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Abstract: Engagement is described as a state in which an individual involved in an activity can
ignore other influences. The engagement level is important to obtaining good performance especially
under study conditions. Numerous methods using electroencephalograph (EEG), electrocardiograph
(ECG), and near-infrared spectroscopy (NIRS) for the recognition of engagement have been proposed.
However, the results were either unsatisfactory or required many channels. In this study, we
introduce the implementation of a low-density hybrid system for engagement recognition. We used a
two-electrode wireless EEG, a wireless ECG, and two wireless channels NIRS to measure engagement
recognition during cognitive tasks. We used electrooculograms (EOG) and eye tracking to record
eye movements for data labeling. We calculated the recognition accuracy using the combination
of correlation-based feature selection and k-nearest neighbor algorithm. Following that, we did
a comparative study against a stand-alone system. The results show that the hybrid system had
an acceptable accuracy for practical use (71.65 £ 0.16%). In comparison, the accuracy of a pure
EEG system was (65.73 £ 0.17%), pure ECG (67.44 £ 0.19%), and pure NIRS (66.83 £ 0.17%).
Overall, our results demonstrate that the proposed method can be used to improve performance in
engagement recognition.

Keywords: electroencephalography; electrocardiography; electrooculography; eye tracking;
near-infrared spectroscopy; engagement recognition; KNN; CFS; hybrid system; sensor

1. Introduction

Engagement is defined as a cognitive process involving decision making, information gathering,
visual scanning, and selectively sustaining attention on a specific event while ignoring other external
influences [1]. Knowing a person’s level of engagement is important in order to gain good performance
on a specific task [2]. Billeci et al. [3] adapted a wearable integrated electroencephalograph (EEG) and
electrocardiograph (ECG) for measuring the change of neurophysiological and autonomic activity
between engagement and disengagement states, in subjects exhibiting autism spectrum disorder. By
extracting quantitative EEG (QEEG) features from an EEG signal, as well as heart rate and heart rate
variability (HRV) from an ECG, they found evidence of differing activity in the engagement and
disengagement states, in both the EEG and ECG. Bierre et al. [4] applied near-infrared spectroscopy
(NIRS) to assess anterior frontal hemodynamic responses to engagement during three cognitive tasks.
In their study, they presented evidence of age-related anterior frontal hemodynamic changes with
cognitive demands.
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The classification of engagement based on self-reporting and behavior-based information tends
to be delayed, sporadic, and intrusive. Performance-based information can be misleading since
multiple degrees of tasks could be grouped together with the same level of performance [5].
Conversely, physiological measures do not require overt behavior, can be arranged to have little or no
interference with task execution, and can supply information continuously without significant delay.
Hussain et al. [6] investigated the activity of physiological signals and facial responses to cognitive
load under an emotional stimulus and collected participant ratings from a self-assessment manikin to
find the normative ratings in the collection. They investigated the correlation between physiological
data and the level of stimulation. They also subsequently compared the accuracy of cognitive load
detection with face video features, physiological features, and participant rating features with fusion
features. They concluded that classification with fusion features (i.e., not only based on self-report)
performed with more accuracy. Furthermore, measuring human mental states based on physiological
activity has also been investigated by Stikic et al. [1]. By integrating EEG and ECG features, they
applied an unsupervised method for cognitive state recognition. However, the unsupervised learning
requires large amounts of data to get an appropriate pattern. In our study, data labeling relied on
physiological activities. We used electrooculograms (EOG) and eye tracking to record eye movements,
such as blink rate and pupillometry of participants. Several studies demonstrate that blink rate and
pupillometry are correlated with engagement components [7-13]. The information from the EOG and
eye tracker will be used for labeling data in the model data. We classified high engagement level and
low engagement level.

We are currently implementing a hybrid technology system that can be used to measure
engagement recognition levels during cognitive tasks. Several studies on hybrid system have
mentioned their promising characteristics. Ahn et al. [14] have suggested computational integration
methods. In their review, they mentioned the multimodal systems of EEG and NIRS, which are
high-density types. Hong et al. [15] focused on the utility of the integration between EEG and NIRS
for locked-in syndrome patients. They mentioned that the proper selection of features will improve
the accuracy of classification. In our study, we investigate the best features and the most common
features that can be used in engagement recognition; the difference lies in the approach of the study.
Ahn et al. [16] combined EEG, ECG, and NIRS by using 68 electrodes for EEG, ECG, and EOG and 8
channels in the NIRS in simulated driving. In our study, we use a two-electrode EEG, an ECG, and
two channels in the NIRS. All mentioned sensors are wireless sensors. Our previous work [17,18]
used this system for monitoring the cognitive state in children with developmental disorders during
a 7 year training period. This time we would like to do engagement recognition of the low-density
hybrid system.

