected as the training set and the rest as the testing set for evaluation. Figure 9 shows
the recognition rates of the RLBP with respect to tp.

Figure 9. Recognition rates of the RLBP algorithm versus tp.

We can see clearly in Figure 9 that, when tp is set to 5, the RLBP can get the highest recognition
rate on the ORL database. Thus, in the following experiments, tp was set to 5, which is suitable in most
of the cases.

3.2. Experiments on the ORL Database

The first set of experiments were carried out on the ORL database which contains 40 subjects with
10 images for each subject. One image of each subject was selected as the training set and the rest
as the testing set per turn. The experiment was repeated 10 times so that each image could be used
as the training set for evaluation. Before the testing images were fed into the network, we injected
different intensity of Gaussian noise and salt and pepper noise to evaluate the performance of the
G-RLBP pooling layer.

Figure 10 visualizes the output of the Pool1 and G-RLBP layer in the baseline Alexnet and the
Alexnet equipped with G-RLBP layer respectively.

Comparing Figure 10a,b, it is worth noticing that, when the input image is injected with some
noise, some random noise points appear in the feature maps of the pooling layer. Meanwhile, the crucial
edges of the output are no longer clear, and some of the original texture information is even lost in
some feature maps. The noise in the image can severely affect the output of some intermediate
layers in the networks, and the noise accumulates layer by layer which would eventually reduce the
recognition rate of the whole network. However, once the network is equipped with the G-RLBP
pooling layer, as Figure 10c shows, the noise injected into the output feature maps can be effectively
decreased, and some edges in the feature maps of the G-RLBP also become much clearer compared
with Figure 10b.
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Figure 10. The feature maps of different pooling layers in the Alexnet. Conv1 indicates the first
convolutional layer in the networks. (a) The output of Pool1 layer without injecting any noise into the
input image in the baseline Alexnet; (b) the output of Pool1 layer in the baseline Alexnet when the
input image is injected with salt and pepper noise (d = 0.05); and (c) the output of the G-RLBP pooling
layer when the input image is injected with the same noise as (b).

In Tables 3 and 4, we summarize the recognition rates when the testing images were injected with
Gaussian noise and salt and pepper noise respectively.

The results in Tables 3 and 4 show that the recognition rates of the six network models are all
decreasing along with the noise intensity, especially for the baseline networks with max pooling layer
and data augmentation. The fourth and seventh columns in Tables 3 and 4 indicate the training data
of the Alexnet and ZF-5net were injected with different intensity of random noise (Gaussian and salt
and pepper noise). When the Gaussian noise intensity increases to σ2 = 0.005, the recognition rates
of the baseline networks with max pooling layer begin to be lower than 50%. The original pooling
method is sensitive to noise, which brings about poor performance when the input images are affected
by slight noise. In the tables, we can see that, when the training data are augmented with random
noise, the recognition results are much better than the original networks with max pooling method.
Furthermore, in comparison, the G-RLBP pooling method proposed in this paper gets the best results,
and it is robust to noise. Although the recognition rates of the two networks equipped with the
G-RLBP pooling layer are also decreasing along with the noise intensity, the recognition results in these
cases are much better than those of the baseline networks. Even if the intensity of the Gaussian noise
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reaches σ2 = 0.01, the recognition rates are also higher than 50%, which indicates that the G-RLBP
pooling layer is more effective than the original. The main reason is that, when the networks are
equipped with the G-RLBP layer, a smaller weight would be assigned to the pixel that is likely affected
by noise. Thus, after the G-RLBP pooling, the noise injected into the feature maps would be kept
within a smaller extent. In addition, when the testing images are clean (σ2 = 0 in Table 3 or d = 0
in Table 4), the recognition rates of the networks with G-RLBP are also slightly higher than those
of the baseline networks. In conclusion, the G-RLBP can be used to reduce the model dimensions
as the original pooling method and lower the noise interference to the networks in the real-world
applications simultaneously.

Table 3. The recognition rates (%) of different pooling methods and data augmentation based on the
Alexnet and ZF-5net on the ORL database with different Gaussian noise.

Alexnet+
Max

Alexnet+
Data Aug.

Alexnet+
G-RLBP

ZF-5net+
Max

ZF-5net+
Data Aug.

