
sensors

Article

New Dark Area Sensitive Tone Mapping for Deep
Learning Based Traffic Sign Recognition

Jameel Ahmed Khan *, Donghoon Yeo and Hyunchul Shin *

Division of Electrical Engineering, Hanyang University ERICA, Ansan 426-791, Korea; dhyeo@hanyang.ac.kr
* Correspondence: jameelkhan@hanyang.ac.kr (J.A.K.); shin@hanyang.ac.kr (H.S.);

Tel.: +82-3-1400-4083 (J.A.K.); +82-3-1400-5176 (H.S.)

Received: 3 October 2018; Accepted: 2 November 2018; Published: 5 November 2018
����������
�������

Abstract: In this paper, we propose a new Intelligent Traffic Sign Recognition (ITSR) system with
illumination preprocessing capability. Our proposed Dark Area Sensitive Tone Mapping (DASTM)
technique can enhance the illumination of only dark regions of an image with little impact on bright
regions. We used this technique as a pre-processing module for our new traffic sign recognition
system. We combined DASTM with a TS detector, an optimized version of YOLOv3 for the detection
of three classes of traffic signs. We trained ITSR on a dataset of Korean traffic signs with prohibitory,
mandatory, and danger classes. We achieved Mean Average Precision (MAP) value of 90.07%
(previous best result was 86.61%) on challenging Korean Traffic Sign Detection (KTSD) dataset and
100% on German Traffic Sign Detection Benchmark (GTSDB). Result comparisons of ITSR with
latest D-Patches, TS detector, and YOLOv3 show that our new ITSR significantly outperforms in
recognition performance.

Keywords: Korean Traffic Sign Detection; Dark Area Sensitive Tone Mapping (DASTM); classical
tone mapping; luminance enhancement

1. Introduction

Development of automatic traffic sign recognition systems with high accuracy is a very important
issue because this system can alert the driver about the road conditions and speed limits by recognizing
the traffic signs from a large distance. Recognizing traffic signs from a road image is a challenging
task due to occlusions, variations in illumination, variable speed of vehicle, and variation in size of a
traffic sign due to variable distance. Illumination of the scene has also high impact on the visibility
of objects in the image. We observed that traffic signs often appear at the top portion of road images
and the bright region of sky in the background can seriously affect the visibility of these traffic signs.
Low illumination on a traffic sign region due to bright background affects the recognition process and
detector may fail to detect these traffic signs. Several luminance enhancement techniques have been
proposed in the last few years, such as global tone mapping by Erik et al. [1] and global and local tone
mapping by Shin et al. [2]. However, these techniques are not effective for traffic sign recognition.

Korean Traffic Sign Detection (KTSD) dataset by Yawar et al. [3] is a challenging dataset because
it contains traffic signs with low visibility due to low illumination and small size. Yawar et al. trained
their D-patches [3] on three super classes, Prohibitory class, Mandatory class, and Danger class, and
achieved an average detection accuracy of 72.37% on KTSD. However, there were some errors in the
ground truth annotations of KTSD and we corrected those errors and tested it on D-patches. After
correcting the erroneous annotations, detection accuracy of D-patches increased to 79.6% on KTSD.
We trained YOLOv3 by Joseph et al. [4] on our self-made dataset and tested it on KTSD. It gave us
recognition rate of 73.9%. Recognition rate of the recent TS detector on KTSD is 86.6% [5].
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The goal of our research was to increase the detection accuracy on KTSD dataset, and hence we
developed a new Intelligent Traffic Sign Recognition (ITSR) system with illumination preprocessing
capability. ITSR is an intelligent system that takes the input image and processes it to detect traffic
signs of prohibitory, mandatory, and danger classes, even in low illumination condition. This system is
fast and efficient as compared to other detection methods and the detection accuracy of ITSR is 90.07%
on KTSD. We also tested ITSR on German Traffic Sign Benchmark (GTSDB) [6] and achieved 100%
accuracy. For developing ITSR, the following approach was used.

We made a new training dataset of same three super classes with large, medium, and small size
traffic signs. This dataset contains 3300 images on various road conditions in South Korea.

In Figure 1, examples of three super classes of Korean traffic signs have been shown.

