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Abstract: Aiming at the problem that the composite fault signal of the gearbox is weak and the fault
characteristics are difficult to extract under strong noise environment, an improved singular spectrum
decomposition (ISSD) method is proposed to extract the composite fault characteristics of the gearbox.
Singular spectrum decomposition (SSD) has been proved to have higher decomposition accuracy
and can better suppress modal mixing and pseudo component. However, noise has a great influence
on it, and it is difficult to extract weak impact components. In order to improve the limitations of
SSD, we chose the minimum entropy deconvolution adjustment (MEDA) as the pre-filter of the SSD
to preprocess the signal. The main function of the minimum entropy deconvolution adjustment is
to reduce noise and enhance the impact component, which can make up for the limitations of SSD.
However, the ability of MEDA to reduce noise and enhance the impact signal is greatly affected
by its parameter, the filter length. Therefore, to improve the shortcomings of MEDA, a parameter
adaptive method based on Cuckoo Search (CS) is proposed. First, construct the objective function
as the adaptive function of CS to optimize the MEDA algorithm. Then, the pre-processed signal is
decomposed into singular spectral components (SSC) by SSD, and the meaningful components are
selected by Correlation coefficient. For the existing modal mixing phenomenon, the SSC component
is reconstructed to eliminate the misjudgment of the result. Then, the frequency spectrum analysis
is performed to obtain the frequency information for fault diagnosis. Finally, the effectiveness and
superiority of ISSD are validated by simulation signals and applying to compound faults of a Gear
box test rig.

Keywords: singular spectrum decomposition; minimum entropy deconvolution adjusted; composite
fault; fault diagnosis; Cuckoo Search; modal component reconstruction

1. Introduction

In mechanical transmission systems, gearboxes are widely used and are indispensable for many
transmission systems. The reliability of their operation is critical to the transmission system. However,
due to the harsh working environment, it is easy to produce a fault [1]. Nowadays, many scholars
have proposed many methods to extract fault features, but most of them can only extract relatively
single fault. When extracting compound faults, especially when the fault information is relatively
weak, the effect is not good. Therefore, the identification and diagnosis of the composite fault of the
gearbox has important significance [2].

Gears and bearings are the key components of the gearbox, which play a key role in the mechanical
transmission of the gearbox. When the gears have broken teeth, cracks and other faults, the vibration
signal collected by the sensor will appear as frequency transfer and frequency modulation phenomenon.
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When a bearing (inner ring, outer ring, rolling element) has a crack or another fault, a periodic impact
will occur in the vibration signal collected by the sensor. The frequency at which the impact occurs is
the passing frequency of the inner and outer rings of the bearing [3]. When the gear and the bearing in
the gearbox fail at the same time, the frequency of the gear fault characteristic is different from the
frequency of the bearing fault characteristic. Therefore, according to the difference of the frequency,
the compound fault of the gearbox can be diagnosed. Frequency spectrum is a common signal analysis
method, which can quickly and effectively extract frequency information from vibration signals [4].
However, because the working environment of the gearbox is often harsh, the fault characteristic
information is often submerged in a strong background noise environment. It is not suitable to carry
out frequency spectrum analysis directly to the signal and it needs to reduce noise in advance [5].

There are several common noise reduction methods including wavelet denoising, local mean
decomposition, and ensemble empirical mode decomposition (EEMD). Among them, wavelet
denoising and EEMD are used more frequently [6]. Wavelet denoising has many advantages such
as multi-resolution, but the basis function and threshold in the wavelet model need to be selected
artificially, so the effect of wavelet denoising is greatly affected by human factors [7]. Based on
empirical mode decomposition (EMD), the ensemble empirical mode decomposition (EMD) is formed
by adding Gaussian white noise. Gaussian white noise has the characteristic that the frequency
is uniform distribution. Adding white noise into the signal makes the original signal continuous
at different scales, which can alleviate the mode mixing problem of EMD [8]. Ensemble empirical
mode decomposition can adaptively decompose complex mixed signals into a series of intrinsic
mode functions (IMFs), and separate different frequencies on different IMFs to achieve the purpose
of noise reduction. Ensemble empirical mode decomposition is widely used in gear box diagnosis.
Chen et al. [9] applies EEMD and Hilbert demodulation to the fault diagnosis of wind turbine gearbox.
Wang et al. [10] combined EEMD with minimum entropy deconvolution methods to diagnose bearing
faults. However, EEMD still has defects such as modal aliasing, large amount of calculation, and easy
generation of pseudo-components [11]. Inspired by EMD decomposition, Bonizzi et al. [12] proposed
a new adaptive signal processing method: singular spectrum decomposition (SSD), which is proposed
based on singular spectrum analysis (SSA). It can overcome the defect that SSA chooses embedding
dimension according to experience and realizes the adaptive reconstruction of single component signal
from high frequency to low frequency. It provides a new idea for nonlinear non-stationary time series
analysis. SSD has been successfully applied to signal processing. Bonizzi et al. [12] applied SSD
to tidal and tsunami data processing and achieved good results. Movahedifar et al. [13] proposed
to use SSD method to filter and extract gene expression profiles. The results show that the method
can eliminate noise well and is a good method for filtering and extracting gene expression profiles.
Yan et al. [14] combined SSD with morphological demodulation methods to extract rolling bearing
faults. Compared with the EEMD method, SSD has the advantages of high decomposition accuracy and
better suppression of pseudo component and modal mixing [12]. Therefore, this paper chooses SSD to
decompose the signal adaptively. The simulation results show that SSD has excellent decomposition
ability for modulated signal, but SSD is susceptible to noise interference and difficult to extract weak
shock signal. To improve the defect of SSD, the Minimum Entropy Deconvolution Adjusted (MEDA)
is used as the pre-filter of SSD to reduce the noise and enhance the impact component.

