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Abstract: The Internet of Things (IoT) connects different kinds of devices into a network, and enables
two-way communication between devices. A large amount of data are collected by these devices
and transmitted in this network, it is necessary to ensure secure communications between these
devices, to make it impossible for an adversary to undermine this communication. To ensure
secure communication, many authentication protocols have been proposed, in this study, a fully
anonymous authentication scheme for the Internet of things scenario has been proposed, it enables the
remote client to anonymously connect to the server and being serviced by the server. The proposed
scheme has been verified by AVISPA and BAN Logic, and the result shows that it is safe.
Besides, the simulation shows that the proposed scheme is more efficient in computation cost and
communication cost.

Keywords: mutual authentication; lightweight authentication; internet of things; elliptic curve
cryptography; user anonymity; IoT security and privacy

1. Introduction

The Internet of Things is a network that connects all kinds of sensors, actuators, and other
embedded devices. These devices can exchange data remotely via the network. A significant amount
of data are collected by these devices and transmitted in this network. Among these data, there are
many personal data, for example, blood pressure, pulse, and electrocardiogram, as well as home
environment data, home humidity, and home temperature, etc. People are reluctant to let any party
use the data without authorization. There is a need for an authentication scheme to make sure that the
data is only accessible to authorized members. Authentication schemes have been studied in the past
to solve this problem.

However, in some cases, mutual authentication is not sufficient for protecting the privacy of the
clients. In the healthcare environment, an adversary can eavesdrop the information flow and find out
which patient’s data is being transmitted. The client’s medical condition is revealed in this way. In this
study, a light weighted authentication and key establishment scheme was proposed, which enables
the remote client to be authenticated anonymously by the server. In the proposed scheme, we only
used some light weighted security operations: XOR operations, hash functions and a minimal amount
of asymmetric encryptions to fulfill perfect forward secrecy, as discussed in the previous work, these
operations are relatively light weighted ones, we will continue to discuss this problem in Section 7.1.
As energy consumption is of paramount importance in the context where energy are provided by small
batteries, there is a high demand for a lightweight authentication scheme [1,2]. For these two reasons,
we come up with this authentication scheme. Our contributions are mainly three- fold:
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1. We propose a lightweight anonymous authentication for the Internet of things scenario;
the scheme achieves various security features: perfect forward privacy, user anonymity, resistance
to an offline dictionary attack, etc. In addition, to verify the security features of the proposed
scheme, the proposed scheme is also verified by AVISPA and the BAN Logic.

2. We specially design the password changing phase, making it more efficient compared to that in
the related works.

3. We simulate the proposed scheme and other related schemes using C++. The results show the
communication cost and the computation cost are reduced compared with related proposals.

In Section 2, we discussed the related works, in Section 3, we introduced the proposed scheme,
Sections 4 and 5 are security analyses using AVISPA and BAN logic, Section 6 is the formal security
analysis section. In Section 7, we compared the proposed scheme with related works. In Section 8,
we analyzed the security features. Section 9 is the conclusion part.

2. Related Work

Tu et al. proposed an authentication protocol based on a smart card; the protocol is a two-factor
authentication scheme based on an elliptic curve [3]. However, this scheme is found to be vulverable
to impersonation attacks; an attacker can impersonate as a legal server according to Farash [4].
Ibrahim et al. proposed secure anonymous mutual authentication for star two-tier wireless body
area networks [5]. Chaudhry et al. proposed a remote user authentication scheme using elliptic
curve cryptography that can withstand various attacks in the internet of things scenario, for example,
smart card lost attack, replay attack [6]. Kumari analyzed the scheme of Farash [7], and they found
that Farash’s scheme is vulnerable to various attacks, for example, impersonation attack, password
guessing attack and temporary session specific information reveal attack, etc.

Jing et al. proposed an authentication between user and server, which could protect well the
identity privacy of the user [8], however, their scheme requires extra storage capacity at the server
side. In the scheme of Xiong [9], only registered users can authenticate each other and build a shared
key, besides, this shared key is only known by the two registered users and the network manager
could not know this shared key. According to the public information transmitted between the two
users, an adversary is unable to learn this shared key. The scheme of Jing et al. is a scheme equipped
with elliptic curve cryptographic primitives. Their scheme achieves anonymity regardless of network
infrastructure. Their scheme enables the server to provide various services for a client more than
once with a negligible computational cost [10]. Idrissi proposed a security scheme for mobile agent
based on two techniques: anonymous authentication and intrusion detection [11]. In the work of
Xiong et al. [12], the anonymity is enabled, however the gateway has to store a lot of the identity and
key pairs.

In some schemes, the gateway assigns a random number, and a unique key based on this
number to the clients. This number is used as an indicator of the key, the user encrypts his identity
with this key. Many other schemes use this way to protect the identity of the users, for example,
the scheme in the works of [13–18]. Biometrics are used in the scheme of Wu et al. [19], Odelu et al. [20],
Wang et al. [21] and Islam et al. [22]. Human beings’ biometrics are extracted as random strings by
using the fuzzy extractor.

The partial public key method is a popular method that has been used. He et al. proposed an
efficient identity-based privacy-preserving authentication scheme for vehicular ad hoc networks [23],
batch verification is used in this study. The concept of partial public key is also used in the scheme of
Islam et al. [24]. In their scheme, a user register at the server several times, in order to get more than
one authentication keys, then the user can use different keys for authentication to achieve anonymity.
The scheme of Porambage et al. [25] also used the partial public key concept. Tsai et al. proposed a
scheme for distributed mobile cloud computing services [26], the security strength of their scheme is
based on bilinear pairing and dynamic nonce generation. There are other schemes that based on the
elliptic curve security [27–29].
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3. The Proposed Scheme

3.1. Structure of the Scheme

There are two types of entities in the scheme: remote clients and the server, which is shown
in Figure 1.

1. A client is the one who wants to access the services provided by the server. A client first registers
at the server, after the registration, he can conduct a mutual authentication with the server, after
authentication, the two can build a shared key, the client can access to the server’s service using
this key.

2. A server is the one that provides different kinds of services to the client. A server is also
responsible for the registration and password modification for the client. Before the server
provides a service to a client, the server has to make sure if the client is a registered one or not.
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Figure 1. The structure of the proposed scheme.

The proposed scheme is a mutual authentication scheme between the client and the server.
The scheme consists of three phases: registration phase of the client, mutual authentication and key
establishment phase and the phase for a client to change his password.

3.2. System Initialization

In the beginning, the server S generates and publicizes the parameters of an elliptic curve, which
is {p, a, b, P, n, h}. After that, S generates its private key XGWN , and keeps it as a secret. The symbols
that will be used in this study are summarized in Table 1.

Table 1. Symbols used in this study.

Symbols Meaning

S The server
Ci The ith client
IDi The ith client’s identity
|| String connector, connecting two strings
⊕ XOR operation
P The generator of ECC
T1 Timestamp
h The SHA-256 hash function
h1 A hash a string to a random number function

3.3. Registration Phase

All the clients have to register at the server, a client Ci with identity IDi generates a registration
request message, and sends this request to the server S.