We investigate nine types of linear and nonlinear features from EEG, ECG, and NIRS to find
the most common features that can be used in engagement recognition. The investigation of linear
and nonlinear features has been previously studied for mental state recognition but in stand-alone
systems, such as only for EEG or ECG [19-21]. In our study, we tried to adapt these features in the
hybrid system. This step was improved by combining the feature selector and classifier. We used the
correlation-based feature selection (CFS) introduced by Hall [22] as the feature selector and k-nearest
neighbor (KNN) as the classifier, following several comparisons with other classifiers. Although a
CFS and KNN combination (CFS + KNN) algorithm with two types searching method (i.e., best first
search and greedy stepwise search) has been used by Hu et al. [23], our study applied a CFS + KNN
algorithm in a low-density hybrid system and only used one searching algorithm. We decided to use
only one search method (i.e., best first search) after demonstrating that this searching method had the
highest performance. To our knowledge, this is the first study to employ a hybrid system (EEG, ECG,
and NIRS) with fewer than 10 channels and to apply a KNN classifier with a CFS feature selector for
engagement recognition.
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2. Systems Design Section

2.1. Participants

There were 18 participants in our experiment. All participants were Kyushu University students,
with ages ranging from 21 to 28 (24.3 &= 2.3). All participants had normal visual function and were free
of disability; 16 were right handed, and two participants were left handed. Participants were instructed
not to consume any caffeine 2 h before the experiment because it could affect the HRV [24,25]. The study
was conducted in accordance with the ethical principles of Kyushu University and the Declaration of
Helsinki. Written informed consent was obtained from each participant before the experiment.

2.2. Engagement Tasks

The experiment was done between 10:30 a.m. and 1:30 p.m. Testing took place in a dimly lit room.
We also recorded the behavior activities using a webcam camera (Logicool C270, Logitech, Lausanne,
Switzerland), which was located in front of the participant’s face.

Three types of engagement task were used: backward digit span (BDS) [2], forward digit span
(FDS) [2], and arithmetic. These tasks are consisted of three level. Level one consisted of series 30
sets of four digits, level two: 30 sets of five digits and level three: six digits. Most of the questions in
this experiment were relatively simple and did not require any prerequisite knowledge or specific
skills. However, a good level of attention and alertness was required to avoid making easy mistakes
because the response time was limited to 20 s. Each trial started with the presentation of a central,
white fixation dot on a dark background until the participant’s eyes could be accepted by the eye
tracker. Next, cognitive questions (i.e., encoding session) would appear for 10 s and the participant
was instructed to respond within 20 s. All cognitive tasks were counterbalanced. The measurement
was recorded after the practice session finished.

2.2.1. BDS (Backward Digit Span)

In this task, digits would appear within 10 s and participants were asked to type the digits
backward in reverse order. The task can be seen in Figure 1.

Example : answer

1.67s 1.67s 1.67 s 1.67s 1.67s 1.67s 05s

Answer is

recorded
(feedback)

(Drift correction will move until your eyes hit the fixation target) J \.
Input : Typin
P yPing Upto20s

Figure 1. Backward digit span.

2.2.2. FDS (Forward Digit Span)

In forward digit span, digits would appear within 10 s and the participant is asked to type the
digits in the forward order. The task can be seen in Figure 2.
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answer
Example : swe

1.67s 1.67s 1.67 s 1.67s 1.67 s 1.67s 0.5s

Answer is

recorded
(feedback)

(Drift correction will move until your eyes hit the fixation target) J \

Input : Typing

Upto20s
Figure 2. Forward digit span.

2.2.3. Arithmetic

For the arithmetic task, a number would appear within 10 s together with a letter. The participants
were asked to calculate operations using just the number. The question would appear together with
the blank forms, and the participants were asked to type the answer within 20 s. The task can be seen
in Figure 3.

Example : A
1.67 s 1.67 s 1.67 s 1.67s 1.67 s 1.67 s 05s

Answer is
recorded
(feedback)

(Drift correction will move until your eyes hit the fixation target) Input : Typing
Upto20s

Figure 3. Arithmetic.

2.3. Software and Apparatus

Stimuli were presented on a 17-inch CRT monitor (1024 x 768). Testing took place in a dimly
lit room. Stimuli presentation was done using OpenSesame [26], using the legacy back-end for the
display control and the PyGaze toolbox [27] for the eye tracker.