Sensors 2018, 18, x FOR PEER REVIEW  2 of 13 

 

We trained YOLOv3 by Joseph et al. [4] on our self-made dataset and tested it on KTSD. It gave us 
recognition rate of 73.9%. Recognition rate of the recent TS detector on KTSD is 86.6% [5]. 

The goal of our research was to increase the detection accuracy on KTSD dataset, and hence we 
developed a new Intelligent Traffic Sign Recognition (ITSR) system with illumination preprocessing 
capability. ITSR is an intelligent system that takes the input image and processes it to detect traffic 
signs of prohibitory, mandatory, and danger classes, even in low illumination condition. This system 
is fast and efficient as compared to other detection methods and the detection accuracy of ITSR is 
90.07% on KTSD. We also tested ITSR on German Traffic Sign Benchmark (GTSDB) [6] and achieved 
100% accuracy. For developing ITSR, the following approach was used. 

We made a new training dataset of same three super classes with large, medium, and small size 
traffic signs. This dataset contains 3300 images on various road conditions in South Korea. 

In Figure 1, examples of three super classes of Korean traffic signs have been shown. 

 

Figure 1. Three super classes of traffic signs used for experiment. 

For the detection of traffic signs, we have used TS detector and trained it on our new dataset. TS 
detector is an optimized version of YOLOv3 [4]. For detecting small traffic signs, TS detector down 
sampled the input image by the factor of 32, 16 and 4 to make the grid denser and pre-calculate the 
anchor box size from training data. Instead of using three anchor boxes at each detection stage, TS 
detector uses five anchor boxes in the first detection stage and two anchor boxes in the second and 
the third detection stage [5]. We analyzed all error cases and concluded that TS detector is failing to 
detect those traffic signs that have low illumination. To resolve this problem and to enhance the 
illumination of dark traffic signs, we used classical tone mapping technique. We applied this 
technique on test dataset and analyzed the results. Although the luminance of dark traffic signs 
enhanced, this technique degraded the quality of already bright traffic signs, and detection algorithm 
failed to show satisfactory performance. To overcome this problem, we developed our new Dark 
Area Sensitive Tone Mapping (DASTM) algorithm. By using DASTM, we can enhance the luminance 
of only dark regions in images, and thus we can achieve significant improvement in detection 
accuracy on KTSD. In Figure 2, typical detection results, without tone mapping, after classical tone 
mapping, and after DASTM, are compared. 

Figure 1. Three super classes of traffic signs used for experiment.

For the detection of traffic signs, we have used TS detector and trained it on our new dataset.
TS detector is an optimized version of YOLOv3 [4]. For detecting small traffic signs, TS detector
down sampled the input image by the factor of 32, 16 and 4 to make the grid denser and pre-calculate
the anchor box size from training data. Instead of using three anchor boxes at each detection stage,
TS detector uses five anchor boxes in the first detection stage and two anchor boxes in the second
and the third detection stage [5]. We analyzed all error cases and concluded that TS detector is failing
to detect those traffic signs that have low illumination. To resolve this problem and to enhance the
illumination of dark traffic signs, we used classical tone mapping technique. We applied this technique
on test dataset and analyzed the results. Although the luminance of dark traffic signs enhanced, this
technique degraded the quality of already bright traffic signs, and detection algorithm failed to show
satisfactory performance. To overcome this problem, we developed our new Dark Area Sensitive
Tone Mapping (DASTM) algorithm. By using DASTM, we can enhance the luminance of only dark
regions in images, and thus we can achieve significant improvement in detection accuracy on KTSD.
In Figure 2, typical detection results, without tone mapping, after classical tone mapping, and after
DASTM, are compared.
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Figure 2. Typical results of detection: (a) original image; (b) detection without tone mapping, in which
a dark traffic sign is missed; (c) detection after classical tone mapping, in which a bright traffic sign is
missed; and (d) detection after DASTM, in which both traffic signs are successfully detected.