1. Client Ci chooses a random number ri.
2. Client Ci calculates a hash message MPi = h(ri||IDi||PWi).
3. Client Ci sends {IDi, MPi} to the server.

When the server S receives the message, server S generates the keys for client Ci, after that,
the server S sends these keys to the client Ci. Table 2 is a description of the process.
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1. Server S calculates a hash message di = h(IDi||XGWN).
2. Server S calculates fi = di ⊕MPi.
3. Server S chooses a random number ki.
4. Server S calculates a hash message ei = h(ki||XGWN).
5. Server S calculates hi = ei ⊕MPi.
6. Server S sends { fi, hi, ki} and other system parameters to the client Ci.

Table 2. Registration phase.

Client Server

IDi, PWi master key XGWN

random number ri

MPi = h(ri||IDi||PWi)

{IDi, MPi}
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3.5. Password Change Phase 

When a client 𝐶௜  wants to change his password, he can send a request to the server 𝑆, this 
request is sent in public channel. Table 4 is a description of this process. 

1. The client 𝐶௜ inserts his smart card into a card reader, inputs his identity and password 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ. 
2. SC computes: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ). 
3. SC uses 𝑀𝑃௜ᇱ to get 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ and 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ. 
4. SC gets the current timestamp 𝑇ଵ and the random number 𝑘௜. 
5. SC gets the hash 𝑀ଵ = ℎ(𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ). 
6. SC computes 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜. 
7. Finally, SC sends {𝑘௜, 𝑀ଶ, 𝑇ଵ} to the server 𝑆. 

di = h(IDi||XGWN)
fi = di ⊕MPi

random number ki

ei = h(ki||XGWN)

hi = ei ⊕MPi

Stores { fi, hi, ki}
{ fi, hi, ki}

Sensors 2018, 18, x FOR PEER REVIEW  5 of 20 

 

When client  𝐶௜ gets the message{𝐵ଶ, 𝑀ସ} , 𝐶௜ will do the following steps to authenticate the 
incoming message, if the client verifies the message, he will build a shared key with the server. 

1. Client 𝐶௜ computes the shared key as 𝑆𝐾 ᇱ = ℎ(𝑘ଵ ∙ 𝐵ଶ||𝑇ଵ). 
2. Client 𝐶௜ decrypts 𝑀ସ to get 𝑒௜௡௘௪ᇱ ||𝑀ଷᇱ = 𝑀ସ⨁ℎ(𝑑௜||𝑇ଵ). 
3. Client 𝐶௜ computes the random number 𝑘௜௡௘௪ᇱ = ℎଵ(𝑆𝐾 ᇱ||𝑇ଵ). 
4. Client 𝐶௜  checks if 𝑀ଷᇱ = ℎ(𝐵ଶ|| 𝑒௜௡௘௪ᇱ ||𝑘௜௡௘௪ᇱ ||𝑑௜||𝑆𝐾 ᇱ), if they are equal, 𝐶௜  accepts the shared 

key 𝑆𝐾 ᇱ, and now client 𝐶௜ and the server 𝑆 can communicate using the shared key 𝑆𝐾 = 𝑆𝐾 ᇱ, 
otherwise the scheme terminates here. 

5. Client 𝐶௜ updates ℎ௜ = 𝑒௜௡௘௪ᇱ ⊕ 𝑀𝑃௜ᇱ and 𝑘௜ = 𝑘௜௡௘௪ᇱ . 

Now the client 𝐶௜ and the server 𝑆 have authenticated each other and built a shared key. The 
Table 3 below depicts the whole process. 

Table 3. Authentication phase. 

Client Server 𝑰𝑫𝒊, 𝑷𝑾𝒊 Master Key 𝑿𝑮𝑾𝑵 
User: inserts SC into the terminal  

User: input 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ  
SC: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ)  

SC: 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ  
SC: 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ  

SC: gets timestamp 𝑇ଵ, 𝑘௜  
Random number 𝑘ଵ, 𝐴ଵ = 𝑘ଵ ∙ 𝑃  

SC: gets 𝑀ଵ = ℎ(𝐴ଵ||𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ)  
SC: 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜  {𝑘௜, 𝐴ଵ, 𝑀ଶ, 𝑇ଵ} Checks the freshness of 𝑇ଵ 𝐼𝐷௜ᇱ||𝑀ଵᇱ = ℎ(𝑘௜||𝑋ீௐே)⨁𝑀ଶ 

 𝑑௜ᇱ = ℎ(𝐼𝐷௜ᇱ|| 𝑋ீௐே) 
 Check if 𝑀ଵᇱ  = ℎ(𝐴ଵ||𝐼𝐷௜ᇱ||𝑘௜||𝑑௜ᇱ||𝑇ଵ)  
 Random number 𝑘ଶ, 𝐵ଶ = 𝑘ଶ ∙ 𝑃 
 𝑆𝐾 = ℎ(𝑘ଶ ∙ 𝐴ଵ||𝑇ଵ) 
 𝑘௜௡௘௪ = ℎଵ(𝑆𝐾||𝑇ଵ) 
 𝑒௜௡௘௪ = ℎ(𝑘௜௡௘௪||𝑋ீௐே) 
 𝑀ଷ = ℎ(𝐵ଶ||𝑒௜௡௘௪||𝑘௜௡௘௪||𝑑௜ᇱ||𝑆𝐾) 
 𝑀ସ = (𝑒௜௡௘௪||𝑀ଷ)⨁ℎ(𝑑௜ᇱ||𝑇ଵ) 𝑆𝐾 ᇱ = ℎ(𝑘ଵ ∙ 𝐵ଶ||𝑇ଵ) 𝑒௜௡௘௪ᇱ ||𝑀ଷᇱ = 𝑀ସ⨁ℎ(𝑑௜||𝑇ଵ) 

                 { 𝐵ଶ, 𝑀ସ} 

 𝑘௜௡௘௪ᇱ = ℎଵ(𝑆𝐾 ᇱ||𝑇ଵ)  
Check if 𝑀ଷᇱ = ℎ(𝐵ଶ||𝑒௜௡௘௪ᇱ ||𝑘௜௡௘௪ᇱ ||𝑑௜||𝑆𝐾 ᇱ)  ℎ௜ = 𝑒௜௡௘௪ᇱ ⊕ 𝑀𝑃௜ᇱ,  𝑘௜ = 𝑘௜௡௘௪ᇱ   

Agree on the key 𝑆𝐾 = 𝑆𝐾 ᇱ 
3.5. Password Change Phase 

When a client 𝐶௜  wants to change his password, he can send a request to the server 𝑆, this 
request is sent in public channel. Table 4 is a description of this process. 

1. The client 𝐶௜ inserts his smart card into a card reader, inputs his identity and password 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ. 
2. SC computes: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ). 
3. SC uses 𝑀𝑃௜ᇱ to get 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ and 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ. 
4. SC gets the current timestamp 𝑇ଵ and the random number 𝑘௜. 
5. SC gets the hash 𝑀ଵ = ℎ(𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ). 
6. SC computes 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜. 
7. Finally, SC sends {𝑘௜, 𝑀ଶ, 𝑇ଵ} to the server 𝑆. 

