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Abstract: Human being detection via ultra-wideband (UWB) radars has shown great prospects in
many areas, such as biomedicine, military operation, public security, emergency rescue, and so on.
When a person stays stationary, the main feature that separates him/her from surroundings is the
movement of chest wall due to breath. There have been many algorithms developed for breath
detection while using UWB radars. However, those algorithms were almost based on a basic scheme
that focused on processing in the time dimension of UWB data. They did not utilize the benefits from
the wide operational bandwidth of UWB radars to show potential superiority over those narrowband
systems such as a continuous wave (CW) Doppler radar. In this paper, a breath detection method
was proposed based on operational bandwidth segmentation. A basic theoretical model was firstly
introduced, indicating that characteristics of breath signals contained in UWB echoes were consistent
among the operational frequencies, while those of clutters were not. So, the method divided a set
of UWB echo data into a number of subsets, each of which corresponded to a sub-band within the
operational bandwidth of the UWB radar. Thus information about the operational frequency is
provided for subsequent processing. With the aid of the information, a breath enhancement algorithm
was developed mainly by averaging the segmented UWB data along the operational frequency.
The algorithm’s performance was verified by data measured by a stepped-frequency CW (SFCW)
UWB radar. The experimental results showed that the algorithm performed better than that without
the segmentation. They also showed its feasibility for fast detection of breath based on a short
duration of data. Moreover, the method’s potential for target identification and impulse-radio (IR)
UWB radar was investigated. In summary, the method provides a new processing scheme for UWB
radars when they are used for breath detection. With this scheme, the UWB radars have a benefit
of greater flexibility in data processing over those narrowband radars, and thus will perform more
effectively and efficiently in practical applications.
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1. Introduction

The technology of human being detection via radars has caused great concern in recent years,
since it can be applied in many areas like biomedicine, military operation, public security, emergency
rescue, and so on [1–11]. There have been two major kinds of radar systems used for the technology:
one is narrowband radars represented by the continuous wave (CW) Doppler system and the other
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is ultra-wideband (UWB) radars. According to the FCC rules, a UWB radar is one that has a relative
bandwidth larger than 25% or an absolute operational bandwidth larger than 500 MHz. Compared
with CW Doppler radars, UWB radars have many benefits for human being detection due to the
wide operational bandwidth, for instance, improved range resolution, greater penetration capability,
better electromagnetic compatibility, etc. [12–26]. Among UWB radars, the most frequently used is the
impulse-radio (IR) UWB radar [12–22]. An IR UWB radar transmits pulses with very short durations in
the nanosecond range or even less to achieve an operational bandwidth in the hundreds of MHz, with
benefits for human being detection, particularly in non-line-of-sight scenarios, such as searching buried
victims in post-earthquake scenario and tracking moving suspects in through-wall surveillance [12–15].
In these scenarios, the main feature that separates a human being from surroundings is the movement of
chest wall due to breath when he or she is stationary. Since displacement of the movement is on the order
of millimeters and great amounts of clutters caused by scattering from the surroundings, an algorithm
should be developed to process UWB data for breath detection. Up to now, many algorithms have been
developed for this purpose [12–22]. For example, a basic processing scheme was proposed for respiration
detection via an IR UWB radar in [12], in which a motion filter was utilized to remove the stationary
background clutters and a fast Fourier transform (FFT) followed in the time dimension of the data to
estimate the spectrum of respiration. Based on the scheme, the algorithms in [13–15] were designed not
only for breath detection but also for target identification particularly for post-earthquake searching and
rescuing operations. Especially, in [14], the breath’s periodicity or quasi-periodicity characteristic in time
was exploited by an adaptive line enhancer. In [15], the Hilbert–Huang transform (HHT) was used for the
time–frequency analysis to separate breathing signals from two human subjects. To further improve the
resolution of the estimated spectrum, a Chirp Z-Transform (CZT) was applied instead of FFT for breath
and heartbeat monitoring [16]. To deal with the harmonics and inter-modulation products that plague
signal resolution in widely used FFT spectrograms, a super-resolution spectral algorithm that is based
on the state space method (SSM) was developed in [17]. Moreover, a breath detection algorithm was
proposed based on the multichannel singular spectrum analysis (MSSA) technique for the suppression of
the non-stationary noises and clutters [18] and the hidden Markov model or the Kalman model was used
for the body orientation issue during breath detection [19,20], and an exponential moving averaging filter
was used for suppressing the clutters that are caused by the body movements [21], and a phase method
that previously used for CW radars was proposed for accurate heartbeat extraction via UWB radars [22].
Except for IR UWB radars, stepped-frequency CW (SFCW) UWB radars, pseudo-random UWB radars,
and so on, which have been claimed to possess advantages over IR UWB ones, have also been reported
to detect human beings’ breath [23–26]. However, there’s no essential difference in the corresponding
algorithms with those used by IR UWB radars.

