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Abstract: The presented THz receiver is based on an antenna coupled titanium micro-bolometer. A
new geometrical design improves the robustness and extends the lifetime of the sensor. A study of
sensor lifetime using different biasing currents is presented. The lifetime was verified by several
tests and over 1000 operating hours. A new micro-bolometer sensitivity measurement algorithm is
presented in the paper and measurement results using the proposed algorithm are shown. The new
algorithm was developed to be suitable for ATM production testing. In the paper, a novel feature
called “sensitivity boosting” is described, together with its influence on sensitivity and lifetime.
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1. Introduction

Imaging and sensing in different frequency regions is an important requirement in today’s
industrial, medicine and security sectors. One of the most researched frequency regions that has
attracted a lot of attention in the last years is the terahertz (THz) region. The THz region covers the
frequencies from approximately 100 GHz up to 10 THz [1,2]. THz sensors and THz sensor systems have
already been in constant development since 1960, but the technology for fabricating sensors capable of
operating at room temperature only became mature enough at the beginning of this millennium [3,4].
The sensors are basically divided in two groups: passive sensors [5,6] and active sensors mainly used in
Time Domain Spectroscopy (TDS) systems [7]. The sources used for THz illumination [8] still represent
the main part of the final THz system price, performance and volume. In the case of solid-state
THz sources [9–11] they provide a high THz illumination power (from hundreds of mW (10−3 W)
to several mW) but they also define the THz system central frequency and bandwidth. They can in
principle cover only the lower part of the THz frequency region up to 1 THz. On the other hand,
TDS sources cover higher portion of THz frequencies from 1 THz to 10 THz, but they offer low power
illumination [12] in the µW (10−6 W) range. TDS systems use picosecond (10−12 s) or femtosecond
(10−15 s) pulses which provide broadband frequency THz illumination, but as mentioned, with low
power levels.

This paper focuses on titanium (Ti) micro-bolometer THz sensors, which output is based on
sensing the thermal changes of elemental electrical resistivity. Similar micro-bolometer sensors
that are used for imaging in the Infra-Red (IR) region are well known already for decades [13].
IR micro-bolometers receive energy from electro-magnetic (EM) waves that have wavelengths in the
range of the bolometer physical dimensions. At the THz frequencies, the wavelengths are longer;
therefore, the same principle as in the IR region would not work, as the received “heat” would
be immediately annulled by heat transfer into the surrounding space due to the large volume of
the micro-bolometer. Monolithic silicon bolometers are used as sensor devices for astrophysical
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observations [14] where Si micro-bolometers are coated with bismuth and positioned along the E-plane
of the waveguide. Such micro-bolometers can reach sensitivities up to 2 × 109 V/W when cooled
down to 1 K. Platinum nano-strip bolometers were also used in the W-band as room temperature
sensors [15], which are able to achieve high thermal sensitivities of up to 50,000 K/W. As one of the
solutions how to receive and measure the incoming radiation power in the THz region, a coupling
antenna was proposed in [16]. The sensor operates at room conditions. The proposed method uses a
standard Si micromachining process to produce high sensitivity THz sensors.

Coupled Antenna as Radiation Receiver

A micro-bolometer and coupled antenna were fabricated, using patent pending technology [17].
The resulting sensors are shown in Figure 1a,b.
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antenna and micro-bolometer sensing element are marked. The main driving factor of the different 
antenna band fabrication is in the change of material response (transmittance and absorbance of the 
materials) [19] and the fact of different absorption of THz waves, due to water vapor in the air.  

The received power which is transferred to the Ti micro-bolometer as mentioned before, must 
be provided carefully, but even so, some power received by the micro-bolometer is lost if the antenna 
is fabricated on a bulky substrate. To overcome this issue, the antenna is fabricated on a thin 3 µm 
silicon nitride membrane. The micro-bolometer is then additionally pre-stressed and placed over a 
small cavity in the membrane to form a bridge. A 3D confocal microscope image of the micro-bridge 
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Figure 1. THz sensors for different THz bands: (a) A 300 GHz narrow-band antenna with Ti
micro-bolometer; (b) Wide-band antenna with Ti micro-bolometer (the receiving region is from 80 GHz
to 1.1 THz).

Figure 1a,b present two versions of several variants, which were designed and fabricated to cover
the main THz sub-regions for the different applications [18]. In Figure 1a,b the receiving antenna and
micro-bolometer sensing element are marked. The main driving factor of the different antenna band
fabrication is in the change of material response (transmittance and absorbance of the materials) [19]
and the fact of different absorption of THz waves, due to water vapor in the air.