3.4. Authentication Phase

If a client Ci with identity IDi wants to ask a service from the server S, first, the two have to
authenticate each other and build a shared key. The client Ci inserts the smart card into a card reader,
inputs his identity ID′i and password PW ′i . The smart card (SC) prepares the following message and
sends it to the server S.

1. The client Ci inserts its smart card into a card reader, inputs his identity ID′i and password PW ′i .
2. SC computes: MP′i = h

(
ri
∣∣∣∣ID′i

∣∣∣∣PW ′i
)
.

3. SC uses MP′i to get di = fi ⊕MP′i and ei = hi ⊕MP′i .
4. SC gets the current timestamp T1 and the random number ki.
5. SC gets a random number k1 ∈ [1, n − 1], and calculates A1 = k1·P.
6. SC gets the hash M1 = h

(
A1
∣∣∣∣ID′i

∣∣∣∣ki
∣∣∣∣di
∣∣∣∣T1

)
.

7. SC computes M2 =
(

ID′i
∣∣∣∣M1

)
⊕ ei.

8. Finally, SC sends {ki, A1, M2, T1} to the server S.

When the server S receives the incoming message, it first checks the correctness of the message,
after the verification, the server will generate the shared key between himself and the client. Then the
server prepares the message for sending back to the client.

1. Server S checks the freshness of the T1, if T1 is not fresh, server S abandons the incoming message,
the scheme ends here.

2. Server S calculates the key h(ki||XGWN) based on ki.
3. Server S uses the key h(ki||XGWN) to decrypt M2 to get ID′i

∣∣∣∣M′1 , ID′i
∣∣∣∣M′1 = h(ki||XGWN)⊕M2 .

4. Server S calculates d′i = h
(

ID′i
∣∣∣∣XGWN

)
based on the identity ID′i .

5. Server S checks if M′1 = h
(

A1
∣∣∣∣ID′i

∣∣∣∣ki
∣∣∣∣d′i∣∣∣∣T1

)
, if they are equal, the server accepts the incoming

message, otherwise, the scheme terminates here.
6. Server S gets a random number k2 ∈ [1, n − 1], and calculates B2 = k2·P.
7. Server S calculates the shared key SK = h(k2·A1||T1).
8. Server S calculates a new random number kinew = h1(SK||T1).



Sensors 2018, 18, 3695 5 of 21

9. Server S calculates a hash message einew = h(kinew||XGWN).
10. Server S calculates M3 = h

(
B2
∣∣∣∣einew

∣∣∣∣kinew
∣∣∣∣d′i∣∣∣∣SK

)
.

11. Server S computes M4 = (einew||M3)⊕ h
(
d′i
∣∣∣∣T1

)
.

12. Server S sends {B2, M4} to the client Ci.

When client Ci gets the message {B2, M4}, Ci will do the following steps to authenticate the
incoming message, if the client verifies the message, he will build a shared key with the server.

1. Client Ci computes the shared key as SK′ = h(k1·B2||T1).
2. Client Ci decrypts M4 to get e′inew

∣∣∣∣M′3 = M4 ⊕ h(di||T1) .
3. Client Ci computes the random number k′inew = h1(SK′||T1).
4. Client Ci checks if M′3 = h

(
B2
∣∣∣∣e′inew

∣∣∣∣k′inew

∣∣∣∣di
∣∣∣∣SK′

)
, if they are equal, Ci accepts the shared

key SK′, and now client Ci and the server S can communicate using the shared key SK = SK′,
otherwise the scheme terminates here.

5. Client Ci updates hi = e′inew ⊕MP′i and ki = k′inew.

Now the client Ci and the server S have authenticated each other and built a shared key.
The Table 3 below depicts the whole process.

Table 3. Authentication phase.

Client Server

IDi, PWi Master Key XGWN

User: inserts SC into the terminal

User: input ID′i and PW ′i
SC: MP′i = h

(
ri
∣∣∣∣ID′i

∣∣∣∣PW ′i
)

SC: di = fi ⊕MP′i
SC: ei = hi ⊕MP′i

SC: gets timestamp T1, ki

Random number k1, A1 = k1·P
SC: gets M1 = h

(
A1
∣∣∣∣ID′i ||ki||di

∣∣∣∣T1
)

SC: M2 =
(

ID′i
∣∣∣∣M1

)
⊕ ei

{ki, A1, M2, T1}
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User: input 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ  
SC: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ)  

SC: 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ  
SC: 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ  

SC: gets timestamp 𝑇ଵ, 𝑘௜  
Random number 𝑘ଵ, 𝐴ଵ = 𝑘ଵ ∙ 𝑃  

SC: gets 𝑀ଵ = ℎ(𝐴ଵ||𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ)  
SC: 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜  {𝑘௜, 𝐴ଵ, 𝑀ଶ, 𝑇ଵ} Checks the freshness of 𝑇ଵ 𝐼𝐷௜ᇱ||𝑀ଵᇱ = ℎ(𝑘௜||𝑋ீௐே)⨁𝑀ଶ 

 𝑑௜ᇱ = ℎ(𝐼𝐷௜ᇱ|| 𝑋ீௐே) 
 Check if 𝑀ଵᇱ  = ℎ(𝐴ଵ||𝐼𝐷௜ᇱ||𝑘௜||𝑑௜ᇱ||𝑇ଵ)  
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                 { 𝐵ଶ, 𝑀ସ} 

 𝑘௜௡௘௪ᇱ = ℎଵ(𝑆𝐾 ᇱ||𝑇ଵ)  
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Agree on the key 𝑆𝐾 = 𝑆𝐾 ᇱ 
3.5. Password Change Phase 

When a client 𝐶௜  wants to change his password, he can send a request to the server 𝑆, this 
request is sent in public channel. Table 4 is a description of this process. 

1. The client 𝐶௜ inserts his smart card into a card reader, inputs his identity and password 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ. 
2. SC computes: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ). 
3. SC uses 𝑀𝑃௜ᇱ to get 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ and 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ. 
4. SC gets the current timestamp 𝑇ଵ and the random number 𝑘௜. 
5. SC gets the hash 𝑀ଵ = ℎ(𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ). 
6. SC computes 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜. 
7. Finally, SC sends {𝑘௜, 𝑀ଶ, 𝑇ଵ} to the server 𝑆. 

Checks the freshness of T1
ID′i
∣∣∣∣M′1 = h(ki||XGWN)⊕M2

d′i = h
(

ID′i
∣∣∣∣XGWN

)
Check if M′1 = h

(
A1
∣∣∣∣ID′i ||ki||d′i

∣∣∣∣T1
)

Random number k2, B2 = k2·P
SK = h(k2·A1||T1)

kinew = h1(SK||T1)

einew = h(kinew||XGWN)

M3 = h
(

B2||einew||kinew
∣∣∣∣d′i∣∣∣∣SK

)
M4 = (einew||M3)⊕ h

(
d′i
∣∣∣∣T1

)
SK′ = h(k1·B2||T1)

e′inew
∣∣∣∣M′3 = M4 ⊕ h(di||T1)

{B2, M4}
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                 { 𝐵ଶ, 𝑀ସ} 
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3.5. Password Change Phase 

When a client 𝐶௜  wants to change his password, he can send a request to the server 𝑆, this 
request is sent in public channel. Table 4 is a description of this process. 