All the above breath detection algorithms used by UWB radars almost focused on processing
in the time dimension of UWB data. The same scheme can also be used for a CW Doppler radar.
It is worth noting that a UWB radar provides us much more benefits by its ultra-wide operational
bandwidth than a CW Doppler radar. If this is utilized properly in data processing, improved detection
performance could be achieved very likely. However, no literature is reported to this problem in
traditional UWB-radar-based breath detection algorithms, which ends up with a similar detection
performance with a CW Doppler radar. Therefore, attempting to fix this gap, a novel breath detection
method was proposed by investigating and exploiting the ultra-wide operational bandwidth of UWB
radars. The method firstly divided UWB data into a number of subsets, each of which corresponded
to a sub-band of the operational bandwidth. Thus the UWB data were added with the operational
frequency information (the operational frequency was used in this paper to make a difference with the
frequency information that is obtained by performing FFT along the time dimension of UWB data).
Then, by averaging along the additional operational frequency, a breath enhancement algorithm
was developed. Lastly, the algorithm’s performance was verified using data measured by a SFCW
UWB radar. The results showed that the algorithm performed effectively on those data. Besides,
the method’s feasibilities for human target identification and IR UWB radar were investigated.
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The rest of the paper are organized, as following: Section 2 introduces a basic theoretical model that
represents the UWB echoes in the operational frequency domain; Section 3 describes the experiment
setup and method, including the SFCW UWB radar and the breath enhancement algorithm; Section 4
presents the experimental results; Discussion and conclusions are drawn in Section 5.

2. Basic Theoretical Model

2.1. Model Description and Analysis

Consider a UWB radar with a single transmitter and a single receiver that are configured in a
monostatic scheme. Let the transmitter transmit a UWB signal s(t). For the case of a single human
being, it can be simplified as a point target located in range d. When the target stands motionlessly and
his/her breath is the only concern, the range of the target can be expressed as d = d0 + ∆dsin(2π fbt),
where d0 is the target’s nominal range and ∆dsin(2π f0t) is the range variation of the chest wall due to
breath that’s modeled as a sine function with ∆d denoting the breathing amplitude and fb the breathing
frequency. In UWB echoes, the range corresponds to a fast time delay τ = 2d/c, and is given by

τ = τ0 + ∆τsin(2π fbt) (1)

where τ0 = 2d0/c, ∆τ = 2∆d/c, and c is the speed of light. Thus the echoes, neglecting propagation
loss and distortion, can be given by

r(t) = αs(t − τ) (2)

where α is the complex target reflectivity that can be assumed independent on frequency for simplicity.
By denoting the Fourier transform of s(t) as S(ω), the operational-frequency-domain representation of
the received signals can be expressed as

R(ω) = αS(ω) exp(−jωτ) (3)

where ω represents the operational frequency in radians. By combining Equations (1) and (3),

R(ω, t) = αS(ω) exp(−jωτ0) exp[−jω∆τ sin(2π fbt)] (4)

This is the basic theoretical model for breath detection via UWB radars. The received signals are
two-dimensional with information about the operational frequency ω and the time t. The breath signal
represents itself in them as a phase shift of the transmitted signals. Besides, the operational frequency
can further be transformed into range by an inverse FFT (IFFT) [3]

r(τ, t) =
α

2π j

+∞∫
−∞

R(ω, t) exp(jωt)dω (5)

