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Abstract: We investigated tip-enhanced Raman spectra excited by high-order fiber vector beams.
Theoretical analysis shows that the high-order fiber vector beams have stronger longitudinal electric
field components than linearly polarized light under tight focusing conditions. By introducing
the high-order fiber vector beams and the linearly polarized beam from a fiber vector beam
generator based on an electrically-controlled acoustically-induced fiber grating into a top-illumination
tip-enhanced Raman spectroscopy (TERS) setup, the tip-enhanced Raman signal produced by the
high-order fiber vector beams was 1.6 times as strong as that produced by the linearly polarized light.
This result suggests a new type of efficient excitation light beams for TERS.
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1. Introduction

In recent years, tip-enhanced Raman spectroscopy (TERS) has attracted much attention due to
its high spatial resolution with nanometer scale and high detection sensitivity, even at the single
molecule level [1–5]. In addition to its capability of recording topographic and chemical fingerprint
information of surfaces simultaneously, potential applications of TERS have been widely explored in
areas of the surface science [6,7], low-dimension materials [8–11], biological systems [12–16], molecular
electronics [17,18], catalysis [19–21], art conservation [22], etc.

It is generally known that the polarization of the excitation light plays a crucial role in producing
the tip-enhanced Raman (TER) signal, whose intensity is mainly determined by the localized surface
plasmon resonance (LSPR) [23–26] and the lightning rod effect [27] at apex of the metallic tip. For an
elongated metallic tip, only the electric field component parallel to the axis of the metallic tip can
effectively excite the LSPR and cause the lightning rod effect. Thus, it is an effective way to obtain
strong TER signals by illuminating the metallic tip with a light beam having strong longitudinal field
components under condition of tight focusing. In 2004, Kawata et al. [28] introduced a quasi-radially
polarized beam generated by a four-section polarizer to an inverted-illumination TERS configuration
and then obtained a stronger TERS signal compared with linearly polarized light excitation, because
the quasi-radially polarized beam had a stronger longitudinal component than linearly polarized
light [29–32]. In 2014, Zhang et al. [33] experimentally verified the longitudinal field excited TERS
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enhancement using transmission-mode TERS setup, which is six times higher than that with focused
linearly polarized light excitation. To date, most of these studies have focused on application of radial
polarized vector beams, which are generated in free space by using the waveplates or spatial light
modulators on TERS systems. In addition, the tightly focused higher-mode beam excitation for TERS
is still an attractive research direction.

In this paper, we investigated TER spectra excited by high-order fiber vector beams based on an
electrically-controlled tunable acoustically-induced fiber grating. Theoretical analysis shows that the
high-order fiber vector beams have a stronger longitudinal electric field component than the linearly
polarized light under condition of tight focusing. In the experiment, the high-order fiber vector beams
and the linearly polarized beam were introduced into a top-illumination TERS configuration, and the
TER spectra obtained by using the high-order fiber vector beams is stronger than that using the linearly
polarized light beam. The results would be a promising reference for developing TERS techniques and
suggest a new way to improve the sensitivity of TERS techniques and polarization Raman microscopy.

2. Theoretical Analysis

In a few-mode fiber (FMF), the transverse electric field of a vector mode can be expressed in the
weakly guiding approximation [34,35]

E = F`m(r)Φ(φ) (1)

where F`m(r), (` = 0, 1, 2 . . . , m = 1, 2, 3 . . . ) is the radial distribution function of the scalar mode LP`m,
with ` and m being the azimuthal and radial numbers, respectively, Φ(φ) is the field direction function,
and r and φ are the radial and azimuthal coordinates, respectively. The field direction functions of the
fundamental vector modes (HEx/y

11 ) and the high-order vector modes HEeven/odd
21 can be expressed as{

HEx
11

HEy
11

}
= F01(r)

{
x̂
ŷ

}
(2)

and {
HEeven

21
HEodd

21

}
= F11(r)

{
x̂ cos φ− ŷ sin φ

x̂ sin φ + ŷ cos φ

}
(3)

respectively, with x̂ and ŷ being the unit vectors. The transverse modal intensity distributions of
HEx/y

11 and HEeven/odd
21 modes can be calculated according to Equations (2) and (3), and are exhibited

in Figure 1a–d, respectively. Figure 1a,b show the modal intensity distributions of the HEx
11 and

HEy
11 modes, which are a pair of strictly degenerate vector modes with orthogonal linear polarization

directions. Figure 1c,d shows the modal intensity distributions of HEeven
21 and HEodd

21 modes, which
are also a pair of strictly degenerate vector modes and have a π/4 rotation of the polarization
distributions [36].