Minimum Entropy Deconvolution Adjusted is proposed based on minimum entropy deconvolution
(MED). MED is a deconvolution filter that counteracts the effects of the transmission path by looking
for an inverse filter to maximize kurtosis. It can not only enhance the impact component, but can
also reduce the noise of the signal [15]. Endo [16] was the first to use this method to enhance the
signal impact caused by spalling and crack fault in the gearbox. Sawalhi et al. [17] apply it to fault
detection of rolling bearings. He et al. [18] combine MED and spectral kurtosis to identify multiple
faults of rotating machinery. Li et al. [19] put forward a method combining time-delayed feedback
monostable stochastic resonance and minimum entropy deconvolution to diagnose rolling bearing
fault. Compared with MED, MEDA can suppress pseudo pulse generation while reducing noise and
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enhancing impact components. However, the effect of enhancing impact components and reducing
noise is easily affected by its parameter—filter length [20]. Therefore, it is necessary to optimize
its parameters.

Cuckoo search (CS) has attracted the attention of many scholars since it was proposed, and there is
some research progress in algorithm optimization and application in various fields [21]. Xuan et al. [22]
proposed an efficient Cuckoo algorithm for system-level fault diagnosis algorithms, which greatly
improved the efficiency of diagnosis. Naik et al. [23] proposed a step-size adaptive cuckoo search
algorithm for face recognition, which improved the speed of Cuckoo algorithm. Cheng et al. [24]
proposed an improved CS algorithm for vibration fault diagnosis of hydroelectric generating sets.
The CS algorithm has certain advantages such as fewer parameters, excellent search path, and strong
global search ability [25]. Therefore, this paper uses the CS algorithm to optimize the parameters of
MEDA. Aiming at the problem that it is difficult to extract the complex fault of gearbox accurately in a
strong noise environment, an improved SSD method is proposed in this paper. Firstly, the objective
function is constructed to optimize the MEDA algorithm by CS algorithm, and then the optimized
MEDA is used as the pre-filter of SSD to overcome the limitation of SSD. In a strong noise environment,
the signal after SSD will produce meaningless pseudo-components and modal mixing, which affects the
diagnosis. Therefore, in this paper, the SSD algorithm is improved by using the correlation coefficient
to eliminate the senseless SSC components and extract the components with strong correlation for
analysis. Aiming at the existing modal aliasing phenomenon, the modal component reconstruction
method is proposed to improve the SSD. The energy of the same component is enhanced, while the
influence of modal aliasing is eliminated. Then, the frequency spectrum analysis is used to extract the
fault features. Finally, simulations and experiments are carried out to verify the effectiveness of the
proposed method.

2. Singular Spectral Decomposition Theory

2.1. The Basic Principle of Singular Spectrum Decomposition

Singular Spectrum Decomposition is a new method for adaptively decomposing nonlinear and
non-stationary time series. The SSD method originates from SSA, which is a nonparametric spectral
estimation method for analyzing and predicting time series. However, an embedding dimension M of
SSA, which has the greatest impact on the results, needs to be selected artificially, and the grouping
process also needs to be operated artificially. Unlike SSA, SSD is a data-driven adaptive decomposition
method. The selection of the basic parameters of SSD is completely automated, and it can decompose
the nonlinear non-stationary signal into the sum of several singular spectral components (S5C) and the
residual terms adaptively according to the frequency descending order. The specific process of the
SSD method is as follows:

(1) Construction of the trajectory matrix

For example, given a time series x(n) = {1, 2, 3, 4, 5}, and the embedding dimension M = 3,
the corresponding trajectory matrix X of SSA would be:

1
X=| 2 (1a)
3

=~ N
U1 = W

4
5
1

N = Q1

Note that the left-hand side block corresponds to the trajectory matrix X exploited in the standard
SSA algorithm. In SSD, the trajectory matrix is defined as:
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(1b)

= W N -
QL = W N -
¥ Q1 >

* % Q1

As described in Reference [12], this new formulation “wraps around” the time series x(n) in the
trajectory matrix X with the advantage of enhancing its oscillatory content, and providing useful
properties for the decrease of energy of the residual.

(2) Adaptive selection of embedded dimension

The embedding dimension of SSA needs to be manually selected, while the SSD embedding
dimension is driven by data, which makes SSD more suitable for the processing of nonlinear
non-stationary signals. First, calculate the power spectral density (PSD) of the residual component in
the j-th iteration (Equation (2) is the residual component):

j—1
0j(n) = x(n) - I;vk<n>(v0<n> = x(n)), @)

where v;(n) is the residual component in the j-th iteration, vi(n) is the sum of front k components,
x(n) is a time series.

Then, the frequency in its PSD associated with the dominant peak, fmax, is estimated. In the
first iteration, if the normalized frequency fmax/Fs (Where Fs is the sampling frequency) is less than
the given threshold (usually 10~3), a considerable trend exists in the time series, and M is set to N.
Otherwise, for the j-th iteration (j > 1), the embedding dimension is set to: M = 1.2 % Fs/ fmax.

(3) Reconstruction of components

Reconstructing the j-th component g0 (1) proceeds as follows: In the first iteration, if a particularly
large trend has been detected, only the first left and right eigenvectors are used to obtain ¢ (n),
such that X; = oquj0;7, and g(l)(n) is obtained from the diagonal averaging of X;. Where o is
a left eigenvector, v a right eigenvector, and u is a residual amount of decomposed time series.
Otherwise, for the j-th iteration number (j > 1), a subset I]-(Ij = {i1,...,ip}) is created by selecting
the feature group whose left eigenvector has the largest dominant frequency in their spectra in
the range [fmax — (Sf, fmax + (5f] and makes the greatest contribution to the main peak energy. Then,
the corresponding component is then reconstructed by diagonal averaging of the matrix Xj; =
Xi1 + ... + Xjp along the cross-diagonals. In SSA, this grouping process must be operated manually.

(4) Setting of iteration stop condition

After each new component sequence g/ () is estimated, a new residual is calculated: v+ (1) =
o) (n) — ) (n). Where j is the Measurement of iteration times. It will represent the input for the
next iteration

Then calculate the normalized mean square error (NMSE) between the residual and the
original signal:

, 2
2 (00 ()
12
Yy (x()
when the NMSE is less than a given threshold (default th = 1%), the decomposition process stops,

NMSEY) = ®)
otherwise, the iterative process continues. Final decomposition result:

x(n) = Y18 () + 00D (), )
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where m is the number of components, and %) (1) is the k-th component.