ZF-5net+
G-RLBP

σ2 = 0
Chi Square 85.38 85.67 86.42 84.12 85.88 87.68
Euclidean 83.06 83.87 85.25 80.00 81.64 83.69

Cosine 89.44 90.12 92.74 85.33 86.56 87.72

σ2 = 0.002
Chi Square 65.15 76.43 80.55 69.44 77.75 81.42
Euclidean 61.32 80.32 85.34 66.11 78.47 82.25

Cosine 60.56 78.54 82.51 68.06 79.21 83.50

σ2 = 0.005
Chi Square 47.22 58.84 72.47 52.48 60.22 75.48
Euclidean 36.94 55.32 69.15 48.62 56.65 72.45

Cosine 48.89 56.76 70.54 53.87 57.80 73.66

σ2 = 0.01
Chi Square 23.61 26.22 54.53 38.89 40.34 59.41
Euclidean 15.83 20.11 49.87 29.44 32.90 51.03

Cosine 20.87 23.87 52.32 36.72 36.45 57.15

Table 4. The recognition rates (%) of different pooling methods and data augmentation based on the
Alexnet and ZF-5net on the ORL database with different salt and pepper noise.

Alexnet+
Max

Alexnet+
Data Aug.

Alexnet+
G-RLBP

ZF-5net+
Max

ZF-5net+
Data Aug.

ZF-5net+
G-RLBP

d = 0
Chi Square 85.38 85.77 86.42 84.12 85.53 87.68
Euclidean 83.06 84.46 85.25 80.00 81.24 83.69

Cosine 89.44 91.20 92.74 85.33 86.43 87.72

d = 0.05
Chi Square 37.78 59.72 65.65 45.78 60.21 68.55
Euclidean 35.62 56.44 62.85 41.11 57.97 63.32

Cosine 35.98 57.83 64.72 45.78 59.44 64.58

d = 0.1
Chi Square 24.56 34.21 42.15 30.44 37.83 48.87
Euclidean 19.86 27.84 39.42 23.55 30.22 42.84

Cosine 21.67 30.76 45.57 28.56 35.17 42.05

d = 0.15
Chi Square 19.05 22.13 32.12 24.72 26.43 33.65
Euclidean 15.72 18.04 25.96 18.85 21.36 24.17

Cosine 17.39 20.42 29.98 20.24 18.12 21.10

Finally, we also evaluated the time cost of these network models both at the stage of training and
classification, as Table 5 shows. All the network models in our experiments are trained 80 epochs.
The classification times in Table 5 only refer to the 4096-feature extraction times here since the feature
matching times of all the network models are the same.
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Table 5. The training and classification time of different pooling methods and data augmentation.

Alexnet+
Max

Alexnet+
Data Aug.

Alexnet+
GRLBP

ZF-5net+
Max

ZF-5net+
Data Aug.

ZF-5net+
GRLBP

training (h) 26 50 32 31 63 40
classification per image (ms) 26.983 27.021 30.478 27.225 27.219 30.694

In Table 5, we can see that it is difficult to train a network with Data Augmentation, since it has
the maximum training data. Compared with the network with a max pooling layer, the classification
time of the G-RLBP pooling method is a little longer. However, considering the improvement of the
G-RLBP pooling method on the recognition rates in Tables 3 and 4, the weakness on the classification
time-consuming is acceptable.

3.3. Experiments on the AR Database

The second set of experiments were conducted on the AR database which contains 126 subjects
with 13 images for each subject. The experimental settings were the same as Experiment 1. We chose
one image from each subject as the training set per turn. Finally, all recognition rates were averaged as
the final results. The AR database is more challenging than the ORL database with more subjects and
some uncontrolled conditions.

A face image in the AR database is selected randomly, and the image was fed into the networks
(Figure 10). The visual results are shown in Figure 11.

It is evident that the edges and other texture information are severely affected in Figure 11b
by noise since the max pooling method has no response to noise containing in the inputs.
Thus, many random noise points mixed in the feature maps are preserved after pooling. If the
max pooling layer is replaced by the G-RLBP pooling method, we can see clearly that the noise impact
is lowered effectively (Figure 11c). Furthermore, some crucial texture edges in Figure 11c become more
recognizable compared with Figure 11b.