1. The client 𝐶௜ inserts his smart card into a card reader, inputs his identity and password 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ. 
2. SC computes: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ). 
3. SC uses 𝑀𝑃௜ᇱ to get 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ and 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ. 
4. SC gets the current timestamp 𝑇ଵ and the random number 𝑘௜. 
5. SC gets the hash 𝑀ଵ = ℎ(𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ). 
6. SC computes 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜. 
7. Finally, SC sends {𝑘௜, 𝑀ଶ, 𝑇ଵ} to the server 𝑆. 

k′inew = h1(SK′||T1)

Check if M′3 = h
(

B2
∣∣∣∣e′inew

∣∣∣∣k′inew||di||SK′
)

hi = e′inew ⊕MP′i , ki = k′inew

Agree on the key SK = SK′



Sensors 2018, 18, 3695 6 of 21

3.5. Password Change Phase

When a client Ci wants to change his password, he can send a request to the server S, this request
is sent in public channel. Table 4 is a description of this process.

1. The client Ci inserts his smart card into a card reader, inputs his identity and password ID′i
and PW ′i .

2. SC computes: MP′i = h
(
ri
∣∣∣∣ID′i

∣∣∣∣PW ′i
)
.

3. SC uses MP′i to get di = fi ⊕MP′i and ei = hi ⊕MP′i .
4. SC gets the current timestamp T1 and the random number ki.
5. SC gets the hash M1 = h

(
ID′i ||ki||di

∣∣∣∣T1
)
.

6. SC computes M2 =
(

ID′i
∣∣∣∣M1

)
⊕ ei.

7. Finally, SC sends {ki, M2, T1} to the server S.

Table 4. Password change phase.

Client Server

IDi, PWi Master Key XGWN

User: inserts SC into the terminal

User: input ID′i and PW ′i
SC: MP′i = h

(
ri
∣∣∣∣ID′i

∣∣∣∣PW ′i
)

SC: di = fi ⊕MP′i
SC: ei = hi ⊕MP′i

SC: gets timestamp T1, ki

SC: gets M1 = h
(

ID′i ||ki||di
∣∣∣∣T1

)
SC: M2 =

(
ID′i
∣∣∣∣M1

)
⊕ ei

{ki, M2, T1}
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SC: 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ  
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 𝑆𝐾 = ℎ(𝑘ଶ ∙ 𝐴ଵ||𝑇ଵ) 
 𝑘௜௡௘௪ = ℎଵ(𝑆𝐾||𝑇ଵ) 
 𝑒௜௡௘௪ = ℎ(𝑘௜௡௘௪||𝑋ீௐே) 
 𝑀ଷ = ℎ(𝐵ଶ||𝑒௜௡௘௪||𝑘௜௡௘௪||𝑑௜ᇱ||𝑆𝐾) 
 𝑀ସ = (𝑒௜௡௘௪||𝑀ଷ)⨁ℎ(𝑑௜ᇱ||𝑇ଵ) 𝑆𝐾 ᇱ = ℎ(𝑘ଵ ∙ 𝐵ଶ||𝑇ଵ) 𝑒௜௡௘௪ᇱ ||𝑀ଷᇱ = 𝑀ସ⨁ℎ(𝑑௜||𝑇ଵ) 

                 { 𝐵ଶ, 𝑀ସ} 

 𝑘௜௡௘௪ᇱ = ℎଵ(𝑆𝐾 ᇱ||𝑇ଵ)  
Check if 𝑀ଷᇱ = ℎ(𝐵ଶ||𝑒௜௡௘௪ᇱ ||𝑘௜௡௘௪ᇱ ||𝑑௜||𝑆𝐾 ᇱ)  ℎ௜ = 𝑒௜௡௘௪ᇱ ⊕ 𝑀𝑃௜ᇱ,  𝑘௜ = 𝑘௜௡௘௪ᇱ   

Agree on the key 𝑆𝐾 = 𝑆𝐾 ᇱ 
3.5. Password Change Phase 

When a client 𝐶௜  wants to change his password, he can send a request to the server 𝑆, this 
request is sent in public channel. Table 4 is a description of this process. 

1. The client 𝐶௜ inserts his smart card into a card reader, inputs his identity and password 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ. 
2. SC computes: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ). 
3. SC uses 𝑀𝑃௜ᇱ to get 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ and 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ. 
4. SC gets the current timestamp 𝑇ଵ and the random number 𝑘௜. 
5. SC gets the hash 𝑀ଵ = ℎ(𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ). 
6. SC computes 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜. 
7. Finally, SC sends {𝑘௜, 𝑀ଶ, 𝑇ଵ} to the server 𝑆. 

Check the freshness of T1
ID′i
∣∣∣∣M′1 = h(ki||XGWN)⊕M2

d′i = h
(

ID′i
∣∣∣∣XGWN

)
Check if M′1 = h

(
ID′i ||ki||d′i

∣∣∣∣T1
)

M3 = h
(

ID′i
∣∣∣∣d′i ||ki||T1

)
.

Check if M3 = h
(

ID′i ||di||ki
∣∣∣∣T1

)
di = fi ⊕MP′i

{M3}
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3.5. Password Change Phase 

When a client 𝐶௜  wants to change his password, he can send a request to the server 𝑆, this 
request is sent in public channel. Table 4 is a description of this process. 

1. The client 𝐶௜ inserts his smart card into a card reader, inputs his identity and password 𝐼𝐷௜ᇱ and 𝑃𝑊௜ᇱ. 
2. SC computes: 𝑀𝑃௜ᇱ = ℎ(𝑟௜||𝐼𝐷௜ᇱ||𝑃𝑊௜ᇱ). 
3. SC uses 𝑀𝑃௜ᇱ to get 𝑑௜ = 𝑓௜ ⊕ 𝑀𝑃௜ᇱ and 𝑒௜ = ℎ௜ ⊕ 𝑀𝑃௜ᇱ. 
4. SC gets the current timestamp 𝑇ଵ and the random number 𝑘௜. 
5. SC gets the hash 𝑀ଵ = ℎ(𝐼𝐷௜ᇱ||𝑘௜||𝑑௜||𝑇ଵ). 
6. SC computes 𝑀ଶ = (𝐼𝐷௜ᇱ||𝑀ଵ)⨁𝑒௜. 
7. Finally, SC sends {𝑘௜, 𝑀ଶ, 𝑇ଵ} to the server 𝑆. 

ei = hi ⊕MP′i
MP∗i = h

(
ri||IDi||PW∗i

)
f ′i = di ⊕MP∗i
h′i = ei ⊕MP∗i

When the server S receives the message, server S will verify if the message is from a legitimate
client, after that, the server S sends a replay to the client Ci.

1. Server S checks the freshness of the T1, if T1 is not fresh, server S abandons the incoming message.
2. Server S calculates the key h(ki||XGWN) based on ki.
3. Server S uses the key h(ki||XGWN) to decrypt M2 to get ID′i

∣∣∣∣M′1 , ID′i
∣∣∣∣M′1 = h(ki||XGWN)⊕M2 .