2.2. Comparison of Simulation Results between Singular Spectrum Decomposition and Ensemble Empirical
Mode Decomposition

This has been proved that SSD method has higher decomposition accuracy and better suppression
of modal aliasing and pseudo components. To compare the decomposition performance of the two
methods of SSD and EEMD, an analog signal is constructed, as shown in Equation (5).

x1(t) = 2sin(27fit)
x2(t) = (14 cos(2mfyt)) sin(27tfst) , (5)
(8) = x1 () + x2(t)

=

where f; = 35 Hz, f,;; = 15 Hz, f, = 130 Hz. The analog signal is composed of a sinusoidal signal and
a modulated signal with a modulation source.

The model was established in the MATLAB environment and is shown in Figure 1. The MATLAB
used was developed by MathWorks Inc. in Natick, Massachusetts, USA. The version is 2016. Figure 1
is the time domain graph of the simulated signal, Figure 2 is the result of the simulation signal
decomposed by SSD, and Figure 3 is the result of the simulation signal decomposed by EEMD. Where,
in this paper, the abscissa axis of all time-domain pictures is time and the ordinate is amplitude.
The abscissa axis of all frequency-domain pictures is time and the ordinate is amplitude. It can be seen
intuitively that the performance of SSD is more excellent, the decomposed components are almost
identical with the simulation signals, and there is no modal mixing and pseudo-component. However,
the result of EEMD produces many pseudo-components (the decomposition results are nine layers,
and only the first four layers are depicted in the diagram). Furthermore, it can be seen intuitively from
Figure 3 that IMF 2 and IMF 3 have the same frequency of 35 Hz. Therefore, there is modal mixing
phenomenon in EEMD, which shows that the performance of SSD is more reliable.

To compare the decomposition accuracy of the two methods more intuitively, the reconstruction
error is used to analyze it. Figure 4 shows the reconstruction errors of the two decomposition methods.
It can be observed that the error of the SSD is small, almost close to 0, and the decomposition error
of the EEMD is much larger than the SSD. From the above analysis, it can be known that SSD not
only has a higher decomposition accuracy than EEMD, but can also better suppress modal mixing
and pseudo-component.
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Figure 1. Time domain graph of Simulation signal, x1: sinusoidal signal; x2: Modulation signal; and x:
Synthetic signal.
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Figure 2. Results of the simulated signal decomposed by Singular Spectrum Decomposition.
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Figure 3. Results of the simulated signal decomposed by Ensemble Empirical Mode Decomposition.
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Figure 4. Reconstruction error of simulation signal decomposed by EEMD and SSD.

3. Minimum Entropy Deconvolution Adjusted Theory

Minimum Entropy Deconvolution Adjusted is formed based on MED. The core of MED in rotating
machine fault detection is to design a finite length filter based on maximizing kurtosis, which can not
only enhance the periodic pulse characteristics related to some faults, but also minimize the noise
component. The problem of maximizing the kurtosis under the assumed zero mean output is described

as follows: o
max kurtosis = mgXM ©

f F (o)
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Convolution definition:

N
=/ %
—
ve=Yr,fixk 1 k=12,...,Nx, =0n#12,...,N)
The form of matrix is:
N - =
y=X)f
X1 Xp X3 - XN
- 0 v x XN-1 (8)
Xo=1]0 0 x XN-2
0 0 0 -+ xN-141 [,.n

This maximization problem is solved by 1terat1ng MED filters. The 1terat1ve selection method

is derived by taking the derivative, equating it to 0 and iteratively solving for f The iterative f is
described as:

-1
F-BRs (%) ol o
Ll

According to the definition of MED, the convolution definition assumes zero data x, =0, n <1,
resulting in discontinuity between the assumed zero sample x( and the first sample x;. This can result
in significant interference between the samples observed at xy and x1, a pseudo pulse. Thus, as an
improvement to MED, MEDA redefines the convolution.

« X
f (10)
Ve =Yl fivear k=12, N—L+1
The form of matrix is:
s —
y=Xif
XL Xp41 Xp42 o v XN
XL-1 XL Xp+1 -0 XN-1 (11)
Xo=| ¥L-2 XL-1 XL - XN-2
. *2 3 AN-LH1 Jp(N-Lt1)
The iteration formula changes to:
2 _ Lo Y ™'y 33 .3 7
f= ZKJ &) Z <X0X0) Xo [ylyz - YN-L (12)

4. Improved Singular Spectrum Decomposition Method

Singular Spectrum Decomposition has high decomposition accuracy and can better suppress the
generation of modal aliasing and pseudo-components, but it also has some limitations, such as noise
has a great impact on it, and it is difficult to extract weak impact signal. Aiming at the limitation of
SSD method, this paper proposes an improved SSD method.
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4.1. Limitations of Singular Spectrum Decomposition

To illustrate the limitations of SSD, a simulated signal is constructed, as shown in Equation (13).

x1(t) = 2sin(27fit)
xp(t) = (1 + cos(2mfyt)) sin(27 £, t)
(

(13)
x3(t) = Ap x exp(—£-) sin(27fct)

x(t) = x1(t) + x2(t) + x3(t)

where x1 (t) is a sinusoidal signal, x,(#) is a modulated signal, and x3(t) is a periodic impact signal, and
x(t) is a synthetic signal. The size of the specific parameters is: f; = 35 Hz, f,; = 15Hz, f, = 130 Hz,
g=01,T, =0.1s,f =190 Hz.