After that, the received signals become two-dimensional with range τ and time t.
Firstly, consider a non-breathing case, in which Equation (4) can be viewed as a clutter model for

breath detection and becomes

R(ω) = αS(ω) exp(−jωτ0) (6)

It implies that the clutters are dependent on S(ω) [3]. Now, when considering the propagation loss and
distortion, S(ω) should be replaced by an attenuated and distorted version of the transmitted signals’
Fourier transform. In practice, as the signals propagate through obstacles, such as walls and building
ruins whereby the dielectric characteristics and structures are usually unknown in priori, S(ω) is not
deterministic. Thus, the clutters can be viewed as random among the operational frequencies.
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Then consider Equation (4) in a breathing case. The expression exp[−jω∆τ sin(2π f0t)] in the
integral can be expanded by Fourier series [4]

exp[−jω∆τ sin(2π fbt)] =
+∞

∑
n=−∞

Jn(∆τ) exp(jn2π fbt) (7)

where Jn(x) is the nth-order Bessel function of the first kind. By introducing the Bessel function, which
is regular with time t, the breath signals contained in R(ω, t) are expected to be consistent among
operational frequencies.

2.2. Model Simulation and Results

To investigate the above analysis, the basic theoretical model was simulated via a
stepped-frequency synthesization. Firstly, the discrete form of Equation (4) is given, as follows

R[m, n] = αS[2π( f0 + m∆ f )] exp[−j2π( f0 + m∆ f )τ0] exp[−j2π( f0 + m∆ f )∆τ sin(2π fbnTs)] (8)

where m = 0, 1, . . . , M− 1, n = 0, 1, . . . , N − 1; ω = 2π f , and f0, ∆ f , Ts denotes the starting point, step
size, sampling period of the stepped-frequency signal, respectively. Thus the received signals, namely
the echo data, can be viewed as a two-dimensional (operational frequency and time) M × N matrix. In
the above equation, M denotes the sampling number in the operational frequency. Thus the operational
bandwidth is determined as (M − 1)∆ f . N denotes the sampling number in the time. Together with
the sampling period Ts, the time duration of the echo matrix is (N − 1)Ts. For convenience of the
subsequent analysis, the discrete form of Equation (5) is also given below

r[m, n] =
α

2π j

f0+m∆ f

∑
f= f0

R[m, n] exp[j2π( f0 + m∆ f )nTs] (9)

where m = 0, 1, . . . , M − 1, n = 0, 1, . . . , N − 1. r[m, n] is also a two-dimensional M × N matrix but
with M denoting the sampling number in the range. In the range dimension, the unambiguous range
is determined by the step size as c/(2∆ f ).

Figure 1 shows the simulated results of the model. During the simulation, f0 = 500 MHz, ∆ f =

10 MHz, Ts = 0.005s, M = 501, N = 2001 for the stepped-frequency signal. It means that the operational
bandwidth is 5000 MHz, within which S( f0 + m∆ f ) was uniformly set. It also means that the unambiguous
range is 15 m and the time duration is 30 s. For the target, α = 1, d0 = 3 m, ∆d = 0.005 m, fb = 0.2 Hz.
Figure 1a shows the echo data matrix R[m, n] in Equation (8). The matrices are actually complex and
shown herein by getting the absolute values. In this figure, neither characteristics of the breath signals
nor those of the clutters can be clearly seen. So the IFFT was performed on the operational frequency,
as in Equation (9), to get the matrix r[m, n]. Then, a background removal was performed to r[m, n], so
as to remove the static component that is too strong to disguise the breath signals [14]. It was realized

by subtracting the mean from each row in r[m, n], namely r[m, n]− 1/(N − 1)
N−1
∑