The received power which is transferred to the Ti micro-bolometer as mentioned before, must be
provided carefully, but even so, some power received by the micro-bolometer is lost if the antenna
is fabricated on a bulky substrate. To overcome this issue, the antenna is fabricated on a thin 3 µm
silicon nitride membrane. The micro-bolometer is then additionally pre-stressed and placed over a
small cavity in the membrane to form a bridge. A 3D confocal microscope image of the micro-bridge is
presented in Figure 2.

The main power loss is at the antenna connections, which were already designed and their
fabrication optimized. To improve the system, two main parameters must be analyzed and measured.
Those are sensitivity of micro-bolometer and its lifetime.
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2. New Method for Micro-Bolometer Sensitivity Measurement

Sensitivity of a micro-bolometer <e is defined with a simplified equation:

<e ≈
I·TC·R

Gth
(1)

where I is the biasing current, TC is the temperature coefficient of the micro-bolometer material, R is a
sensor resistance and Gth is the thermal conductivity of the sensor. From Equation (1) it can be seen
that for boosting sensor sensitivity, without changing its geometry, only the material (R, TC, I would
change) or biasing current (would have influence on I) can be changed. As the material properties
were investigated precisely [20], the boosting can be done only with increasing the biasing current.
The maximal biasing current I0 can be calculated by the equation:

I0 =

√
Gth

R0·TC
(2)

By definition [21] the temperature when I0 is applied goes to infinity. For typical titanium
thermistors with TC 0.2%/K, the biasing current should not exceed 35% of I0. The margin for our
operating bias current I was therefore defined as a quarter of the maximal bias I0. As the increase
of I to levels higher than I0/4 has an impact on sensor lifetime, several measurements with different
sensors were done to find optimal value of I for sensitivity boosting.

The main reason for a new method proposal is the rather complex and unsuitable basic
method already used at the end of fabrication line for Automatic Test Measurements (ATM),
where improvements of measuring time and precision are needed.

New Method for Sensitivity Measurement and Calculation

The new method is based on the following basic equation:

V1 = R1·I1 (3)

where V1, R1 and I1 are initial values and:

V2 = R2·I2 (4)

where V2, R2 and I2 are values after applying a known current step ∆I to the bolometer. The equations
can be further evolved as:

V2 = R2·I2 = (R1 + ∆R)·( I1 + ∆I)= R1 I1 + R1∆I + ∆R(I1 + ∆I) (5)
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where ∆R is the change of micro-bolometer resistance due to heating. The voltage difference on the
bolometer through the measurements can be derived from Equations (3) and (5):

∆V = V2 −V1 = R1∆I + ∆R(I1 + ∆I) = R1∆I + ∆RI2 (6)

The only important part for <e of this voltage difference is:

∆V = ∆RI2 (7)

As the sensitivity is defined as the change of voltage on micro-bolometer divided by received
power, equations for the initial power on the micro-bolometer and each step should also be given.

Initial power is described as:
P1 = V1·I1 (8)

and power at the following step is stated as:

P2 = V2·I2 = (V1 + ∆V)·(I1 + ∆I) = V1 I1 + ∆VI1 + ∆I(V1 + ∆V) (9)

The power change on the micro-bolometer can be now derived from Equations (10) and (11) as:

∆P = P2 − P1 = ∆VI1 + ∆I(V1 + ∆V) = ∆VI1 + ∆IV2 (10)

and after including the following term:
I1 = I2 − ∆I (11)

the final power difference can be stated as:

∆P = ∆V(I2 − ∆I) + V2∆I = ∆VI2 − ∆V∆I + V2∆I (12)

Finally, the micro-bolometer sensitivity <e can be stated as:

<e =
∆V
∆P

=
∆RI2

∆VI2 + V2∆I − ∆I∆V
(13)

or for each sequential step, knowing that the ∆I∆U part can be neglected due to its low value,
we can write:

<e =
∆V
∆P

=
∆RI

∆VI + V∆I
(14)

Equation (13) includes the contribution of voltage change due to the TC of resistance and
the contributions of power changes due to changes of voltage and current. With this method,
all micro-bolometers’ sensitivity was calculated and it was proved to be accurate and suitable for
using at a wafer test level.

3. Results

In this section, the results of micro-bolometer resistance and sensitivity measurements will be
presented, using the method proposed in the previous section. Then the lifetime measurements of
micro-bolometers, operating on room temperature is presented. The sensitivity boosting method and
measurements, using different currents, obtained by lifetime measurements are shown. The section
concludes with the new micro-bolometer design proposal, which allows higher biasing currents and
has a lower heat dissipation factor.