Figure 5 is time-domain diagram of the simulation signal. Figure 6 is the decomposition result of
SSD method after adding impact signal with amplitude of 3.5. It can be observed that the decomposition
result is defective compared with the decomposition modulation signal. It is obvious that there is a
slight modal mixing phenomenon. The components SSC1 and SSC3 are all the components of the
impact signal. The red box in the figure is the frequency corresponding to SSC1, and its value is 190.
The intervals of frequencies around it are 10 Hz, which corresponds to a period of 0.1 s. However,
it can be observed that the frequency amplitude of the decomposed impact signal is only 0.1352, which
is easily submerged by noise. Furthermore, if a weak impact signal is decomposed, the shock signal is
almost invisible. When the amplitude of the added impact signal is less than one, the SSD method will
not extract the impact signal. As shown in Figure 7 (the amplitude of the added impact signal is one),
only the sinusoidal signal and the modulated signal can be decomposed. Figure 8 shows the result of
SSD decomposition when the signal is added to noise (amplitude is 0.5) and impact signals (amplitude
is 3.5). The decomposition results have nine layers, the first three layers are noise components, and
Figure 8 shows only three meaningful components (SSC4, SSC5, and SSC6) and one meaningless
component (SSC7). It can be observed that the impact signal is submerged by noise, and the frequency
of the impact signal does not appear in the frequency domain diagram. Moreover, after adding noise,
a lot of meaningless pseudo components and modal aliasing will appear. The components SSC4 and
SSC5 are all the components of the modulated signal.

x1

Amplitude

0 0.2 04 0.6 0.8 1
Time/s

Figure 5. Simulated signal, x1: sinusoidal signal; x2: Modulation signal; x3: periodic impact signal;
and x: Synthetic signal.
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Figure 6. The results obtained by SSD for processing the synthetic signal when the amplitude of adding

impact signal is 3.5.

SSC1

2 2
s OHHHHHHE |
E _2 O Il

= 0.5 1 0 500

= SSC2

< 4 2

o M

0

L
N

0 0.5 1 0 500
Time/s Frequency/Hz
(a) Time Domain (b) Frequency domain

Figure 7. The results obtained by SSD for processing the synthetic signal when the amplitude of adding

impact signal is 1.
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Figure 8. The results obtained by SSD for processing the synthetic signal when adding noise and

impact signals.
4.2. Advantages and Limitations of the Minimum Entropy Deconvolution Adjusted

To illustrate the advantages of MEDA, we added noise to the impact signal:

o2}

x(t) = A x exp(—T—) sin(27tfct) + randn(t), (14)

where randn(t) is random noise. The size of the specific parameters is: f, = 190 Hz, g = 0.1, T, = 0.1 s,
A, =2.5.
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Figure 9 shows the result of the signal being processed by MEDA (length of filter is 20). In the
figure, x(t) is the original signal and y(t) is the result obtained by MEDA. It can be observed that the
noise is reduced and the amplitude of the shock signal is significantly increased. To quantify the ability
of MEDA to enhance the impact signal, the kurtosis of x(t) and y(t) is calculated. The kurtosis increased
from 1.9262 to 5.6778, nearly tripling.

x(t

4 | ' (t) | '

% 4
S22 ﬁ h ! l 1
2 -4 ‘ : ‘ :

3 0 02 0.4 0.6 0.8 1
=
< y(t)

0 0.2 0.4 0.6 0.8 1
Timels

Figure 9. The original signal and the results obtained by Minimum Entropy Deconvolution Adjusted.

However, the ability of MEDA to reduce noise and enhance impact components largely depends
on its parameter, L, which is the length of filter. Figure 10 shows the results obtained by MEDA
for processing the simulated signal when changing the length of filter. Table 1 is the kurtosis value
corresponding to the obtained results.
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5 T T T T
0 WWWWMMW
[0) ° I I I |
.g 0 0.2 0.4 L=50 0.6 0.8 1
= 10 T T T T N
Q () et A - e vy
E _10 L 1 I L
<
0 0.2 0.4 L=70 0.6 0.8 1
10 T T T T
O b A J - L
-10 : : - :
0 0.2 0.4 0.6 0.8 1
5 . _L=90 .
0O irsmismpsorsmibersipingnpon iy **“'.'...#.‘mn“j‘“‘
-5 . . s .
0 0.2 04 0.6 0.8 1

Time/s
Figure 10. Results obtained by MEDA for processing the signal when changing the length of filter.

Table 1. The kurtosis value corresponding to different filter lengths.

Filter Length 10 30 50 70 90
Kurtosis 4.0765 5.2952 7.7863 9.2581 10.4318

It can be observed from Table 1 that the kurtosis values are increasing when signals are processed
with MEDA of different filter lengths. However, it can be clearly observed in Figure 10 that the
number of enhanced pulses is reduced when L =70 and L = 90, which is obviously unfavorable to the
decomposition process of SSD. Therefore, to improve the shortcomings of MEDA, this paper uses the
CS optimization algorithm to optimize its parameters. Obviously, the kurtosis value cannot be used as
an index to evaluate the enhancement effect of impulses by using MEDA. This paper uses the power
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spectrum kurtosis (PSK) to evaluate the enhancement effect of impulses by using the MEDA filter with
different lengths. Power spectrum kurtosis is not only related to the peak value of the pulse, but also
related to the number of pulses, which can well evaluate the enhancement effect of impulses [19].

4.3. Improved Singular Spectrum Decomposition

In the previous two subsections, the limitations of the SSD algorithm and the advantages
and limitations of the MEDA algorithm are discussed separately. When the modulated signal is
decomposed by the SSD algorithm, there is no modal mixing and pseudo-component, and the error
is almost zero. But when decomposing the vibration signal with impact, not only the phenomenon
of slight mode aliasing is produced, but also the extracted impact signal is very weak and easily
submerged by noise. When the impact component is weak to a certain limit, the SSD method will
not extract the impact component. Moreover, noise has a great influence on the SSD algorithm. After
adding noise, many meaningless pseudo components are generated, which will interfere with the
diagnosis of the results.

The MEDA filter not only performs well in signal noise reduction, but also has the greatest
advantage of enhancing the impact component of the signal. However, the results of its noise reduction
and enhanced impact signals are greatly affected by its parameter, the length of the filter, which is the
shortcoming of MEDA.