2. Related Works

2.1. Traffic Sign Detection

In recent years, several techniques for traffic sign detection have been proposed. Yawar et al.
in D-patches [3] used discriminative patch approach to detect occluded traffic signs. D-patches is
capable of occlusion handling in detection process. They used ACF detection [7] framework and
extracted features from discriminative patches of the traffic signs. This approach performed well in
occlusion cases but it failed to detect low illumination traffic signs. They tested D-Patches on KTSD and
German traffic sign detection benchmark (GTSDB), and achieved 72.37% accuracy on KTSD and 100%
accuracy on GTSDB. Zhe et al. [8] collected 100,000 images to make traffic sign benchmark in China
and named this benchmark Tsinghua-Tencent 100K. Zhe et al. used convolutional neural network
(CNN) to detect and classify the traffic signs. Chung et al. [9] used You Look Only Once (YOLO)
framework for detection and trained it on Belgium Traffic Sign Dataset [10]. They used 13 classes of
different shapes and colors. They achieved 33.8% Mean Average Precision (MAP) on their test dataset.
Marcin et al. proposed a system to read speed limit of traffic signs by RANSAC method [11]. They
only proposed the method of reading the speed limit, but fast and accurate detection of traffic sign
is still an important issue. Ayoub et al. proposed border’s color and shape features classification by
random forests to detect traffic signs [12]. Amara et al. used deep learning algorithm to detect traffic
signs [13]. They achieved 97.6% recognition rate on GTSDB. Chunsheng et al. [14] proposed a Traffic
Sign Recognition (TSR) framework that extracts region of interest before detection. They used split-flow
cascade tree detector and rapid occlusion-robust traffic sign classification method for detecting traffic
signs. Zhonrong et al. [15] used Faster R-CNN [16] for traffic sign detection and achieved mAP result
of 0.34493. Similarly, some recent detection techniques of CNN can also be used for traffic signs
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detection from videos, such as “Two-Stream Multirate Recurrent Neural Network” proposed by
Zhiqiang et al. [17]. In [18], authors compared the classification accuracy with standard deviation.

2.2. Detection Methods

Joseph et al. proposed YOLO 9000, a state of the art, real time object detection system [19]. This
system can detect wide variety of object classes. YOLO 9000 can detect 9000 objects in real time.
SSD model [20] uses single deep neural network for object detection while YOLOv3 [4] is updated
version of YOLOv2 [19]. YOLOv3 uses logistic regression for calculating the confidence score of object
in each bounding box. YOLOv3 uses variant of Darknet, which has a 53-layer network trained on
Imagenet dataset [21]. However, 53 more layers are stacked on it to form a 106-layer fully convolutional
architecture for detection tasks. YOLOv3 includes many important elements like residual blocks, skip
connections, and upsampling in its architecture.

2.3. Tone Mapping

Erik et al. presented a technique named “Photographic Tone Reproduction for Digital Images” [1].
In this method, initially log average luminance is calculated and then the luminance is enhanced by
simple tone mapping as given below.

Ld(x, y) = L(x, y)/[1 + L(x, y)] (1)

where Ld(x, y) is enhanced luminance and L(x, y) is initial luminance.
Shin et al. [2] proposed a modified mapping function that considers the block level log-average

and the log-average of the whole image. A parameter α is used to set the tradeoff between the global
average and the local average. When α = 0, only global tone mapping is performed; when α = 1,
only block level tone mapping is performed; and 0 < α < 1 is for tradeoff between global and block
level tone mapping. The input image I(x, y) can be obtained from the luminance component L, and
reflectance component R of an image. Now, the global log-average luminance is calculated by the
following formula.

I(x, y) = L (x, y) × R (x, y) (2)

Lavg = exp(
1
N ∑

x,y
log[δ + L(x, y)]) (3)

where N is total number of pixels in an image, and δ is a small value to avoid singularity.
Drago et al. [22] proposed a technique called “adaptive logarithmic mapping” for producing

tuned images with high dynamic contents. They proposed gamma correction procedure for improving
the contrast of dark areas of image.