n=1
r[m, n]. The result

matrix after that is shown in Figure 1b, in which only the data between 2 m and 4 m were shown for
clearness. Periodically varying strips along the time can be clearly observed at the range of 3 m in this
figure. These are breath signals in accordance with the target settings. Since the result matrix only contains
breath signals, IFFT was performed on its range dimension to get the operational frequency information
again. Thus, the characteristics of the breath signals among the operational frequencies can be investigated.
The result matrix after that is shown in Figure 1c. In this figure, vertical strips can be clearly seen along
the operational frequency dimension of the result matrix. It indicates a consistency along the dimension
for the breath signals. For comparison, a non-breathing case was also simulated according to the discrete
form of Equation (6). The echo matrix in the case was also processed as that in the breathing case, and
the result matrix after the IFFT on range is shown in Figure 1d. No regular strips can be seen this figure.
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As the non-breathing case can be viewed as the clutter model, it implies that there’ is no consistency among
the operational frequencies for clutters.Sensors 2018, 18, x FOR PEER REVIEW  5 of 16 
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Figure 1. Model simulation results: (a) echo matrix in a breathing case; (b) result matrix after the
background removal in a breathing case; (c) result matrix after the inverse fast Fourier transform (IFFT)
on range in a breathing case; and, (d) result matrix after the IFFT on range in a non-breathing case.

So, it has been evident that the breath signals and clutters have different characteristics in the
operational frequency. Using this kind of difference, data processing algorithms can be developed to
improve the performance of UWB radars for breath detection. An intuitive way for this is to average
UWB data in the dimension of operational frequency. Breath signals are expected to be enhanced due
to their consistency among the operational frequencies, while clutters or noises are not.

3. Experiment Setup and Method

3.1. SFCW UWB Radar

To verify the above analysis, a MIMO (Multiple Input and Multiple Output) SFCW UWB radar
was used for experiments. The block diagram of the radar and the experimental setup are shown
in Figure 2. The radar had two transmitting and four receiving antennas, all in the form of planar
logarithmic spiral elements, to have eight data channels. In the experiments, the antennas were
configured into a uniform line array that closely clung to surface of an approximately 30-cm-thick brick
wall, and a healthy male of 25 years stood behind the wall facing the radar as a target [25]. The key
parameters of the radar are listed in Table 1. Note that the 40–4400 MHz operational frequency means
that the radar’s bandwidth is 4360 MHz. Not aiming at human being localization or imaging, echo
data only from the 8th channel, i.e., from the No. 2 transmitting element to the No. 4 receiving element,
was used. The echo data were stored in the matrix R[m, n]. The sampling number in the operational
frequency M was 874 and that in the time N depended on each measurement. All of the data were
post-processed in the MATLAB environment on the computer, including the simulation in Section 2.
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Figure 2. (a) Block diagram of the Stepped-Frequency Continuous Wave Ultra-Wideband (SFCW UWB)
radar [25] and (b) experiment setup.

Table 1. Key parameters of the Multiple Input and Multiple Output (MIMO) SFCW UWB radar [25].

Parameters Values

operational frequency 40–4400 MHz
step size 5 MHz

pulse repeated frequency (PRF) 113 Hz
unambiguous range 30 m
transmitting power ≥10 dBm

sensitivity of receiver −90 dBm
dynamic range of receiver ≥90 dBm

3.2. Breath Enhancement Algorithm

3.2.1. Operational Bandwidth Segmentation

To get information about the operational frequency, an operational bandwidth segmentation
method was designed firstly. The method sampled the echo matrix R[m, n] into a number of sub-bands,
instead of individual operational frequencies to remain a certain range resolution, by a window moving
along the operational frequency dimension of the matrix. It can be expressed as follows

R[l, m, n] = R[m, n]·rect[l] with rect[l] =

{
1, l∆l + 1 ≤ m ≤ l∆l + L

0, otherwise
,

l = 0, 1, . . . (M − L + 1)/∆l, m = 0, 1, . . . , M − 1, n = 0, 1, . . . , N − 1
(10)
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where L and ∆l denotes the window length and the moving step of the window, and · represents
getting modulus. The window’s function rect[l] equals to 1 when l∆l + 1 ≤ m ≤ l∆l + L, namely
within the sub-band from (l∆l + 1)∆ f to (l∆l + L)∆ f , while it equals to 0 otherwise. Thus the echo
matrix was divided into (M − L + 1)/∆l + 1 sub-matrices corresponding to different sub-bands. Then
the sub-matrices were stored together to form a three-dimensional result matrix R[l, m, n]. The diagram
of the procedure is shown in Figure 3. It indicates that a new dimension, namely l, is added to the echo
matrix R[m, n]. Note that the dimension also contains information about the operational frequency. So,
the result matrix has two dimensions of operational frequency. One corresponds to m that is original
in the R[m, n]. The other, in the bold font, is the additional one l.
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3.2.2. Basic Processing Flow