4. Server S calculates d′i = h
(

ID′i
∣∣∣∣XGWN

)
based on the identity ID′i .

5. Server S checks if M′1 = h
(

ID′i ||ki||d′i
∣∣∣∣T1

)
, if they are equal, the server verifies the incoming

message, otherwise, the scheme terminates here.
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6. Server S calculates M3 = h
(

ID′i
∣∣∣∣d′i∣∣∣∣ki

∣∣∣∣T1
)
.

7. Server S sends {M3} to the client Ci.

When a client Ci receives the replay message from the server S, the smart card checks the
correctness of this message, if it is from the server S, then the smart card will allow the client Ci to
input his new password.

1. SC checks if M3 = h
(

ID′i ||di||ki
∣∣∣∣T1

)
, if they are equal, then the client is allowed to change

his password.
2. SC computes di = fi ⊕MP′i using the stored fi and the old MP′i .
3. SC computes ei = hi ⊕MP′i using the stored hi and the old MP′i
4. Client Ci inputs the new password PW∗i .
5. SC updates MP′i to be MP∗i = h

(
ri||IDi||PW∗i

)
.

6. SC uses this new MP∗i to update the stored version of fi and hi to get f ′i = di ⊕ MP∗i ,
h′i = ei ⊕MP∗i .

4. Security Analysis by AVISPA

Automated Validation of Internet Security Protocols and Applications (AVISPA) is “a push-button
tool for the automated validation of Internet security-sensitive protocols and applications” [30]. To test
security features of the scheme in this study, we write the scheme in a role-based language called
High-Level Protocols Specification Language (HLPSL), which is used for describing protocols and
specifying their intended security features. The HLPSL code is listed in Appendix A.

We run the security check by using the CL-based Model-Checker [31], and the checker of
On-the-Fly Model-Checker (OFMC) [32,33]. The simulation result shown in Table 5 demonstrates that
the proposed scheme is safe.

Table 5. Simulation results of AVISPA.

CL-AtSe Back-End OFMC

SUMMARY % OFMC
SAFE % Version of 2006/02/13

DETAILS SUMMARY
BOUNDED_NUMBER_OF_SESSIONS SAFE

TYPED_MODEL DETAILS
PROTOCOL BOUNDED_NUMBER_OF_SESSIONS

/home/iotdev/avispa/avispa-1.1/testsuite/results/light.if PROTOCOL
/home/iotdev/avispa/avispa-1.1/testsuite/results/light.if

GOAL GOAL
As Specified as_specified

BACKEND
BACKEND OFMC

CL-AtSe COMMENTS
STATISTICS

STATISTICS parseTime: 0.00s
searchTime: 0.01s

Analysed: 1 states visitedNodes: 4 nodes
Reachable: 0 states depth: 2 plies
Translation: 0.00 s

Computation: 0.00 s

5. Security Analysis Using BAN Logic

We conducted a security analysis of the proposed scheme using Burrows-Abadi-Needham Logic
(BAN logic) [34]. By using BAN logic, we can determine whether the exchanged information is
trustworthy, secure against eavesdropping. For more information on the symbols and primary
postulates of BAN logic, please refer to our previous work [35].
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5.1. The Premise and Proof Goals

Suppose there are two entities in the system: client Ci and the server S. Before we start the proof,
we first translate the messages into an idealized form of BAN logic, the results are shown in Table 6.

Table 6. The idealized form of the messages.

Message Flow Idealized Form

1 Ci → S
{

ki, A1, {A1, IDi, ki, T1}di
, T1

}
2 S→ Ci {B2, {einew, B2, kinew, di, SK}h(di ||T1)

}

The goals in BAN Logic are described below. These goals can ensure Ci and S to agree on a shared
key SK.

1. Ci | ≡ Ci
SK←→ S 2. S | ≡ S SK←→ Ci

5.2. Assumptions

We make some assumptions to help us to prove the protocol; assumptions are listed in Table 7.
First, we show the proof of assumption A1 and A3.

1. According to the “#()-introduction” rule, client Ci creates T1

Ci |≡ #(T1) (1)

2. According to (1) and the “promotion #” rule:

Ci |≡ #(M4) (2)

3. According to (2) and the “promotion #” rule:

Ci |≡ #(B2, M4) (3)

4. According to (3) and the “elimination of multipart messages” rule:

Ci |≡ #(B2) (4)

In this part, we show the proof of assumption A2 and A4. By checking the timestamp T1, the server
S can judge if T1 is fresh or not, if T1 is not fresh, the server S will abandon the message and the scheme
ends here. Thus, we only consider the situation that server S believes timestamp T1 is fresh, which is
S| ≡ #(T1) .

5. According to the “promotion #” rule:

S |≡ #(ki, A1, M2, T1). (5)

6. According to (5) and the “elimination of multipart messages” rule:

S |≡ #(A1) (6)

After registration, both server S and the client Ci believe that they have a shared key di. Translating

into BAN Logic, we get assumptions A6: S | ≡ Ci
di←→ S and Ci | ≡ S

di←→ Ci. We can get assumptions

A5: Ci | ≡ S
h(di ||T1)←−−−→ Ci based on Ci | ≡ S

di↔ Ci. Assumption A7 says that client Ci believes server S
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has complete control over the data B2, assumption A8 says that server S believes client Ci has complete
control over the data A1.

Table 7. Assumptions.

Number Assumptions Number Assumptions

A1 Ci |≡ #(T1) A2 S |≡ #(T1)
A3 Ci |≡ #(B2) A4 S |≡ #(A1)

A5 Ci ≡ S
h(di ||T1)←−−−→ Ci A6 S ≡ Ci

di←→ S
A7 Ci |≡ SB2 A8 S |≡ Ci A1

5.3. The Proof of the Proposed Scheme

In this section, we start the proof. According to the message
{

ki, A1, {A1, IDi, ki, T1}di
, T1

}
, which

the client Ci sends to server S, we can get the followings:

7. According to the message
{

ki, A1, {A1, IDi, ki, T1}di
, T1

}
:

S
{

ki, A1, {A1, IDi, ki, T1}di
, T1

}
(7)

8. According to (7) and “ ‘,’-elimination” rule:

S {A1, IDi, ki, T1}di
(8)

9. According to (8), A6 and “|∼ introduction” rule:

S |≡ Ci| ∼ {A1, IDi, ki, T1} (9)

10. According to (9) and “ ‘,’-elimination” rule:

S |≡ Ci | ∼ A1 (10)

11. According to A4, (10), and “|∼elimination” rule:

S |≡ Ci| ≡ A1 (11)

12. According to A8, (11), and “jurisdiction or control” rule:

S |≡ A1 (12)

13. As k2 is randomly created by S, according to “#()- introduction” rule:

S |≡ #(k2) (13)

14. According to (13), A2, A4, and “#()- promotion” rule:

S |≡ #(SK) (14)

15. According to (11), (14), and “ k←→ introduction” rule:

S | ≡ S SK←→ Ci (15)
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Now we have proved the second goal, we will begin to prove the first goal by analyzing the
message server S sends to client Ci: {B2, {einew, B2, kinew, di, SK}h(di ||T1)

}.