3.1. Measurement of Micro-Bolometer Sensitivity

To prove the method and measure the resistance change and sensitivity of micro-bolometers,
the results of four different micro-bolometers, representing an average element from one of the



Sensors 2018, 18, 3793 5 of 10

fabricated lots were determined. Table 1 presents the sensor data, obtained at the end of the fabrication
line at the final control point. The table includes only data of lots used for sensitivity measurement at
room temperature Ta = 25 ◦C.

Table 1. Micro-bolometer parameters.

Marking Lot No. R0
1 [Ω] I0 [µA] Gth [µW/K] <e [V/W]

Bolometer 1 A02 511 1038 0.69 264
Bolometer 2 A06 533 1066 0.76 257
Bolometer 3 A07 553 971 0.66 282
Bolometer 4 A09 567 875 0.54 313

1 The value is measured at 100 µA bias current.

From the table it can be seen that for the measurements, micro-bolometers with different initial
resistance and maximal biasing current were chosen. The main reason is to cover different marginal
cases. The resistances of the micro-bolometers in the whole batch can reach values, which are not
included in this table. Such sensors are not used regularly, but for specific types of applications.
All micro-bolometers are made from titanium, with TC = 0.13% and they have the same dimensions—
12 µm × 1.2 µm and they are 15 nm thick on average. The averaged results are shown in Figure 3.
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The first several measured points are not shown due to unstable measurements. From Figure 3a,
it can be seen that the resistance curves match the expected curves and the measured values in Table 1.
In addition, the sensitivity matches the values from Table 1. From this, it can be concluded that the
proposed method is correct and applicable for ATM micro-bolometer sensitivity testing. It can be also
concluded from Figure 3b that the sensitivity of the device can be doubled, if the current is raised by a
factor of two. This provides a good opportunity for sensitivity boosting—the change of biasing current
can double the sensitivity in the requested moment. As the biasing current increase is reflected in the
device lifetime and as sensitivity boosting was one of the goals, the measurement of micro-bolometer
lifetime was performed. These lifetime measurement results are presented in the next section.

3.2. Micro-Bolometer Lifetime Measurements

Sixteen micro-bolometers—Bm1 to Bm16—representing the average sensing element as in the
previous section, were tested with four different biasing currents to determine the micro-bolometer
lifetime. The testing results are shown in Figure 4.

In Figure 4, the results of the micro-bolometers connected to different biasing currents, placed in a
controlled temperature chamber, are shown. The cases presented in Figure 4a–c show duplication of
micro-bolometer voltage due to duplication of the biasing current for each case. In addition, slight
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temperature variations can be noticed during the measurements due to the ventilation in the chamber
switching ON and OFF.

The last case (Figure 4d) shows how the micro-bolometers were burned out—the Zener protection
diode (VZ = 6.2 V) limited the voltage in that case. First, the micro-bolometers Bm13 (black) and Bm14
(red) were burned, then after 170 h Bm15 and at the end of monitoring at 455 h the last one, Bm16,
was also destroyed.
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All the monitoring of bolometer operation at lower currents were longer (approximately 1000 h),
but since the last of the micro-bolometers biased with 600 µA was burned after 455 h, all results in
Figure 4 were trimmed accordingly. From the measured results it can be concluded that the “boosting”
current of 400 µA can be used without any influence on the micro-bolometers.

3.3. Sensitivity Boosting Method

Usually, imaging sensors are assembled in imaging arrays or lines. Sensitivity boosting is normally
provided for the whole array or it is obtained using additional optical lenses. In the bottom part of
the THz frequency region, where the presented sensors are used, conventional optics for visual light
is not applicable. The usage of custom-made THz optics can be applied but it also boosts the signal
for the whole imager area. There is no possibility for boosting the sensitivity of a detailed part of an
image. As it was already mentioned before, the sensitivity boosting of the presented THz sensors can
be done by switching the biasing current of a single element between two values—a basic one for



Sensors 2018, 18, 3793 7 of 10

normal screening and a higher value for high sensitivity screening. This can be done for those pixels
where a high sensitivity image view is needed, and not necessarily for the whole area. The values of
the current should be still in the micro-bolometer safe operation region not to cause sensor burnout.