Under the tight focusing condition, longitudinal electric field components of the HEx/y
11 and

HEeven/odd
21 modes were calculated based on the Richards–Wolf theory [37,38]. Because HEeven

`+1,1 and

HEodd
`+1,1 (` = 0, HEeven/odd

21 . denoted as HEx/y
11 ) have the same modal intensity distribution, except

that there is a π/(` + 1) rotation between the polarization distributions of the two degenerate modes,
only the longitudinal electric field components of HEx

11 and HEeven
`+1,1 were given under tight focusing

condition with the incident wavelength λ = 633 nm, and the corresponding results are shown in
Figure 1e,f, respectively. Note that the longitudinal component of HEx

11 mode has two lobes at the
focal plane with zero intensity in the middle. As reported in Reference [30], this zero intensity leads
to disability to excite LSPR at the metallic tip apex when the tip is located in the center of the focal
region, whereas the tip-enhanced Raman signal should be better observed by locating the tip at either
lobes of the focused beam. As for the HEeven

21 modes, owing to the cylindrical symmetry of polarization
distribution, the longitudinal component in the tightly focused field has four lobes. Although the
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intensity at the center is zero either, the maximum intensity of each lobe is more than twice of that of
HEx

11 mode. The stronger longitudinal electric field components of HEeven/odd
21 modes lead to better

field enhancement than HEx/y
11 modes. Therefore, the HEeven/odd

21 modes may result in stronger field

enhancement than the HEx/y
11 modes.
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Figure 1. (a–d) Modal intensity distributions of HEx/y
11 and HEeven/odd

21 modes with arrows denoting
the polarization directions; (e,f) calculated longitudinal electric field components of HEx

11 and HEeven
21

modes under condition of tight focusing.

3. Experimental Setup

Figure 2a shows the experimental configuration of the TER signal excited by the high-order fiber
vector beams (HEeven/odd

21 ) generated via an acoustically-induced fiber grating (AIFG). The experimental
configuration of the high-order fiber vector beam generator based on an electrically-controlled tunable
AIFG is shown as inset in Figure 2a. A laser with wavelength of 633 nm is used as the light source.
The light is linearly polarized by a horizontal polarizer (P1) with the polarization orientation adjusted
by a half-wave plate (HWP) to determine the launching of either HEx

11 or HEy
11 subsequently. A power

of 0.8 mW was measured for the light before injecting into the few-mode fiber (FMF) through a
micro-objective lens (MO1). Moreover, to further eliminate the effects of unwanted high-order vector
modes before the AIFG, a mode tripper (MS), which was made of eight turns of FMF wound on a
4-mm diameter rod, was used to ensure a pure HEx/y

11 mode launching. When the light propagates
through the mode stripper (MS), there is only the linearly polarized mode (HEx

11 or HEy
11) with a

power of 0.5 mW left in the fiber core. One end of the unjacketed FMF, UV epoxy was glued to
the tip of the acoustic transducer, and the other was fixed on a fiber clamp. By tuning the voltage
and the frequency of the radio frequency (RF) driving signal applied on the acoustic transducer, the
HEx

11 (HEy
11) mode was coupled to the HEeven

21 (HEodd
21 ) mode by the AIFG, when the phase-matching

condition was satisfied [34,39]. The FMF output terminal was collimated using a 40 × micro-objective
lens (MO2) and the HEeven/odd

21 mode intensity patterns were recorded using a charge coupled device
(CCD). Furthermore, a linear polarizer (P2) was inserted between the MO2 and the CCD to examine
the modal field polarization distributions.

After the examination of polarization characteristic, the MO2, P2, and CCD were replaced by a lens
(L1) to introduce the generated vector beam into an integration of the scanning tunneling microscopy
(STM) and confocal microscopy/Raman scattering spectroscopy (NT-MDT, NTEGRA Spectra, Russia)
for TER spectrum excitation. A gold tip was controlled by the device of STM to approach the Au (111)



Sensors 2018, 18, 3841 4 of 8

surface with adsorbed probe molecules for near-field excitation of Raman signal. The incident beam
was tightly focused on the tilted metallic tip apex by a high-NA micro-objective lens (100×, NA = 0.7),
as shown in Figure 2b. A piezo-stage actuator was used for rapid optical alignment between the laser
spot and the gold tip apex. As the gold tip approached the vicinity of the sample surface, the Raman
signal was locally enhanced and scattered to the far field. The scattered Raman signal was collected
using the same micro-objective, and then coupled into a Raman spectrometer for detection.
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Figure 2. (a) Experiment configuration of tip-enhanced Raman spectroscopy (TERS) excited by the
high-order fiber vector beams. Inset: setup for the high-order fiber vector beam generator based on
electrically-controlled acoustically-induced fiber grating; (b) partial enlarged detail of the metallic tip
and sample; (c) chemical structure of the 4-PBT (4-thiol-4’-(4-pyridine)biphenyl).