3. Proposed Intelligent Traffic Sign Recognition (ITSR) System

Our Intelligent Traffic Sign Recognition (ITSR) system can detect and classify three super classes
of traffic signs simultaneously. This system consists of two processing modules, tone mapping module
and detection module. In tone mapping module, we have developed our new Dark Area Sensitive Tone
Mapping (DASTM) technology. In DASTM, we have divided the input image into two regions: dark
region, and bright region, using a luminance threshold. DASTM is the first intelligent approach that
performs multiple luminance range based tone mapping on the input image. For detection module,
we used TS detector [5], our optimized version of YOLOv3 [4]. YOLOv3 is a deep learning detection
and classification algorithm based on Darknet. YOLOv3 uses filtering in convolution layers to resize
the image into small grids and detection is performed in three detection stages. YOLOv3 uses three
anchor boxes at each detection stage and the average loss is calculated in each iteration. While TS
detector [5] pre-calculates the size of anchor boxes from training data and uses five anchor boxes in the
first detection stage, and two anchor boxes in the remaining two detection stages. TS detector resizes
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the image into a denser grids, suitable for detecting small objects [5]. For training, we have developed
our new dataset on Korean traffic signs with prohibitory, mandatory and danger classes. We tested our
system on KTSD [3] and GTSBD [6]. For evaluation of detected traffic signs, we used Mean Average
Precision (MAP) and achieved 90.07% on KTSD and 100% on GTSDB.

3.1. Failure of Classical Tone Mapping and Need of DASTM

Traffic signs generally appear at the top region of an image, and usually the image of a traffic sign
becomes dark, due to the bright background sky region, as shown in Figure 3.
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The detector usually misses these dark traffic signs and detection accuracy is affected by this
problem. To detect these traffic signs, it is necessary to enhance their luminance and make them clear.
To resolve this problem, one may calculate the luminance of input image and apply a classical tone
mapping technique. The equation of classical tone mapping is given below.

Nlum = Slum × (1 + C)/(Slum + C) (4)

where Slum is the initial scaled luminance of the input image and its value is 0 ≤ Slum ≤ 1. The Nlum
is new calculated scaled luminance after tone mapping and C is the tone mapping parameter for
luminance enhancement. Although dark traffic signs became bright by this global tone mapping
technique, the quality of already bright traffic signs was degraded. This is because the sensitivity of
bright region is decreased, while the sensitivity of dark region is increased. Therefore, it is necessary
to develop a new technology that can enhance the sensitivity of only dark regions without affecting
bright regions too much.
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3.2. Dark Area Sensitive Tone Mapping (DASTM)

In this research, we have developed a new tone mapping method, DASTM, in which the luminance
range is divided into multiple regions, and different tone mapping functions are used for the divided
regions. For traffic sign detection, we have divided this range into two regions, dark region and bright
region. The regions are separated by setting a threshold value. We can further divide this range into
more regions depending upon applications.

First, we calculate the luminance of input image, scale it from zero to one, and name it as “Slum”.
We set a threshold value “thr” to divide the range of scaled luminance. The region with Slum below “thr”
is the dark region and the region with Slum above “thr” is the bright region. In DASTM, Nlum values
for dark and bright regions are calculated separately. Let Slum be scaled luminance (0 ≤ Slum ≤ 1),
Nlum be new scaled luminance, thr be threshold value, and C be a parameter, then Nlum values for both
the regions are computed by using the following equations.

If Slum ≤ thr
Nlum = Slum × (1 + C)/(Slum + C) (5)

else
Nlum = m × Slum + b (6)

Equation (6) is a straight line equation in which m is the slope of bright region line and b is a
constant. The slope m of a line passing two points, (x1, y1) and (x2, y2), is given by

Slope = (y2 − y1)/(x2 − x1) (7)

Let (x1, y1) = (Slum, Nlum) be the point when Slum = thr. We calculated Nlum at that point using
Equation (5), and (x2, y2) = (1, 1) is the ending point of the line, as shown in Figure 4. After calculating
m, we used the point (Slum, Nlum) = (1, 1) to find the value of b using Equation (6).
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Figure 5 shows the behavior of Nlum enhancement by changing the values of C from 0.5 to 2.0.
The maximum MAP is achieved when C = 1 and thr = 0.15 in DASTM. Further analysis of MAP is
given using tables in the Section 5. Although there is a slight change in luminance in bright region,
that change is negligible.
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4. Experimental Results

4.1. Making New Training Dataset

We have made our new dataset of Korean traffic signs for training. There are 3300 images of roads
in Korea with traffic signs of various sizes. We have annotated these images manually and used the
dataset to train our detection module.