Based on the above analysis, an improved SSD method is proposed for compound fault diagnosis
of gearbox. The SSD algorithm has a poor effect on extracting weak impact signals and is susceptible to
noise. The MEDA algorithm can not only reduce noise, but also enhance the impact signal, which can
well overcome the limitations of the SSD algorithm. Firstly, the objective function is constructed and
used as the optimization target of the CS optimization algorithm. Then, CS algorithm is used to improve
the MEDA algorithm. The improved MEDA algorithm is used as a pre-filter to denoise the signal and
enhance the impact component. The processed signal is decomposed by SSD algorithm, and then,
according to the correlation coefficients of each component and the original signal, the components
with weak correlation are eliminated, and the SSC components with strong correlation are selected for
analysis. Aiming at the phenomenon of mode mixing when SSD decomposes composite signals under
the background of strong noise, this paper proposes a modal component reconstruction method to
suppress the effect of mode mixing on the result discrimination. Finally, the reconstructed components
are analyzed by frequency spectrum to extract features and identify faults.

The proposed method is as follows:

(1) Construct the objective function. In Reference [19], the PSK index is selected to evaluate the
pulse extraction effect by comparing statistical indicators in the time domain and the frequency domain.
As a frequency domain statistical index, PSK has been proved to better reflect the characteristics of
periodic impact components in vibration signals. Therefore, this paper uses PSK to evaluate the
enhancement effect of impulses by using the MEDA filter with different lengths. PSK is calculated
according to the following formula:

¥ (x00 - X)

PSK = —
yN/2 (x<k> - X)

(15)

where X(k) is the amplitude sequence of power spectrum of x(1), X is the mean value of X(k), N is
the length of the signal, x(n) is the discrete signal sequence. The PSK index can quantitatively evaluate
the extraction effect of periodic impact components from vibration signal.

Based on PSK, the margin index (MI) is introduced to evaluate the noise reduction ability of
different filter lengths. MI changes rapidly with the decrease of noise intensity, which is very sensitive
to changes in noise. Its formula is as follows:
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Xp
MI — , (16)

(Ao Vi)

where x, = E[max{x(n)}].
MPSK index is constructed by combining PSK with MI, which can evaluate the effect of MEDA
algorithm on signal enhancement and noise reduction [19]. It can be defined as follows:

e (xw-x)
MPSK = - P . (17)

N2 2
2 (xw-x) (2 Vi)

(2) Optimize the MEDA algorithm. Cuckoo Search algorithm has certain advantages such as
fewer parameters, excellent search path, and strong global search ability. Therefore, this paper uses the
Cuckoo Search algorithm to optimize the parameters of MEDA.

The Cuckoo Search algorithm is proposed based on the following three idealized rules:

Rule 1: Each cuckoo produces only one egg at a time, and randomly selects a parasitic nest to
hatch the eggs.

Rule 2: In the randomly selected parasitic nests, the best parasite nests are preserved to the
next generation.

Rule 3: The number of selectable parasitic nests is fixed, and the probability that each host
can discover an alien egg is P, € [0, 1]. When a host finds strange eggs, it will build new nests in
another place.

According to the above three ideal rules, each parasitic nest with cuckoo eggs is considered a
candidate solution, and the new nest created after the host discovers the cuckoo eggs represents a
new solution. Compare the fitness values of the new solution and the best candidate solutions of
the previous generation, and retain the solution with better fitness. By iterating, we find an optimal
parasitic nest as the global optimal solution. The basic steps of CS are as follows:

Step 1: Establish the objective function F = MPSK (Equation (17)), and initialize the position vector
Y =1, Y2, ..., ym) of the parasitic nest, where m is the dimension of the solution. Initialize the number
of parasitic nests N and the probability P,.

Step 2: Calculate the fitness value of the position of each parasitic nest and record the location of
the optimal parasitic Nest as Y.

Step 3: Preserve the position Yj,s; of the optimal parasitic nest of the previous generation and
update the position of all parasitic nests according to the following formula.

Yoi1,i = Ygi +a® Lévy(B), (18)

where Y ; is the position of the new parasitic nest; Yy ; is the position of the old parasitic nest; a is
the step size, mostly equal to 1; and @ represents the entry wise multiplication operation. Lévy(p) is

usually calculated by Equation (19):
, D
Lévy(p) = M/ (19)

) 1/
where y and v obey the standard normal distribution; g € [0, 2]; ¢ = {IF ((11I£));;il;3(g(ﬁ {)2/)2 } g ; Tis

the standard Gamma function. Therefore, Equation (20) can be obtained to update the parasitic
nest position.

* .
Yoi1,="Ygi+ ﬂo%, (i=12...n). (20)
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Step 4: After updating the position of the parasitic nest, calculate its fitness value F (Yg+1/l‘) and
compare it with the fitness value F (Yg,,») of the old parasitic nest, then select the better fitness of the
parasitic nest to keep, in order to be reserved for the next iteration. As shown in Equation (21):

{ Vo1, F(Ygr1,) )F (Y1)
Yoir F(Yor1,i) (F(Yes)
Step 5: Produce a random number R;, representing the probability that the host of the nth parasitic

nest will discover unfamiliar eggs, and compare it with P,. If R; > P, the position of the parasitic nest
updated by Equation (22):

Y= (1)

Yoi+7(Yej = Yok ), Ri>P
Yoi1i = ¥ s o (22)

Yg,ir Ri<Pa

where 7 is the scaling factor, which is a random number that obeys uniform distribution in the interval
(0,1); Yg,; and Y 1 are the positions of two parasitic nests randomly selected from the parasitic nests of
the g-th iteration.

Step 6: After updating the position of the parasitic nest, the fitness value F (Yngl’i) was calculated
and compared with the fitness value F(Y, ;) of the old parasitic nest, and the parasitic nest with better
fitness is preserved.

Step 7: Determine whether the termination condition is satisfied (The termination condition is
that the current number of iterations reaches the requirement or the accuracy of the solution reaches
the requirement). If the iteration termination condition is satisfied, the algorithm stops iteration and
outputs L = Y,.5;. Otherwise, return to step 2 to continue the iteration.