Figure 4 shows the basic processing flow of the breath enhancement algorithm. The result matrix
after the segmentation, namely R[l, m, n], was first processed by IFFT along its original operational
frequency m. As similar in Equation (9), this step transformed the operational frequency into the range
and it gets the three-dimensional (operational frequency, range, and time) matrix r[l, m, n]. It can be
expressed, as follows

r[l, m, n] =
α

2π j

f0+m∆ f

∑
f= f0

R[l, m, n] exp[j2π( f0 + m∆ f )nTs] (11)

Then, breath detection was performed [18,20]. In turn, it includes: (1) averaging and resampling
on the range to improve the SNCR (signal-to-noise-and-clutter ratio) and reduce the sampling
number; (2) a 160-order FIR (Finite Impulse Response) motion filter, implemented by moving average
subtraction on the time, to remove the backgrounds due to the strong scatterings from those statistic
objects such as the wall; (3) power normalization on the time, namely transforming the numerical
variation along the dimension into the scope [–1, 1], to balance the propagation attenuation among
the ranges; and, (4) a 321-order FIR low-pass filter with the cutoff frequency of 0.5 Hz on the time
dimension to detect out the breath signals. After that, the result matrix (denoted as r̃[l, m, n]) was
finally processed by FFT on its time to get the three-dimensional (operational frequency, range, and
frequency) matrix R̃[l, m, k].
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3.2.3. Averaging along the Operational Frequency

In the above flow, the UWB data were processed orderly in a three-dimensional manner. Thus
the averaging along the operational frequency can be performed during different phases in the flow.
The following cases were considered: 1© to average R[l, m, n], namely the result matrix after the
segmentation and with the original operational frequency, which is denoted as AoF; 2© to average
r[l, m, n], namely the result matrix after the IFFT with the range, which is denoted as AoR; 3© to average
r̃[l, m, n], namely the result matrix after the breath detection and with the time information, which
is denoted as AaT; 4© to average R̃[l, m, k], namely the result matrix after the FFT on time and with
the frequency information, which is denoted as AaF; and, 5© averaging of abs(R̃[l, m, k]), namely the
result matrix after getting the absolute values of R̃[l, m, k], which is denoted as AaA. The process can
be expressed as

R̃[m, k] =
(M−L+1)/∆l

∑
l=1

X[l, m, n/k] (12)

where X[l, m, n/k] can be replaced with R[l, m, n], r[l, m, n], r̃[l, m, n], R̃[l, m, k], or abs(R̃[l, m, k]).
The result matrix R̃[m, k] is a two-dimensional matrix with range and frequency again. Thus a power
peak would appear in the result matrix, when there is a human being in the scene, with the peak
locating at the human being’s range and breathing frequency [20].

4. Experimental Results

4.1. Algorithm Performance Analysis

4.1.1. Example Results

Figure 5 shows the example results of a set of data measured by the SFCW UWB radar, with
the human target being 3 m behind the wall. The window length L and the moving step ∆l
during the segmentation was 100 and 10, respectively. So, the echo matrix R[m, n] was divided into
78 sub-matrices to form the three-dimensional matrix R[l, m, n]. During the breath enhancement, or to
be more precisely, by the averaging and resampling step in the breath detection, the sampling number
in the range was down-sampled from 874 to 86. Then, the averaging along the operational frequency
was performed in the AaT case, namely X[l, m, n] = r̃[l, m, n] in Equation (12). Finally, the FFT was
performed in the time dimension to result in the two-dimensional matrix R̃[m, k]. The result matrix is
shown in Figure 4a. The power peak due to the target’s breath can clearly be observed in the figure.
It indicates that the target’s range is approximately 3 m and his breathing frequency is approximately
0.39 Hz. For the convenience of subsequent analysis, a power-range plot was calculated by picking the
maximum value from each row of the matrix. It can be expressed as