We also quantitatively analyzed the recognition rates of these network models (Tables 6 and 7)
when the testing images were injected with different intensity of Gaussian noise and salt and pepper
noise. The recognition rates of the six network models in this section are much lower than those of
Experiment 1. If the testing images are clean, the networks succeed to make a nearly 2% improvement
of the recognition rates when the networks are equipped with the proposed G-RLBP pooling layer
compared with the max pooling layer. The recognition rates of the six network models in Tables 6
and 7 begin to decrease along with the intensity of noise injected into the testing images, especially in
the four baseline networks with max pooling layer and data augmentation. However, the networks
with G-RLBP have better performance than the baseline networks. This is mainly because the G-RLBP
pooling method is less sensitive to noise and can preserve more crucial texture information of the input
feature maps, thus further gets more discriminative features. However, if testing images are severely
affected by noise, the six network models are all unable to get good performance, it is even difficult for
a human to identify the contour information of the images in this case.
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Figure 11. The feature maps of different pooling layers in the Alexnet. Conv1 indicates the first
convolutional layer in the networks. (a) The output of Pool1 layer without injecting any noise into the
input image in the baseline Alexnet; (b) the output of Pool1 layer in the baseline Alexnet when the
input image is injected with Gaussian noise (σ2 = 0.005); and (c) the output of the G-RLBP pooling
layer when the input image is injected with the same noise as (b).

Table 6. The recognition rates (%) of different pooling methods and data augmentation based on the
Alexnet and ZF-5net on the AR database with different Gaussian noise.

Alexnet+
Max

Alexnet+
Data Aug.

Alexnet+
G-RLBP

ZF-5net+
Max

ZF-5net+
Data Aug.

ZF-5net+
G-RLBP

σ2 = 0
Chi Square 67.97 66.74 65.85 66.41 67.56 68.52
Euclidean 65.77 66.12 67.84 68.02 68.27 69.88

Cosine 64.92 65.96 69.44 70.38 71.23 72.52

σ2 = 0.002
Chi Square 34.42 42.72 53.86 39.69 45.51 57.74
Euclidean 30.54 40.11 50.65 36.87 42.28 52.42

Cosine 31.17 41.54 51.23 40.59 46.73 55.45

σ2 = 0.005
Chi Square 22.87 28.41 44.12 26.72 30.07 47.41
Euclidean 19.43 26.76 42.25 22.54 28.11 42.75

Cosine 24.51 28.83 46.36 25.06 27.43 45.25

σ2 = 0.01
Chi Square 10.02 16.12 30.22 12.26 17.34 33.12
Euclidean 9.63 15.03 29.85 10.24 16.12 34.58

Cosine 12.52 17.43 31.89 15.58 18.11 36.64
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Table 7. The recognition rates (%) of different pooling methods and data augmentation based on the
Alexnet and ZF-5net on the AR database with different salt and pepper noise.

Alexnet+
Max

Alexnet+
Data Aug.

Alexnet+
G-RLBP

ZF-5net+
Max

ZF-5net+
Data Aug.

ZF-5net+
G-RLBP

d = 0
Chi Square 67.97 65.79 65.85 66.41 67.41 68.52
Euclidean 65.77 66.83 67.84 68.02 68.12 69.88

Cosine 64.92 66.32 69.44 70.38 71.44 72.52

d = 0.05
Chi Square 30.02 36.42 44.51 34.69 40.01 49.42
Euclidean 28.85 36.11 40.14 30.05 38.83 48.33

Cosine 31.58 37.23 42.28 33.67 39.97 48.87

d = 0.1
Chi Square 21.87 27.54 39.96 21.43 28.82 43.22
Euclidean 20.63 26.63 36.58 19.85 25.44 38.16

Cosine 23.38 29.36 38.74 22.36 27.87 39.55

d = 0.15
Chi Square 9.67 14.11 22.13 11.48 14.92 20.65
Euclidean 5.96 12.30 18.85 8.82 12.14 17.52

Cosine 11.20 13.04 19.63 10.20 13.49 21.34

3.4. Experiments Based on the GoogleNet

GoogleNet is another effective visual recognition model which has been used in many recognition
fields such face recognition, image classification, target tracking and so on. Here, we conduct some
experiments on this model to further evaluate our pooling layer. We use the entire CASIA-WebFace
database to train our models. For data augmentation, the training data were injected with different
intensity of Gaussian noise. The others experimental settings were the same as Experiments 1 and 2.
The testing data were chosen from the ORL database and the AR database, respectively. Before the
images were fed into the networks, they were injected with different intensity of Gaussian noise.
Tables 8 and 9 show the results. Finally, to make the experimental results more convincing, we also
utilized the average filter and the BM3D algorithm [30] as pre-processing steps, respectively, to remove
the noise injected in the testing data, as can be seen in the fourth and fifth columns of Tables 8 and 9.