16. According to the message {B2, {einew, B2, kinew, di, SK}h(di ||T1)
}:

Ci {B2, {einew, B2, kinew, di, SK}h(di ||T1)
} (16)

17. According to (16) and “ ‘,’-elimination” rule:

Ci {einew, B2, kinew, di, SK}h(di ||T1)
(17)

18. According to (17), A5 and “|∼ introduction” rule:

Ci |≡ S| ∼ {einew, B2, kinew, di, SK} (18)

19. According to (18) and “ ‘,’-elimination” rule:

Ci |≡ S| ∼ B2 (19)

20. According to A3, (19), and “|∼elimination” rule:

Ci |≡ S| ≡ B2 (20)

21. According to A7, (20), and “jurisdiction or control” rule:

Ci |≡ B2 (21)

22. As k1 is randomly created by Ci, according to “#()- introduction” rule:

Ci |≡ #(k1) (22)

23. According to (22), A1, A3, and “#()- promotion” rule:

Ci |≡ #(SK) (23)

24. According to (20), (23), and “ k↔ introduction” rule:

Ci | ≡ Ci
SK←→ S (24)

Now, we have proved the two goals of the scheme. We can say that the proposed scheme is secure
under BAN logic.

6. Formal Security Analysis

Suppose G1 is a cyclic additive group of prime order q, P is the generator of G1, the Elliptic
Curve Computational Diffie–Hellman (ECCDH) problem is thought to be a computational hardness.
The security of the shared key of the proposed scheme is based on the computational hardness of the
ECCDH problem.

Definition 1. ECCDH problem. For any a, b, c ∈ Z∗q , given an instance < aP, bP >, it is computationally
intractable to compute cP = abP.
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Theorem 1. The proposed scheme achieves shared key security if and only if the ECCDH problem is unable to
be solved in polynomial time.

We define the shared key security as that an adversary is unable to get the shared key between
the client Ci and server S based on the messages transferred publicly between them.

Proof.
(⇒) Suppose there is an efficient algorithm OI which could break the ECCDH problem in

probabilistic polynomial time. The adversary is able to get the messages publicly sent between the client
Ci and the server S: {ki, A1, M2, T1}, and {B2, M4}. Suppose a·P = A1 = k1·P and P = B2 = k2·P,
adversary AI is able to get the cP = k1·k2·P by using efficient algorithm OI , the adversary is able to
break the security of the shared key and get the shared key h(k1·k2·P ||T1).

(⇐) Suppose there is an efficient algorithm OI I which could get the shared key between client Ci
and server S, as the hash operation is secure, the adversary has to get the shared key by calculating
k1·k2·P. This means given A1 = k1·P and B2 = k2·P, an adversary AI I is able to get k1·k2·P.
For the ECCDH problem, suppose a·P = A1 = k1·P and b·P = B2 = k2·P, the adversary is able
to get c·P = a·b·P = k1·k2·P. This apparently contradicts the hardness of the ECCDH problem. �

Theorem 2. The proposed scheme achieves perfect forward privacy if and only if the ECCDH problem is unable
to solve in polynomial time.

Proof.
The proof of perfect forward privacy is similar to Theorem 1. Even if the private key of the client

is leaked to the adversary. What the adversary get is the same public information {ki, A1, M2, T1} and
{B2, M4}. Thus it is unable to get the past session key, neither. �

7. Comparison

In this section, we compared our scheme with related works in computation cost, computation at
the registration phase and the authentication phase. The schemes are implemented in C++, the running
codes have been upload to a public repository in the github.com [36]. The MIRACL C/C++ Library is
used in this study [37], the library can be accessed at github.com [38]. The experiment is conducted in
Visual Studio C++ 2017 on a 64-bits Windows 7 operating system, 3.5 GHz processor, 8 GB memory.
The hash function is SHA-256, the symmetric encryption/decryption function is AES in MR_PCFB1
form, the 256-bit long key for symmetric encryption/decryption function is generated by SHA-256
hash operation. The Koblitz curve secp256k1 which is recommended by NIST is used in this study [39].
The parameters of this curve are listed in Appendix B. The code is compiled in x86 form, this simulation
does not take into account the transmission of the data.

7.1. Computational Performance Analysis

First, we compared the computation costs of these schemes in the form of operation per phase,
TH, TMUL, TADD, TE/D are used for the computation cost for SHA-256 operation, element multiplication
operation of G1, element addition operation of G1, and AES symmetric encryption/decryption
operation. The results are listed at Table 8. As shown in the table, we can find that in all conditions,
the computation cost of the proposed scheme is the minimal, as TMUL > TH and TE/D > TH. Thus,
the proposed scheme has an advantage in the computation cost and energy consumption compared
to related works. To test the analysis of the computation cost, we also simulated the schemes in the
aforementioned environment respectively.
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Table 8. Computation costs in the form of operation per phase.

Reference Registration Phase Authentication Phase Password Change Phase

Tu et al. [3] 2TH + 1TMUL 10TH + 7TMUL + 1TADD 6TH + 1TMUL + 4TE/D
Chaudhry et al. [6] 5TH + 1TMUL 14TH + 6TMUL + 1TADD —

Wu et al. [19] 4TH 12TH + 4TMUL + 4TE/D 9TH + 1TMUL + 2TE/D
Our scheme 3TH 14TH + 4TMUL 9TH

First, we run the registration phase of different schemes 5, 10, 15, 20 and 25 times separately.
The computation times are shown in Figure 2. The horizontal axis represents the number of runs of the
experiment, the vertical axis represents the time required for the experiment to run, and the unit is
milliseconds. The computation cost of Wu et al. [19] and that of the proposed scheme are relatively
smaller, while the scheme of Chaudhry et al. [6], and that of Tu et al. [3] cost more computation time.
This is mainly because the proposed scheme and the scheme of Wu et al. [19] only need lightweight
operations, SHA-256 hash operations and XOR operation, while for the scheme of Chaudhry et al. [6],
and that of Tu et al. [3], symmetric encryption/decryption operations are required, these operations
cost more computation time.
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Figure 2. The computation cost of registration phase.

Second, we run the authentication and key establishment phase of different schemes 5, 10, 15, 20
and 25 times separately. The computation costs are shown in Figure 3. The horizontal axis represents
the number of running the experiment, the vertical axis stands for the number of milliseconds to
accomplish the experiment. The computation cost of Wu et al. [19] and that of the proposed scheme
are relatively smaller, while the scheme of Chaudhry et al. [6], and the scheme of Tu et al. [3] cost more
computation time. The computation cost of the proposed scheme is the minimal.