R̃[m] = max
k

R̃[m, k]

R̃[m] = 20 log10 (R̃[m]/max(R̃[m]))
(13)

where R̃[m] represents the power-range plot and is shown in Figure 4b. A power peak due to the
breath can also be observed at the corresponding range in the plot. Note that it is logarithmically
normalized with its maximum value being 0 dB. Thus, the SNCR can be easily evaluated by observing
the power floor in the plot. It is roughly 50 dB for this figure.
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Figure 5. Example results of a set of data measured by the SFCW UWB radar with the human target
being 3 m behind the wall: (a) result matrix after the breath enhancement and (b) its power-range plot.

4.1.2. Effects of the Segmentation Parameters

Two parameters, namely the window length L and the moving step ∆l, were included in the
operational bandwidth segmentation. Based on the above data, their effects on the breath enhancement
performance were investigated. The averaging was also performed in the AaT case. Firstly, L varied
from 10 to 200, with ∆l being fixed to 10. The corresponding normalized power-range plots are shown
in Figure 6a. The figure indicates that the SNCR’s do not vary much among those window sizes.
However, an improvement of range resolution can be roughly observed, by the width of the peaks in
the figure, as the window size becomes larger. This is due to the fact that the window size determines
the bandwidth of the segmented sub-bands and thus the range resolution. But, the range resolution
does not improve when the window size is larger than 100. Then, the effect of ∆l was investigated
by varying the parameter from 1 to 40 with L = 100. As shown in Figure 6b, there is no significant
difference among the power-range plots.
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Figure 6. Power-range plots for (a) different window sizes and (b) different moving steps in the
operational bandwidth segmentation.

4.1.3. Effect of the Different Averaging Cases

Figure 7 shows the power-range plots for different averaging cases along the operational frequency.
They were calculated with the segmentation parameters L = 100, ∆l = 10. Note that NON in this
figure represents the plot calculated from the result matrix that was processed without the segmentation
and the averaging. It was actually a two-dimensional version of the flow in Figure 4. In Figure 7,
the SNCR’s are roughly 20 dB, 30 dB, 40 dB, 40 dB, 40 dB, and 50 dB for NON, AoF, AoR, AaA, AaF,
and AaT, respectively. It indicates that the breath enhancement algorithm performed effective in all the
averaging cases but best in the AaT case. This might be resulted from two aspects: one is that in the
AaT case the algorithm averaged the data with the most degrees of freedom, and the other lies in the
breath detection that improved the consistency of the breath signals among the operational frequencies.
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4.2. Breath Enhancement Results

Figure 8 shows the results of three sets of data measured by the SFCW UWB radar, with the
human target 3 m, 7 m, and 9 m behind the wall, respectively. The data were all segmented with
L = 100, ∆l = 10, and averaged in the AaT case. For comparison, the result matrices corresponding
to the NON case are also shown. Obviously in the Figure 8a–d, the SNCR’s are much higher for
the enhancement algorithm than those for the NON case. But, for the 9 m data, namely the target
stood approximately 9m behind the wall, the result matrices in Figure 8e,f show that neither the two
algorithms performed effectively. This may be due to that the echoes from the target became too
weak to be detected by the radar in such a scenario. But, at any rate, the algorithm performed more
effectively than that without the segmentation and averaging for the same data.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 16 

 