(3) Singular spectrum decomposition. After the input signal is processed by the optimized MEDA
algorithm, the noise is reduced and the impulse signal is enhanced, which well makes up the limitation
of SSD decomposition. Then the signal is decomposed by SSD, and a series of SSC are obtained.
To counteract the impact of the pseudo-component on the diagnosis results, we use the correlation
coefficient to improve the SSD. The correlation coefficient can measure the correlation between the
component and the original signal very well. Therefore, by calculating the correlation coefficient
between the component and the original signal, the meaningless components can be eliminated and
several SSCs with strong correlation are selected for analysis. The correlation coefficient (CC) is
calculated by Equation (23):

_ Cov(xi(t),x(t))  _ E(i(t) = ) (x(t) — ()
VD(xi(t))/D(x(t)) VD(x;(t))/D(x(t))

where Cov (x;(t), x(t)) is the covariance of x;(t) and x(t), E(x*) is the mathematical expectation, y is the
sample mean, D(x;(t)) are the squared difference of x;(t). According to Reference [26], the threshold
of CC in this paper is 0.2.

The SSC component whose CC value is greater than the threshold value is defined as the sensitive
SSC component which contains the fault feature information. The selected sensitive SSC is further
analyzed to extract the fault feature. After selecting the sensitive SSC components, in order to offset the
influence of modal mixing on feature extraction, this paper proposes a modal reconstruction method
called CMF (combined mode function). The spectral analysis of the sensitive modal components is
performed, and then the components of the same frequency are reconstructed into one component and
the reconstructed components CMF;, CMF, ... CMEF, are obtained.

(4) Feature extraction. The frequency spectrum of the reconstructed component is analyzed, and
the extracted frequency is compared with the fault characteristic frequency for fault diagnosis.

cc ) (23)
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4.4. Flow Chart of Improved Singular Spectrum Decomposition

Figure 11 is flow chart of the proposed method. This figure illustrates the whole process of the
proposed method in detail, including input signal, cuckoo search algorithm to find the optimal filter
length, MEDA process, SSD process and fault diagnosis process.

Part1 Input signal

D
-5
0 0.5 1

- Initialize Cuckoo search
parametersn K P Update the nest location
according to Eq.23
Calculate the fitness value of the Part2 Cuckoo search
nest position and determine .
- optimal solutions Ri>Py? Output optimal ‘."'
Caleulate the fitness value of the e filter length L of |
nest position and determine Yes 1\]}:]5 A \
optimal solutions Update the nest location
according to Eq.24
Onrtpart optimal solution 1. Part3 MEDA
v Caleulate g2
Initialize MEDA parameters _|-> (1) 3 _g
b o 3 (1) = £ () (n) [t

v s
Calaulate 7 = 4-1p) ey |Calaulate 57 (1) = |’> _ 4
ay” v (n)x(¥) = BWM

| fx' _ fx'—l

Y

2
|2<t? No i=i+1

Part4 SSD decomposition

Calculate

v, (1) =x(n)- 3 v, (n

0
-5
0 0.5 1

>

Output
component SSC mode

mixing?

Calculate correlation Part5 fault diagnosis
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Component > - - -
reorganization o 1 ‘ |n1'au|l frequency
correlation component
0 100 20

0

Fault ﬁaq.uem:y Frequency slflecl:rmn
comparison analysis

Figure 11. The flow chart of the improved singular spectrum decomposition.
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5. Simulation
The faults in the gearbox usually exist in the form of modulation signals and impact signals. To
verify the feasibility of the proposed method, the simulation signals are constructed and analyzed.
X1(f) = sin(27tf1t)
x2(t) = (14 cos(2mf1t)) sin(27f,t)
(24)
x3(t) = Ay X exp(—%) sin(27tf.t)

x(t) = x1(t) + x2(t) + x3(t) + noise(t)

where f1 =35 Hz, f,; =15 Hz, Ay, =0.8, T;, = 0.1, f; is a simulated gear fault frequency and equal to
130 Hz, £, is a simulated bearing failure frequency and equal to 190 Hz, the number of sampling points
is 1000, the sampling frequency is 1000 Hz, and the amplitude of noise is 0.4. Figure 12 shows the time
domain diagram of the simulated signal.

Amplitude

noise

0] 0.2 04 06 0.8 1
Timels

Figure 12. Time domain diagram of the simulated signal.

First, the optimal filter length L of MEDA is obtained by using CS optimization algorithm. In this
paper, the search range is set to [1, 160] (according to Reference [19], it is appropriate to take the upper
limit of the range as one-sixth of the sampling frequency). According to Reference [27], the number of
nests 1 is set to 30, the probability of finding P, = 0.25, and the number of iterations is 50. The result of
the optimum filter length obtained by CS is 38. Then, the MEDA algorithm with the best filter length
is used to process the simulation signal, and the result is shown in Figure 13. It can be observed that
the noise in the signal is significantly reduced and the amplitude of the impact signal is increased.

The denoised signal is decomposed by SSD and a total of six components are obtained. The CC
values of each component are calculated as shown in Table 2. Then we select the strong correlation
of SSC components to analyze (CC value is greater than 0.2), that is, select SSC2, SSC3, S5C4, and
SSC5. Figure 14 shows the time domain graph and the frequency domain graph of the selected
components and it can be observed that there are modal mixing phenomena between SSC2 and SSC4.
Therefore, the components are reconstructed to eliminate the modal aliasing while enhancing the
energy of the components containing the same frequency. The results of the reconstructed component
are shown in Figure 15. It can be observed that the frequency corresponding to CMF1 is 190 Hz,
which is the simulated bearing failure frequency. The interval between the surrounding frequencies
is 10 Hz, corresponding to the period of 0.1 s. The frequency corresponding to CMF2 is 130 Hz,
which is the simulated gear fault frequency, and the interval from the adjacent frequency is 15 Hz
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(modulation frequency). The frequency corresponding to CMF3 is 35 Hz, which is the frequency of the
sinusoidal signal. To observe the modulation frequency information more intuitively, the envelope
spectrum analysis is performed on the components, and the result is shown in Figure 16. It can be
intuitively observed that the frequency corresponding to CMF1 is 10 Hz and its multiple, which is
the modulation frequency of the impact signal. Corresponding to CMF2 is 15 Hz and its multiple.
Therefore, we can conclude that the proposed method successfully extracted the simulated gearbox

composite fault information.