Third, we run the password change phase 5, 10, 15, 20 and 25 times separately. The computation
costs are shown in Figure 4. In this figure, the horizontal axis indicates the number of times
the experiment was run; the vertical axis indicates the number of milliseconds to accomplish the
experiment. The computation cost of the proposed is the minimal, the computation cost of Wu et al. [19],
and that of Tu et al. [3] are much higher, this is because in the proposed scheme only SHA-256 hash
operations and XOR operation are needed, while in the scheme of Wu et al. [19], and in the scheme
of Tu et al. [3], symmetric encryption/decryption, and elliptic curve operation are needed, these
operations cost more computation time.
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7.2. Communication Performance Analysis

In this part, we compared all the schemes in communication cost. We use the same criteria as that
in the study of Jing et al. [8], the identity costs 2 bytes. The general hash operation in this study is
SHA-256, the result of a hash operation is set to be 32 bytes. In this study, the random number is set to
be 4 bytes, the timestamp is set to be 4 bytes. The element of the G1 of the Koblitz curve secp256k1 is
64 bytes. The order |q| of G1 is 32 bytes long.

At the registration phase, the client sends {IDi, MPi} to the server, MPi is a result of hash, it is
32 bytes long. The length of this message is 2 + 32 = 34 byte. The server sends { fi, hi, ki}, fi is
32 byte long, hi is also 32 byte long. ki is 4 bytes a random number. The length of this message is
32 + 32 + 4 = 68 byte long. In the registration phase, the communication cost is 34 + 68 = 102 byte.

At the authentication phase, the client has to send {ki, A1, M2, T1} to the server, ki is a random
number of be 4 bytes, A1 is an element of G1, it is 64 bytes long, M2 =

(
ID′i
∣∣∣∣M1

)
⊕ ei, Id′i is an

identity, it is 2 bytes long, M1 is the result of an hash operation, it is 32 bytes long, the length of M2 is
32 + 2 = 34 byte. T1 is a 4 bytes long timestamp. The length of this message is 4 + 64 + 34 + 4 = 106.
The server has to send {B2, M4} back to the client, B2 is an element of G1, it is 64 bytes long.
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M4 = (einew||M3) ⊕ h
(
d′i
∣∣∣∣T1

)
, einew and M3 are the results of hash, they are both 32 bytes long,

the length of M4 is 32 + 32 = 64 byte. The length of this message is 64 + 64 = 128 byte long.
The communication cost of is 106 + 128 = 234 byte.

At the password change phase, the client has to send {ki, M2, T1} to the server, ki is a random
number of be 4 bytes, M2 =

(
ID′i
∣∣∣∣M1

)
⊕ ei, Id′i is an identity, it is 2 bytes long, M1 is the result of an

hash operation, it is 32 bytes long, the length of M2 is 32 + 2 = 34 byte. T1 is a 4 bytes long timestamp.
The length of this message is 4 + 34 + 4 = 42. The server has to send {M3} back to the client, M3 is the
result of hash, it is 32 bytes long, the length of this message is 32 byte long. The communication cost of
this phase is 42 + 32 = 74 byte.

The communication costs of other schemes are computed in the same way, note that, in the
scheme of Tu et al. [3], to change a client’s password, the client and the server has to build a shared
key in advance, thus, the communication cost of the password change phase is calculated as the
communication cost of the authentication phase and the messages sent during the password change
process. The scheme of Chaudhry et al. [6] does not have a password change phase; we did not
calculate their scheme’s communication cost. The result is shown in Table 9.

Table 9. Communication costs of different schemes.

Reference Registration Phase Authentication Phase Password Change Phase

Tu et al. [3] 98 byte 230 byte 456 byte
Chaudhry et al. [6] 130 byte 226 byte —

Wu et al. [19] 102 byte 238 byte 138 byte
Our scheme 102 byte 234 byte 74 byte

8. Security Feature Analyses

In this section, we analyzed the security features of different schemes. At the end of this section,
we concluded the results into a table.

8.1. Client Anonymity

Regarding client anonymity, in the proposed scheme, the identity of the user is encrypted by a
shared key between the client and the server, the adversary is unable to find out the real identity of the
client. In the scheme of Tu et al. [3], the identity of the user is transmitted transparently; the adversaries
can get the identity easily. In the scheme of Chaudhry et al. [6] and Wu et al. [19], the identity is
encrypted, too.

8.2. Perfect Forward Privacy

Perfect forward privacy means that even when an adversary gets the private key of the client or the
server, it is unable to recover the past session key based on this private key and the publicly transmitted
messages. As we have proved in Section 5, the proposed scheme gains perfect forward privacy.

Meanwhile, the scheme of Chaudhry et al. [6] cannot ensure perfect forward privacy, if the
adversary gets the private key msk and the session related messages DIDua, EIDua, Qua and Tsb, Hsb.
The adversary is able to compute the past session key in the following manner:

M′ua = msk·Qua

EIDua = M′ua ⊕ DIDua

TID′ua = H1(msk⊕ IDua)·P

Q′sb = Tsb ⊕M′ua

SK = H5
(
Qua ⊕ TID′ua ⊕M′ua ⊕ TID′ua

)
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8.3. Reply Attack

In the proposed scheme, there is a timestamp T1 in the message {ki, A1, M2, T1}, and the timestamp
T1 is also concealed in the hash message M1 = h

(
A1
∣∣∣∣D′i ∣∣∣∣ki

∣∣∣∣di
∣∣∣∣T1

)
. If an adversary sends a former

message to the server, the server will abandon this message after checking the timestamp. However,
if the adversary replaces the timestamp T1 with a new one, the server can still find it out by checking
the hash message M1 = h

(
A1
∣∣∣∣D′i ∣∣∣∣ki

∣∣∣∣di
∣∣∣∣T1

)
. Thus, an adversary is unable to launch a replay attack.

For the scheme of Chaudhry et al. [6], if an adversary sends a former message to the server, the server
is unable to judge if the message is a previous one or not, therefore, their scheme is subjected to
replay attack.

8.4. Offline Dictionary Attack

In the proposed scheme, if the adversary gets the message in the smartcard { fi, hi, ki, ri}.
The adversary could conduct an offline dictionary attack in the following steps:

1. The adversary insert the smart card into a card reader, inputs a random identity and password
pair ID′i and PW ′i .

2. SC computes: MP′i = h
(
ri
∣∣∣∣ID′i

∣∣∣∣PW ′i
)
.

3. SC uses MP′i to get di = fi ⊕MP′i and ei = hi ⊕MP′i .
4. SC gets the current timestamp T1, and gets ki.
5. SC gets a random number k1 ∈ [1, n − 1], and calculates A1 = k1·P.
6. SC gets the hash M1 = h

(
A1
∣∣∣∣ID′i

∣∣∣∣ki
∣∣∣∣di
∣∣∣∣T1

)
.

7. SC computes M2 =
(

ID′i
∣∣∣∣M1

)
⊕ ei.

8. Finally, SC sends {ki, A1, M2, T1} to the server S.
9. If the server sends back a replay message, the identity and password pair is correct, otherwise,

go to step 1.