4.2. Breath Enhancement Results 

Figure 8 shows the results of three sets of data measured by the SFCW UWB radar, with the 
human target 3 m, 7 m, and 9 m behind the wall, respectively. The data were all segmented with 
𝐿 = 100, ∆𝑙 = 10, and averaged in the AaT case. For comparison, the result matrices corresponding 
to the NON case are also shown. Obviously in the Figure 8a–d, the SNCR’s are much higher for the 
enhancement algorithm than those for the NON case. But, for the 9 m data, namely the target stood 
approximately 9m behind the wall, the result matrices in Figure 8e,f show that neither the two 
algorithms performed effectively. This may be due to that the echoes from the target became too 
weak to be detected by the radar in such a scenario. But, at any rate, the algorithm performed more 
effectively than that without the segmentation and averaging for the same data. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. Result matrices: (a) processed without the segmentation and averaging when the human 
target stood 3 m behind the wall; (b) processed with the breath enhancement algorithm when the 
human target stood 3 m behind the wall; (c) processed without the segmentation and averaging 
when the human target stood 7 m behind the wall; (d) processed with the breath enhancement 
algorithm when the human target stood 7 m behind the wall; (e) processed without the segmentation 
and averaging when the human target stood 9 m behind the wall; and, (f) processed with the breath 
enhancement algorithm when the human target stood 9 m behind the wall. 

Figure 8. Result matrices: (a) processed without the segmentation and averaging when the human
target stood 3 m behind the wall; (b) processed with the breath enhancement algorithm when the
human target stood 3 m behind the wall; (c) processed without the segmentation and averaging when
the human target stood 7 m behind the wall; (d) processed with the breath enhancement algorithm
when the human target stood 7 m behind the wall; (e) processed without the segmentation and
averaging when the human target stood 9 m behind the wall; and, (f) processed with the breath
enhancement algorithm when the human target stood 9 m behind the wall.
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Figure 9 shows the results corresponding to the set of data measured when the human target
stood 3 m behind the wall. Only the first 2 s were processed by the breath enhancement algorithm.
Limited by the time duration, the background removal step used the mean subtraction method (as in
the model simulation) instead of the moving average subtraction, and the 321-order FIR low-pass filter
was omitted. Figure 9a shows the result matrix, in which the power peak due the breath can be clearly
seen, although the frequency resolution is quite poor for accurately evaluating the breathing frequency.
Figure 9b shows the power-range plot. For comparison, the power-range plot corresponding to the
NON (identical to that in Figure 7) case was also shown. It indicates that, even for such a short duration
of data, the breath enhancement algorithm results in a SNCR higher than that of the NON case.
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4.3. Target Identification Results

Except for the breath enhancement, the feasibility of the operational bandwidth segmentation
for target identification was also preliminarily investigated. See the processing flow in Figure 4,
the three-dimensional (operational frequency, range and frequency) R̃[l, m, k] can also be viewed as a
number of two-dimensional range-frequency matrices. Only considering the one-target case, the power
peaks of the matrices were picked up individually and put together. Then a k-means clustering, where
k was set to 2 considering the target and those outliers caused by clutters, was used to cluster those
peaks to identify the target. Three sets of data measured by the SFCW UWB radar were used for
performance demonstration, namely those measured when the human target were 3 m and 7 m away
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behind the wall and that measured with no human target. The clustering results are shown in Figure 10,
in which the two centroids resulted from the clustering are marked as red solid crosses. For the case
of the human target being 3 m away, as depicted in Figure 10a, the right one of the two centroids
locates in accordance with the peak location of the result matrix after the enhancement, as depicted in
Figure 8b. It is the same with the case of the human target 7 m away by comparing Figures 8 and 10.
But, for the data with no human target, both the locations of the two centroids in Figure 10c are neither
in accordance with those in Figure 10d. In this way, a false alarm can be avoided for the non-target case.
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sub-matrices and clustering result for the data without human target; and, (d) result matrix after the
breath enhancement for the data without human target.