Table 8. The recognition rates (%) of different pooling methods, the average filter, the BM3D algorithm,
and data augmentation based on the GoogleNet on the ORL database with different Gaussian noise.

GoogleNet+
Max

GoogleNet+
Ave. Filter

GoogleNet+
BM3D

GoogleNet+
Data Aug.

GoogleNet+
GRLBP

σ2 = 0
Chi Square 88.51 87.24 88.43 90.12 92.54
Euclidean 86.32 85.37 87.57 89.45 92.33

Cosine 89.76 88.16 89.21 91.12 93.69

σ2 = 0.002
Chi Square 50.27 57.46 87.28 60.63 87.47
Euclidean 48.12 56.10 86.14 59.84 85.63

Cosine 51.48 57.23 87.02 62.01 87.76

σ2 = 0.005
Chi Square 38.65 44.76 61.07 47.21 71.22
Euclidean 38.04 43.02 59.11 46.33 70.91

Cosine 39.87 45.93 61.94 48.88 72.51

σ2 = 0.01
Chi Square 18.59 20.12 40.46 23.14 50.14
Euclidean 16.49 19.43 39.17 22.07 48.35

Cosine 19.06 21.56 40.89 24.78 51.55
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Table 9. The recognition rates (%) of different pooling methods, the average filter, the BM3D algorithm,
and data augmentation based on the GoogleNet on the AR database with different Gaussian noise.

GoogleNet+
Max

GoogleNet+
Ave. Filter

GoogleNet+
BM3D

GoogleNet+
Data Aug.

GoogleNet+
GRLBP

σ2 = 0
Chi Square 70.22 69.15 69.34 72.10 74.87
Euclidean 67.89 67.23 69.21 70.03 73.46

Cosine 71.83 69.47 70.07 73.14 76.17

σ2 = 0.002
Chi Square 39.88 46.14 69.12 50.64 70.78
Euclidean 36.56 45.28 69.09 48.73 70.21

Cosine 40.14 46.93 70.42 50.26 71.38

σ2 = 0.005
Chi Square 25.11 30.57 46.74 36.65 57.98
Euclidean 25.52 29.42 46.22 35.49 57.35

Cosine 26.77 31.61 47.91 37.82 59.01

σ2 = 0.01
Chi Square 14.40 16.28 30.03 18.17 42.74
Euclidean 13.29 14.93 29.83 17.50 40.37

Cosine 15.32 16.11 31.14 19.59 43.83

We can see that the average filter and the BM3D algorithm are both effective when there is some
slight noise injected in the testing images (σ2 = 0.002 in Tables 8 and 9). Comparing with the average
filter, the BM3D algorithm is more robust with better recognition performance than the average filter
in this case. However, when the testing images are clean, the recognition rates of the average filter
and the BM3D algorithm are both reduced to some extent. Nevertheless, the G-RLBP pooling method,
which gets the best recognition results in all cases, sometimes still has excellent performance even
when the testing images are seriously affected by noise. It is also clear that, when the G-RLBP pooling
method is transferred to other networks such as the GoogleNet, it can also improve the recognition
performance. Thus, the proposed G-RLBP pooling method is effective and can be used in more modern
CNN architectures.

4. Discussion

In this paper, we propose the G-RLBP pooling method to down sample the feature maps of
convolutional layers. Our work has two main contributions: (1) With the robust LBP guiding, each
pixel in the input feature maps is assigned with a different weight based on the probability affected
by noise. In this way, the proposed G-RLBP can successfully remove the pixels which are likely to
be affected by noise and then calculate the weighted average of the rest pixels as the final results to
get more noise-robust features. (2) The proposed pooling method can extract more discriminative
information from the feature maps and preserve more crucial edges of the face images during the
down-sampling. The experimental results in Section 3 show that the proposed G-RLBP pooling method
can be used as an effective method to further improve the performance of deep CNNs. It gets the
best recognition results comparing with the max pooling method and data augmentation by injecting
different random noise into the training data. Especially, in some uncontrolled noisy conditions,
the networks equipped with the G-RLBP pooling layer can get better performance. It would be our
future work to improve further our networks to adapt to some more complex conditions, such as
performing experiments based on some other modern CNN architectures using different image
databases with varying degrees of challenge, and so on. It should be mentioned that the proposed
G-RLBP pooling method can only be used in the face recognition field at present. Thus, transferring
this method to other fields would be our main work in the future. Another possible future work
is to involve sparsity-based models [31] to further improve cost-effectiveness and robustness of the
recognition system.
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