Now, qsend is used as the number of times an adversary can send a message to the server S in
a time period, the server will set a limit on qsend, if the qsend exceeds this preset limit, The server
will no longer process the incoming messages from this adversary, the adversary cannot continuing
the dictionary attack in this time period. The |Did|,

∣∣Dpass
∣∣ are used as the dictionary size of the

identity and the password. Thus the probability padv that adversary correctly guesses the identity and
password pair correctly is:

padv =
qsend

|Did| ∗
∣∣Dpass

∣∣
Set |Did|,

∣∣Dpass
∣∣ to be large enough, the padv will be a small value, the aforementioned analysis is

based on the authentication phase, the attack on the password changing phase is the same.
Meanwhile, in the scheme of Chaudhry et al. [6], the adversary could conduct an offline dictionary

attack in the following steps:

1. The adversary inserts the smart card into a card reader, inputs a random identity and password
pair ID′i and PW ′i .

2. The adversary waits for the computation of the smart card.
3. If the smart card sends out a message, the identity and password pair is correct, otherwise, goes

to step 1.

As there is not a limit, the adversary can try as many times as he wants, thus the adversary will
finally get the correct identity and password pair. This also means our scheme can withstand the smart
card lost attack, when the smart card is lost, the adversary cannot launch an offline dictionary attack to
get the private key of the client.
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8.5. Impersonation Attack

In the scheme of Tu et al. [3], an adversary can impersonate the server. Given the message a
user sends to the server, {username, V, W}, an adversary can forge the following message, the user is
unable to find out if this message is coming from an adversary or the server:

Generate random numnber c, r ∈ Zn

C = c·P, K = c·V

SK = h1(K||r||username)

Auths = h2(K||W||r||SK)

However, in the proposed scheme, if an adversary wants to impersonate the server, it has to get
d′i = h

(
ID′i
∣∣∣∣XGWN

)
, the probablity that an adversary correctly guesses d′i is pdi

= 1/
(
|Did| ∗

∣∣DXGWN

∣∣),
where

∣∣DXGWN

∣∣ means the dictionary size of the server’s private key.

8.6. Secret Information Leakage Problem

In the scheme of Tu et al. [3], if an adversary accidentally get the session ephemeral information b.
The adversary is able to get the secret information h(username||s)·P in the following manner:

h(username||s)·P = b−1·V′

With this secret information, the adversary can impersonate a legitimate client. However, in the
proposed scheme, even the session ephemeral information is leaked, the adversary is unable to get the
client’s secret information.

Finally, we get Table 10, we find that the proposed scheme has more security features than the
schemes in the related works.

Table 10. Security features comparison.

Security Feature Tu et al. [3] Chaudhry et al. [6] Wu et al. [19] Our Scheme

Client anonymity ×
√ √ √

Client being tracked ×
√ √ √

Reply attack × × ×
√

Impersonation attack ×
√ √ √

Offline dictionary attack
√

×
√ √

Smart card lost attack
√

×
√ √

Changing password
√

×
√ √

Secret information leakage problem ×
√ √ √

Perfect forward privacy
√

×
√ √

9. Conclusions

In this study, an authentication and key establishment scheme between remote clients and a server
is proposed. The proposed scheme has been verified by AVISPA and BAN Logic, the verification
results show that the proposed scheme can withstand various attacks. The proposed scheme has
been simulated in C++, by comparison, it shows clearly that the proposed scheme is more efficient
compared to the related works regarding the computation cost and the communication cost. Besides,
the proposed has more security features compared to the related works. Our work is part of the
LifeWear project, in which we focus on the safety of data transmission and identity privacy problem.
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Appendix A

The role of the client.

role sender(Ui,Sj: agent,
Di,Ei: symmetric_key,
H : hash_func,
P : text,
SND_US,RCV_US : channel (dy))
SND_US,RCV_US : channel (dy))

played_by Ui

def=

local State: nat, K1,T1,A1,IDi,Ki,M1,M2,SK,B2 ,Einew: text
const user_server_sk,user_id:protocol_id

init State := 0
transition

1. State = 0 /\ RCV_US(start)=|>
State’:= 2 /\ Ki1’ := new()

/\ T1’:= new()
/\ A1’:= exp(P,K1’)
/\M1’:= xor(Ei,(A1’.IDi))
/\M2’:= H(A1’,IDi,Ki,Di,T1)
/\ SND_US(Ki.M1’.M2’.T1)

2. State = 2 /\ RCV_US( B2’.
xor(
(Einew’.

H(H(exp(B2’,K1).T1).T1).
H(B2’.

Einew’.
H(H(exp(B2’,K1).T1).T1).
Di.
H(exp(B2’,K1).T1))),

H(Di,T1)
)

)=|>

State’:= 4 /\ SK’:= H(exp(B2’,K1).T1)
/\ Ei’:= Einew’
/\ Ki’:= H(H(exp(B2’,K1).T1).T1)

/\ secret(IDi,user_id,{Sj,Ui})
/\ witness(Ui,Sj,user_server_sk,SK’)
/\ request(Ui,Sj,user_server_sk,SK’)

end role
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The role of the server.

role server( Ui,Sj: agent,
Di,Ei :symmetric_key,
Xgwn :symmetric_key,
H : hash_func,
P : text,
SND_US,RCV_US: channel(dy))

played_by Sj

def=

local State: nat,A1,T1,Ki,IDi,SK,K2,B2,Kinew,Einew,M3,M4: text
const user_server_sk,user_id:protocol_id
init State := 1
transition

1. State = 1 RCV_US( Ki’.
xor(H(Ki’.Xgwn),(A1’.IDi’)).
H(A1’,IDi’,Ki’,Di’,T1’).
T1’
) =|>

State’ := 3 /\ K2’ := new()
/\ B2’ := exp(P,K2’)
/\ SK’ := exp(A1’,K2’)
/\ Kinew’ := H(SK’,T1’)
/\ Einew’:= H(Kinew’,Xgwn)
/\M3’ := H(B2’,Einew’,Kinew’,Di’,SK’)
/\M4’ := xor((Einew’.Kinew’.M3’),H(Di’,T1’))
/\ SND_US( B2,M4’)

/\ secret(IDi,user_id,{Sj,Ui})
/\ witness(Sj,Ui, user_server_sk,SK’)
/\ request(Sj,Ui, user_server_sk,SK’)

end role

The role of the session.

role session(Ui, Sj : agent,
Di,Ei, Xgwn : symmetric_key,
H : hash_func,
P : text)

def=

local SU,RU,SS,RS:channel(dy)

composition
user (Ui,Sj, Di,Ei, H,P, SU,RU)

/\ server (Ui,Sj, Di,Ei,Xgwn, H,P, SS,RS)
end role
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The role of the environment.

role environment()

def=
const ui,sj : agent,
di,xgwn,dii,ei: symmetric_key,
user_server_sk,user_id:protocol_id,
h : hash_func,
p : text

intruder_knowledge={ui, sj, dii,eii,xgwni, h,p}

composition
session(ui,sj, di,ei,xgwn, h,p)

/\ session( i,sj, dii,eii,xgwn, h,p)
/\ session(ui, i, di,ei,xgwni, h,p)

end role

The role of the goals.

goal
% Confidentiality (G12)
secrecy_of user_server_sk,user_id

% Message authentication (G2)
authentication_on user_server_sk

end goal

Appendix B

The parameters of the Koblitz curve secp256k1 by NIST are listed in this part. The curve is defined
as E : y2 = x3 + ax + b over Fp. The bit length of p is 256 bit.

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
a = 0
b = 7
Gx = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B
Gy = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F
n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
h = 01
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