4.4. IR UWB Radar Results

Except for the SFCW UWB radar, a set of data previously measured by an IR UWB radar was
used to verify the breath enhancement algorithm. The parameters of the radar can be referred to
in [20], by which the data were also measured in a through-wall scenario. Since the echo data of
an IR UWB radar are two-dimensional range-time ones, the operational bandwidth segmentation
was implemented by windowing the FFT results on the data’s range dimension and then performing
IFFT back to the range-time domains. Besides, the window size and moving step were different from
those that were used by the SFCW UWB radar. The result matrix showed no SNCR improvement
compared with that processed without the segmentation and averaging. It might be caused by the
characteristics of the echo spectrum of the IR UWB radar. A case of the spectrum, together with
that of the above SFCW UWB radar, were shown in Figure 11. As in the figure, the IR UWB echo
spectrum’s energy concentrates on a very small section compared with the large frequency span, which
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results in a 400 MHz operational bandwidth of the radar. This is caused by a very high sampling
frequency (approximately 100 GHz) due to the equivalent-time sampling architecture by most of IR
UWB radars [12–22]. Thus valid information can hardly be provided by segmenting the operational
bandwidth into different frequencies or sub-bands. However, the SFCW UWB echo spectrum’s energy
roughly overspread the operational bandwidth. It makes the operational bandwidth operation and the
breath enhancement feasible. Note that the spectrum of the SFCW UWB radar presents a significant
suppression in the high-frequency bands (approximately from 1600 MHz to 4400 MHz), and obvious
frequency notches in the low-frequency bands (below 1600 MHz). They are mainly due to the effects,
such as attenuation, multipath, etc., when the electromagnetic waves propagate through the wall.
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5. Discussion and Conclusions

A novel method based on operational bandwidth segmentation was proposed for breath detection
via UWB radars in this paper. First of all, a basic theoretical model was introduced and simulated to
represent UWB radar echoes in the operational frequency domain. It indicated that the characteristics
of breath signals that are contained in UWB echoes were consistent among operational frequencies
while clutters were not. So, the difference was used in data processing to improve breath detection by
averaging along the operational frequency. To verify this, a SFCW UWB radar was used for experiments
and a breath enhancement algorithm was developed. The radar worked with an operational bandwidth
of 40–4400 MHz and measured the breath of a human target behind a brick wall. The algorithm
consisted of an operational bandwidth segmentation, a basic processing flow and an averaging along
the operational frequency. The segmentation divided the two-dimensional UWB echo data into a
number of subsets by applying a moving window along the operational frequency dimension of the
data. Since each subset corresponded to a sub-band of the operational bandwidth, information about
the operational frequency was added to the echo data for the subsequent processing and averaging.
The experimental results firstly showed the algorithm’s performance with different segmentation
parameters, namely the window length and moving step of the moving window, as well as that
in different cases of averaging. With the parameters and the case that had the best performance,
the algorithm was verified by different sets of data measured by the SFCW radar. The results showed
a significant improvement of SNCR that was detected by the algorithm than by the basic processing
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flow that had neither segmentation nor averaging. Thus, it can be used to improve the effectiveness
of the radar in practical applications that need breath detection. The results also showed that the
algorithm’s effectiveness based on a short duration of data. So, it can avoid the coherent accumulation
(e.g., in the form of FFT on the time) on a long duration (at least one or two breathing cycles) of
data, just as that in the existing breath detection algorithms. This implies the feasibility of a fast
detection of breath, which is surely helpful in improving UWB radars’ efficiency in practice, such
as post-earthquake rescue and through-wall surveillance. Besides, the potential of the operational
bandwidth segmentation for target identification was demonstrated based on clustering the results
from all the subsets of data. However, it was ineffective on data measured by an IR UWB radar.
This was due to the spectral concentration of the IR UWB echoes, which was determined by the
equivalent-time sampling architecture of the radar. This problem probably should be dealt with by an
IR UWB radar with the real-time sampling architecture.

In summary, the breath detection method in the paper provides a new data processing scheme
for UWB radars. With the scheme, UWB radars not only have more flexibilities in processing than
narrowband radars, but also better effectiveness and efficiency than the existing UWB radars, while
they are used for breath detection. So, the advanced signal processing techniques, e.g., the existing
ones such as HHT, SSM and so on, can be directly included in this scheme to develop more deliberate
algorithms for breath detection. Moreover, the method firstly utilizes the information provided
by the ultra-wide operational bandwidth of a UWB radar. This gives us a new idea to develop
algorithms to cope with other human detection problems via UWB radars. For example, analogous to
the hyperspectral technology, the fine characteristics of human echoes across the whole operational
bandwidth might be identified for target classification and body imaging. So further work will develop
these algorithms.
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