4

(]
- -
EL OMMWWMMN-
< 2f | -
0 05 1

Time/s

Figure 13. Results of performing the improved MEDA algorithm.

Table 2. The correlation coefficient values of each component.

Component SSC1 SSC2 SSC3 SSC4 SSC5 SSCé6
CC 0.0452 0.2364 0.5421 0.4327 0.3644 0.0835
SSC2

0.4 1 0.U8
0 Mofobdtbiinfedotinlel 05 0 Lui]
-0.4 0 £ 199
1 0 0.5 188031 0 500
5 O o
2 -1 0
5,0 0.5 ssc4 40 500
E
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(a) Time Domain (b) Frequency domain

Figure 14. The decomposition results of SSD.
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Figure 15. The results of component reconstruction.
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Figure 16. Envelope spectrum of recombination component.

Figure 17 is the time domain diagram of the above simulation signal decomposed by the traditional
SSD, and Figure 18 is the corresponding frequency domain diagram. It can be observed from the
frequency domain diagram that there is no impact component in the extracted components. Moreover,
S5C6, SSC7, and SSC8 are all components of modulation signal, that is, there is modal aliasing.
To better compare with the proposed method, the corresponding envelope spectrum is also made and
the result is shown in Figure 19. Similarly, it can be observed that only the modulation information
of the simulated gear fault exists. Compared with the proposed method, the decomposition results
of traditional SSD have many pseudo components, and the modal mixing is also serious. Moreover,
it has only extracted the modulated signal of the simulated gear fault, and has not extracted the shock
signal of the simulated bearing fault. Therefore, the proposed method is superior to the traditional
SSD method.
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Figure 17. The decomposition results obtained by SSD.
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Figure 18. Frequency domain diagram of the decomposition results obtained by SSD.
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Figure 19. Envelope spectrum of the decomposition results obtained by SSD.

Figure 20 is the time domain diagram of the above simulation signal decomposed by the EEMD,
and Figure 21 is the corresponding frequency domain diagram.
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Figure 20. The results decomposition obtained by EEMD.
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Figure 21. Frequency domain diagram of the decomposition results obtained by EEMD.

As shown in Figure 21, IMF2 and IMF3 are the components of the modulated signal and IMF4
and IMF5 are the components of sinusoidal signals. Obviously, there is no impact component in
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the extracted component, and there is a serious modal mixing (red frame in the figure). Compared
with the proposed method, the decomposition results of EEMD have many pseudo components, and
the modal mixing is also serious. To better compare with the proposed method, the corresponding
envelope spectrum is also made and the result is shown in Figure 22. While it has successfully
extracted the modulation signal of the simulated gear fault, it has not extracted the impact signal of
the simulated bearing fault. It can be understood that EEMD cannot extract weak impulse components
from complex faults in strong noise environment, but the proposed method successfully extracts all
the fault components. Obviously, the method proposed in this paper is better than EEMD.
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Figure 22. Envelope spectrum of the decomposition results obtained by EEMD.

To further illustrate the advantages of the ISSD method, it is compared to Modified Variational
Mode Decomposition (another gearbox fault diagnosis method found in Reference [28]). For the theory
of MVMD, please read Reference [28]. Figure 23 is the time-domain diagram of the above simulation
signal decomposed by the MVMD, and Figure 24 is the corresponding frequency-domain diagram.
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Figure 23. The results decomposition obtained by modified variational mode decomposition.
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Figure 24. Frequency-domain diagram of the decomposition results obtained by MVMD.

As shown in Figures 23 and 24, IMF1 is the components of the sinusoidal signal, IMF2 is the
components of modulated signals and IMF3 is the components of impact signals. Although the
MVMD method extracts all fault frequencies successfully and there is no modal mixing, amplitude
of the impact component is smaller than the proposed method. More importantly, the threshold of
permutation entropy in the MVMD method needs to be selected by experience, which makes MVMD
not an adaptive method. Choosing different thresholds will produce more different results. Therefore,
compared with MVMD, the proposed method should be selected with higher priority to extract the
composite fault of the gearbox.

Moreover, author is concerned about the speed of the above methods. Table 3 shows the running
time of the above methods when they run in MATLAB 2016. The value is obtained through MATLAB's
own timer. As shown in Table 3, the time taken by the proposed method is the longest. This is easy
to understand because the proposed method is more complex and involves parameter optimization.
However, after just a few seconds, it has almost no effect. We are more concerned about the effect of
the method and the result of diagnosis.

Table 3. Run time of each method.

Method SSD EEMD ISSD MVMD
Time/s 2.14 4.39 8.53 5.68

6. Experimental Verification

The effectiveness of the proposed method is further tested by using experimental gearbox
vibration signals. The closed power-flow gearbox test rig is presented in Figure 25. The main
components of the test rig include test gearbox, console, motor, accelerometer of three directions,
and so on. The power of the motor is 30 kw, and the range of speed adjustment is 120 r/min to
1300 r/min.

Figure 25. Experiment platform. 1—Speed-adjustable motor, 2—Coupling, 3—Accompanied gearbox,
4—Speed reversing instrument, 5—Torsion bar, 6—Test gearbox, 7—Acceleration sensor 1#, and
8—Acceleration sensor 2#.
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To obtain the compound fault, the groove of 3 x 2 was machined by Electron Discharge Machining
on the outer ring of the bearing, and the gear with pitting was used to carry out the experiment.
The specific fault is shown in Figure 26. The number of gear teeth is 18 and the bearing type is 32,212.
The type of accelerometer for collecting vibration signal is YD77SA. Its sensitivity is 0.01 v/ms?, and
its installation location is shown in Figure 25. During the experiment, the shaft speed was 1200 r/min,
the sampling frequency was 8000 Hz, and the sampling point was 4096. The calculated fault frequency
is shown in Table 4.

Table 4. Fault frequency.