Figure 5 presents the results of sensitivity measurements of four micro-bolometer sensors
(Bm17–Bm20) with changed biasing for a certain amount of time. The sensors were taken from
different lots. The boosting can be done only for short time period and image should be saved at
that moment. Even if the THz sensors survived operation for a long time at higher current, their
lifetime would be shorter. The basic biasing current used in this case was 200 µA for normal screening
mode measurements and 400 µA for high sensitivity mode. The high sensitivity turn-on time was at
360 µs and turn-off at 510 µs. The rise and fall times for current switching were chosen to be around
1 µs, allowing the sensor to heat up or cool down as the sensor thermal time constant is 0.5 µs [18].
It can be noted that the sensors have different base sensitivity, as well as high sensitivity. This is in
the majority of cases due to different thermal constants and initial resistances. As the sample sensors
were taken from different lots, this behavior is expected. The values of base sensitivities are around
220 V/W and at higher current value are more scattered—from 350 V/W up to 540 V/W. The ratio
between basic current and boosting current and basic sensitivity and boosted sensitivity is not the
same for all sensors, mainly due to their different thermal constants and because of small variations in
micro-bolometer dimensions. The proposed sensitivity measuring method will give enough data to
predict and react accordingly to equalize the sensitivity and prevent possible burnouts. All sensors
were measured at room temperature without vacuum encapsulation. In the case of encapsulation in
vacuum, the sensitivities would be at least doubled.
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Figure 5. Sensitivity boosting measuring results.

One of the main issues when using higher current values is possible sensor damage, which can
happen at high current switching. From the previous THz sensor thermal behavior research [22] it
can be derived that the micro-bolometer has a main heating point in the middle of the micro-bridge,
as that is where the highest current density and the lowest thermal conductance are. Also in all cases,
when the bolometer was burned out, this happened in that point. That was the reason to study a new
micro-bolometer design, which would decrease the thermal stress on the micro-bridge and therefore
distribute the heating across the whole area of the micro-stripes without losing any sensitivity. The new
design description is given in the following section.

3.4. New Micro-Bolometer Design

The reasons of the new design were already highlighted in the previous section. The main purpose
of the new design was to lower the current density in the middle of the micro-bridge without losing
the sensitivity.

From the fabrication point of view, there are not a lot of possibilities for expanding the central
area of the micro-bridge. As the micro-bolometers are fabricated on a 2–3 µm silicon-nitride membrane
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that is additionally etched below the bridge, expansion below the flattened central plane is not
achievable with simple fabrication steps. The thickening above the flattened middle structure of the
current design, which can be seen on Figure 6a, would require an additional mask and at least three
additional fabrication steps. Therefore, the only straightforward solution was to widen the central area
by approximately 20% to compensate for the current density and thermal conductance differences.
The proposed design can be seen in Figure 6b. The proposed new THz sensor is currently in fabrication
and has not been measured yet.Sensors 2018, 18, x FOR PEER REVIEW  8 of 10 
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Figure 6. New titanium micro-bridge design with bridge expansion and cavity (a) current Ti
micro-bolometer design (b) proposed new design.

To prove the proposed design, simulations were done in Comsol Multiphysics® (Comsol Inc.,
Burlington, MA, USA). The micro bolometer structure was designed in Solidworks® (Dassault Systemes
SolidWorks Corporation, Waltham, MA, USA), based on the GDS layout file. The basic design
presented in Figure 6a was simulated first, using several biasing currents as shown in Figure 7a.
The temperature in the central area, when all thermal flows are included, can reach up to 900 ◦C at
600 µA biasing current.
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Figure 7. Simulation results of temperature distribution: (a) temperature distribution in the current
micro-bolometer design at different biasing currents, (b) temperature distribution of current and
proposed micro-bolometer design at 600 µA biasing current.

From the Figure 7b, it can be seen that when the design shown in Figure 6b with wider
micro-bolometer central area is used, the temperature decreases due to the lower current density.
It can be concluded that in this case, a higher biasing current could be used and therefore higher
sensitivity can be reached.
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4. Discussion and Conclusions

The proposed sensitivity measuring method turned out to be fast and precise. The micro-bolometers
have stable behavior and do not vary within a single lot. Further investigation is needed to determine
how to stabilize the behavior between the LOTs, but the sensitivity measurement method will remain
the same.

The average sensitivity of the THz micro-bolometer sensors at 200 µA is typically 200 V/W
and can be increased by a biasing current increase. However, the maximal level of biasing current
tends to be approximately 500 µA. The average resistance is 550 Ω. The future research will be
focused on the method that will ensure constant micro-bolometer resistance to maintain a good match
with the antenna impedance at the selected frequency. This is also important when changing the
micro-bolometer dimensions. Future work will be therefore oriented toward future modifications
of our micro-bolometer design to reach the best sensor sensitivity and longer lifetime, thus enabling
sensitivity boosting.
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