4.2. Training and Testing

We have combined DASTM with TS detector, the optimized version of YOLOv3 framework to
detect small size and low illumination traffic signs well. For our experiments, we used a computer
containing core i7 CPU, 16GB RAM, under Linux operating system. We also installed NVIDIA TITAN
X GEFORCE GTX GPU on it. After using the initial weights from ImageNet [21] dataset, fine-tuning
of the detection module has been done using our new dataset. The training process took four to
five days by using a single GPU board, with NVIDIA CUDA [23] as a parallel computing platform.
The data were moved from CPU main memory to GPU memory and then to the cores of GPU for
parallel execution. While CPU instructs the GPU for processing of data, all the computation was done
on the GPU. Execution results were moved back to GPU memory and then to main memory. We
continued training until the average loss was reduced. Validation data were used for training analysis
to avoid overfitting. Then, the weight file and configuration file were saved to be used during testing.
The DASTM was applied only on testing data. The detection results were compared with the ground
truth to calculate the MAP for evaluation. Figure 6 shows the overall flow of our algorithm. By using
DASTM, the sensitivity of dark region is enhanced and the detection accuracy is significantly increased.
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4.3. Evaluation Method

The Mean Average Precision (MAP) was adopted to analyze the recognition rates. The detected
bounding box was compared with a ground truth bounding box to decide whether the prediction is
true. The Intersection Over Union (IOU) of bounding boxes was used to decide if the prediction is true
positive. If IOU ≥ 40%, the prediction is classified as a true positive. Otherwise, the prediction is false
positive. The IOU is calculated as follows.

IOU = (Bounding box area of intersection)/(Bounding box area of union) (8)

Then, the Precision and Recall values were computed by using

Precision = TP/(TP + FP) (9)

Recall = TP/(TP + FN) (10)

where TP is True Positive, FP is False Positive, and FN is False Negative. The Precision–Recall curves
were drawn using confidence score of prediction, and the area under the curve was computed to get
Average Precision. The MAP calculation codes form Cartucho [24] were used to analyze the results.
Figure 7 shows an example of a mandatory class prediction from KTSD, in which detected bounding
box is green, ground truth bounding box is sky blue, and for this example IOU is 62.05%.

Figure 8 shows experimental results of traffic sign detection on KTSD. We can see that ITSR is
able to detect small traffic signs from large distances. ITSR can detect all three classes simultaneously,
while D-patches method detects one class at a time.
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5. Discussion on Experimental Results

ITSR gives 90.07% MAP on KTSD and 100% on GTSBD. Further detailed results are given in
Tables 1–5. Figure 9 shows the graphs of recognition rates on KTSD. In Figure 9a–c, area under the
curve (in sky blue shade) is measured for calculation of Average Precision (AP) of individual class. We
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can see that AP of danger class is 93.98%, and this value is maximum among all three classes. MAP is
the mean of average precisions of all three classes as shown in Figure 9d.
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Figure 9. Best results achieved by ITSR on Korean Traffic Sign Dataset for three different classes: (a)
average precision of danger class; (b) average precision of mandatory class; (c) average precision of
prohibitory class; and (d) mean average precision of all three classes.

In Table 1, detection results are compared after applying DASTM and classical tone mapping on
KTSD and GTSDB. This comparison shows that our proposed DASTM gives best detection performance
on both datasets and shows significantly higher recognition rates.

Table 1. Comparison of DASTM with classical tone mapping.

Tone Mapping Method Dataset Maximum MAP

DASTM KTSD 90.07%
Classical KTSD 83.35%
DASTM GTSBD 100%
Classical GTSBD 95.26%

In Table 2, mean values of average precisions (MAP) of three classes with their standard deviation
(±STD) are compared. This comparison also shows that ITSR gives best detection performance on
both KTSD and GTSDB datasets.
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Table 2. Comparison of ITSR with D-Patches, YOLOv3 and TS detector.