Rotation Speed Rotational Gear Meshing Fault Frequ(?ncy of
Frequency Frequency Outer Ring
1200 rpm 20Hz 360 Hz 160.2 Hz

(a) outer ring fault through Electron Discharge Machining (b) Spalling failure of gear

Figure 26. Bearing and gear fault diagram.

It can be observed from Figure 27a that the periodic impact of the collected vibration signal is
not obvious. Figure 27b is a frequency domain diagram obtained by Fast Fourier Transform (FFT) of
the vibration signal. It is obvious that the fault period is overwhelmed by noise, and it is impossible
to judge whether there is a fault. We respectively use the traditional SSD, EEMD and the method
proposed in this paper to process the vibration signal, and compare the effect of each method.

@ ()
E 35
'7;1 =
<C E’. 0
0 01 02 03 04 0 1000 2000 3000 4000
Time/s Frequency/Hz
(a) Time Domain (b) Frequency domain

Figure 27. The vibration signals collected by sensors.

6.1. Decomposition Results Obtained by Traditional Singular Spectrum Decomposition

The obtained vibration signal was analyzed by traditional SSD method, and the obtained
decomposition results are shown in Figures 28 and 29. Figure 28 is time domain graph of the
decomposition result, and Figure 29 is frequency domain graph after FFT. The signal is decomposed
into 10 layers, the first five layers are noise components, and the sixth layer is close to the double
frequency of gear fault frequency. The seventh layer is the gear failure frequency, and the eighth to
tenth layers are meaningless interference components. It is obvious that the gear fault frequency can
be extracted by the SSD method, but the frequency 160.2 Hz, corresponding to the bearing failure,
cannot be extracted.
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Figure 28. Time-domain diagram of decomposition results obtained by SSD.
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Figure 29. Frequency domain diagram of decomposition results obtained by SSD.
6.2. Decomposition Resultsobtained by Singular Spectrum Decompositiontraditional

The obtained vibration signal was analyzed by the EEMD method, and the obtained
decomposition results are shown in Figures 30 and 31. As shown in Figure 31, the signal is decomposed
into 12 layers, the first layer contains a lot of noise, and the corresponding frequency of the second
layer is close to the double frequency of the gear failure. The third layer has amplitude at frequency
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360 Hz, but it is not the maximum amplitude. The maximum amplitude is 441.6 Hz, which is a
meaningless interference frequency, indicating that there is great noise interference. The fourth to
twelfth layers are meaningless interference components. Obviously, EEMD method cannot extract all
the fault frequencies. Compared with SSD method, it not only has more pseudo components, but also
the extracted gear fault frequency is not clear.
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Figure 30. Time-domain diagram of decomposition results obtained by EEMD.
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Figure 31. Frequency domain diagram of decomposition results obtained by EEMD.
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6.3. Decomposition Results Obtained by the Proposed Method

The signal is analyzed by the method proposed in this paper. Firstly, the CS algorithm is used to
get optimal filter length of MEDA. The search range is set to [1, 680], and other parameters are the
same as in the previous section. It can be obtained that the best filter length is L = 54. MEDA algorithm
with the best filter length is used to process the signal, and the results are shown in Figure 32. It can be
observed that there is an obvious periodic impact in the signal.

Amplitude

0
O 1 1
0 01 0.2 0.3 0.4 0.5
Time/s

Figure 32. Results obtained by MEDA for processing the signal.

Then, SSD algorithm is used to process the signal and get 8 components. The correlation coefficient
between each SSC component and the original signal is calculated, and the strongly correlated
component (coefficient greater than 0.2) is selected for analysis. The results are shown in Figure 33.
Table 5 shows the correlation coefficients of each component. Only SSC5 and SSC6 meet the conditions,
and the other components are discarded. Figure 31 shows the time domain and frequency domain
diagrams of SSC5 and SSC6. Obviously, there is no modal mixing. Moreover, as shown in Figure 33,
it can be easily found that the frequency corresponding to SSC5 is 360 Hz, which is the frequency
of gear fault. The frequency of component SSC6 corresponds to 160.2 Hz, which is the frequency of
bearing fault.

Table 5. Correlation coefficients of components.

Components SSC1 SSC2 SSC3 SSC4 SSC5 SSCe SSC7 SSC8
CC 0.0678 0.1023 0.0756 0.1432 0.3624 0.2715 0.0125 0.0416
SSC5
5 1 360
s T
g -5 0
= 50 055506 0 2000 4000
160.2
E 0 WMWWMWWM 0.5 “A/
-5 0
0 0.5 0 2000 4000
Time/s Frequency/Hz

Figure 33. The result obtained by the proposed method.

Compared with traditional SSD method and EEMD method, the proposed method successfully
extracts all the fault frequencies in the experiment, while traditional SSD and EEMD methods cannot
extract the bearing fault frequency. It can be concluded that the proposed method is better than
traditional SSD and EEMD methods in practical applications.

7. Conclusions

This paper proposes improved SSD method and successfully applied to the gearbox composite
fault diagnosis. The proposed method can effectively extract the weak components of compound faults
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in gearbox, and the effectiveness of the proposed method is verified by simulation and experiment. In
contrast, traditional SSD and EEMD methods cannot extract weak impact signal. Through simulation
and experiment, the following conclusions can be drawn:

(1) Minimum Entropy Deconvolution Adjusted can enhance the impulse component and reduce
the noise, but its ability to reduce and enhance the impulse component is greatly affected by its
parameter, the length of filter. The cuckoo optimization algorithm can make its parameters adaptive
and achieve the best results.

(2) Singular Spectrum Decomposition algorithm has high decomposition precision and strong
ability to suppress pseudo component and modal mixing. However, noise has a great influence on it,
and it is difficult to extract weak impact components in a strong noise environment.

(3) The optimized MEDA is used as the pre-filter of SSD, which can make up for the limitations
of SSD algorithm. Moreover, the modal reconstruction method can eliminate the influence of modal
mixing on the diagnosis results. The fact proved that the proposed method successfully extracts all the
complex fault features including weak impact in the gearbox. Finally, the effectiveness and superiority
of the proposed method are verified by simulation and experiment. The method presented in this
paper provides a new idea for extracting weak complex fault features and has some reference value.
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