4. Experimental Results and Discussion

When the RF driving signal was turned off, the fiber vector beam generator output the linearly
polarized fundamental modes of HEx/y

11 . Images of their intensity patterns were taken by a CCD
camera as shown in Figure 3a1,b1, respectively. Selection between HEx

11 and HEy
11 was realized by

rotating the HWP. In order to generate the high-order fiber vector modes of HEeven/odd
21 , an acoustic

flexural wave was generated by the PZT being actuated by an RF driving signal with f = 0.8289
MHz [34], and amplified at the tip of the horn-like transducer. The output beams were projected on
the CCD covered by a polarizer P2 to examine the mode patterns, and images of the intensity patterns
at various polarizations were shown in Figure 3(a3–a6),(b3–b6), respectively.

The TER experiments were carried out with illumination of linearly polarized beams (HEx
11) and

high-order vector beams (HEeven/odd
21 ), respectively. The sample was prepared by adsorbing the 4-PBT

(4-thiol-4′-(4-pyridine) biphenyl) on the Au (111) surface, as shown in Figure 2b. The gold tip was
etched by using the electrochemical etching method [40], and the chemical structure of 4-PBT was
shown in Figure 2c.
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Figure 3. (a1,b1) Images HEx
11 of HEy

11 and modes taken by an charge coupled device (CCD) in absence
of a polarizer; (a2,b2) Images of HEeven

21 and HEodd
21 modes taken by a CCD in absence of a polarizer;

(a3–a6,b3–b6) Images of HEeven
21 and HEodd

21 modes in presence of polarizer at different polarization
orientations. The image sizes are 2.5 mm × 2.5 mm.

Figure 4 shows the measured TER spectra of 4-PBT excited with HEx
11 and HEeven/odd

21 . It could
be known that the Raman signal was effectively excited and enhanced with HEx

11 and HEeven/odd
21

modes. Because of the far field Raman spectra of 4-PBT molecule was not visible, Figure 4 does not
show its spectra when the tip retracted. Strong local enhancement of the near-field Raman signal
was achieved with the gap-mode TERS [41,42]. Moreover, the Raman intensity at 1603 cm−1 under
HEeven/odd

21 illumination was 1.6 times stronger than that under HEx
11 illumination. The signal-to-noise

ratios at peak 1603 cm−1 are calculated to be 8.45:1 and 9.34:1 under HEx
11 and HEeven/odd

21 illuminations,
respectively. The experimental results are consistent with the theoretical analysis, and indicate that
the high-order fiber vector beams (HEeven/odd

21 ) could be used to achieve stronger Raman signal
enhancement than the linearly polarized beam. Due to energy loss in the process of coupling
HE11 mode to HE21 mode, the noise increases in case of higher order modes when normalize the
excitation power. Compared with radial beam excitations, Raman signal enhancement was weaker,
but it could be useful to polarization-controlled Raman spectroscopy due to its unique polarization
property [43]. In addition, with the HEeven/odd

21 modes excitation, Raman enhancement can be further
boosted by optimizing the optical configuration, such as using the inverted microscope to better align
the longitudinal component of the focused beam on the apex of the metallic tip for exciting the LSPR
and using a micro-objective with larger NA to more tightly focus the incident beam and efficiently
collect the Raman signal.
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5. Conclusions

In summary, we experimentally demonstrated the high-order fiber vector beams can be used
in TERS system. Theoretical analysis shows that the high-order fiber vector beams have stronger
longitudinal electric field components than the linearly polarized light under the tight focusing
condition. In the experiment, the linearly polarized beam and the high-order vector beam were
introduced into a top-illumination TERS system for comparing the enhancement characteristic of
TERS signal. The HEeven/odd

21 modes excitation produced stronger TER signal, which was 1.6 times
stronger than that produced by the HEx

11 beam, showing stronger interaction between the high-order
vector beam and the metallic tip. This result will be a promising reference for the tip enhanced and
polarization Raman spectroscopy.
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