Detection Method MAP on KTSD ± STD MAP on GTSBD ± STD

ITSR (DASTM) 90.07% ± 4.33 100% ± 0
D-Patches 79.60% ± 5.82 100% ± 0
YOLOv3 73.94% ± 6.12 96.53% ± 2.31

TS detector 86.61 ± 5.33 97.82% ± 1.91

ITSR uses DASTM as pre-processing before detection, so it is slower than TS detector. DASTM
takes 0.0754 s to process one frame of 800 × 600 resolution. Although DASTM makes the detector
slower, this technique increases the recognition rate and makes the system reliable. Comparison of
processing times of ITRS with other methods is shown in Table 3.

Table 3. CPU time comparison of ITSR with D-Patches, YOLOv3 and TS detector.

Detection Method Resolution Time to Process 1 Frame

ITSR (DASTM) 800 × 600 0.134 s (on GPU)
D-Patches 800 × 600 2.2 s (on CPU)
YOLOv3 800 × 600 0.050 s (on GPU)

TS detector 800 × 600 0.059 s (on GPU)

DASTM is an effective, reliable, and excellent illumination pre-processing technique for the
intelligent traffic sign recognition system. DASTM is a very useful technique that increases the
detection sensitivity of only dark regions of an image. In Tables 4 and 5, for different values of C,
recognition rate is computed after applying DASTM and classical tone mapping. Table 4 shows the
detection performance of DASTM, while Table 5 shows the detection performance of classical tone
mapping. During experiment on DASTM, for a specific value of C, maximum recognition rate is
achieved by changing thr. Table 4 shows the reliability of ITSR when C = 0.5, C = 1, C = 1.5 and
C = 2. The behavior of Nlum by changing C is also shown in Figure 5. By applying DASTM on KTSD,
maximum MAP of 90.07% is achieved at C = 1 and thr = 0.15, and, by applying classical tone mapping,
maximum MAP of 83.35% is achieved at C = 1.5. The main reason for bad performance after classical
tone mapping is the decreased sensitivity of already bright traffic signs. MAP comparison of both
techniques shows that DASTM is outperforming classical tone mapping and detection accuracy of
DASTM is significantly better.

Table 4. MAP analysis after applying DASTM on KTSD for different C and thr.

C Threshold Nlum at Point Slum = thr MAP

0.5 0.05 0.13 82.40%
0.5 0.10 0.25 89.71%
0.5 0.15 0.34 84.50%
0.5 0.20 0.42 83.33%

1 0.10 0.18 86.16%
1 0.15 0.26 90.07%
1 0.20 0.33 84.50%

1.5 0.10 0.15 84.50%
1.5 0.15 0.22 87.50%
1.5 0.20 0.29 87.20%

2 0.10 0.14 84.01%
2 0.15 0.20 86.02%
2 0.20 0.27 88.06%
2 0.25 0.33 84.50%
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Table 5. Results of MAP using classical tone mapping on KTSD for different values of C.

C MAP

0.5 82.91%
1.0 83.20%
1.5 83.35%
2.0 82.88%

Possible Future Research

DASTM divides the luminance range into two regions; however, the range can be divided into
multiple regions. For each region, different tone mapping function can be applied, depending upon the
need of the system. We used DASTM as pre-processing for traffic sign recognition. This technique can
be applied for the recognition of other dark objects in the scenery. We plan to do research to develop
effective tone mapping techniques for various vision applications.

6. Conclusions

MAP results show that ITSR gives the best performance on challenging KTSD and GTSDB. It is
an effective method for detecting low illumination and small-sized traffic signs. Although ITSR is
slightly slower than TS detector, this system is an efficient and reliable system, and its performance
is significantly better than those of other detectors. We used three classes of traffic signs in our
experiment; however, it is possible to train ITSR on more than three classes. DASTM module makes
ITSR efficient by intelligent luminance pre-processing to increase sensitivity in dark regions. By using
linear mapping, although there is a slight change in luminance of bright region, the change is negligible
and does not affect the performance of the detector. We can also use DASTM as a pre-processing
module for other applications. In DASTM, we divided the luminance range into two regions, but the
range can be divided into multiple regions if necessary, depending upon its application areas.
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