2.3.1. Eye Tracking

Before the start of each task, participants were positioned in front of an eye tracker (The EyeTribe
tracker version 1, Copenhagen, Denmark). The distance of the participants’ eyes from The EyeTribe
was estimated to be ~57 cm. The participants were asked to fix their heads on a chin rest. Eight
participants were successfully calibrated in the 60 Hz mode, and three participants were successfully
calibrated in the 30 Hz mode. In this study, we calibrated and validated the eye tracking system to each
participant using a nine-point dot matrix. After validation, the eye tracker that had been embedded
with the OpenSesame software labeled each calibration point with the error in the degree of the visual
angle between the calibrated and validated measures. If the calibration points do not exceed 1° and
the greatest single point error does not exceed 1°, the process would continue. Before each trial, a
one-point eye tracker recalibration was performed.

2.3.2. Electrophysiology

In this study, EEG, EOG, and ECG (Polymate Mini AP 108, Miyuki Giken Co., Ltd., Kasugai-city,
Japan) signals were sent by Bluetooth to a computer. The frequency of sampling was 500 Hz. To
evaluate engagement recognition during a cognitive task, we recorded EEG at the Fz and Pz, referenced
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at Al. These areas are highly correlated in cognitive activities [286-30]. The ECG was recorded on the
chest (2-lead placement) [1,17,18]. We chose this position for the ECG to reduce the effect of artifact
movements when the participant responded to the tasks. We also put two electrodes for a vertical
EOG. Figure 4 shows the electrode placements.

(e .

ECG
Reference

Figure 4. Hybrid system placement: EEG (Fz and Pz), ECG (2-lead placement), NIRS (Fp1 and Fp2).
2.3.3. Near-Infrared Spectroscopy

A spatially resolved continuous wave NIRS system (PocketNIRS; DynaSense Inc., Hamamasu,
Japan) was placed symmetrically to measure hemodynamic activity from the prefrontal region (Fp1 and
Fp2). A black tensor bandage was wrapped around the subject’s head to prevent light from entering
the sensors. The NIRS signal was sent via Bluetooth to the computer. This NIRS had wavelengths of
735, 810, and 850 nm. The frequency sampling was 10.2 Hz. The NIRS position is shown in Figure 4.

3. Analysis for Engagement Recognition

During the answer session, participants would shift their gaze to the keyboard. This condition
would also cause artifact movement. So, to ensure high-quality data, we only analyzed the encoding
session. The details of our analysis design are as follows.

3.1. Data Preprocessing

3.1.1. Pupillometry

Pupillometry is concerned with changes in pupil size. The diameter of the pupil size has long
been known as a marker of cognitive load and attentional performance. A study by Van Den et al. [7]
mentioned that pupil size could be used to track the focus of attention. In this study, we analyzed
pupillometry using a handmade program written in Matlab 2017b. We applied a bandpass filter to
avoid from high frequency and calculated the mean value and Z score, as shown in Equation (1):

Zpupillometry = (Mpaseline — PLptask)/ Sdptask
Zpupillometry = Z score of pupillometry
Hpaseline = Mean baseline (€))
task = mean of pupil size during the encoding time
Hp pup g g
sdptask = standard deviation of pupil size during executing the tasks

3.1.2. Blinking Rates

Blinking has been correlated with cognitive activity [15]. In this study, eye blinks were detected
with vertical EOG. To analyze the EOG signal, we used MATLAB 2017b. We performed baseline drift
removal. The EOG signal is characterized by a frequency range of 0.1 to 20 Hz, and the amplitude lies
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between 25 and 3500 uV. We applied a bandpass filter from 0.1 to 20 Hz. We selected the detected peak
at more than 50 1V as the criterion [12] for eye blinking. After that, we calculated the Z score on the
data. Equation (2) shows how to calculate the Z score:

Zblinkrate = (Hbaseline - ublinkratetask)/ Sdblinkrate
Zplinkrate = Z score of blink rate

Ublinkratetask = Mean of blink rate during encoding time )
Ubaseline = Mean baseline
Sdplinkrate = Standard deviation of blink eyes during executing the tasks

3.1.3. Engagement Recognition

After calibrating participant eye movements, a 90 s baseline was recorded for each participant [13].
During this time, the participants were asked to relax; it was a neutral situation. After the data were
collected, we performed offline analysis. In our study, data labeling is classified into two classes: high
engagement and low engagement. We used supervised learning to do the data mining.

Data Labeling for Training Data

In our study, we adapted a supervised learning method, which made data labeling a crucial part
for definition. Data labeling in this study was based on eye blinks and pupil size. Blinking rates were
recorded from the EOG, and pupil size was recorded by the eye tracker. We used the Z score from
Formulas (1) and (2). Afterwards, we assigned a point to every datum based on the criteria in Table 1.

Table 1. Scoring criteria engagement index based on Z score.

Point Pupil Blinking
+1 Z score < 0 Z score >0
-1 Z score >0 Z score <0

Following the scoring, we divided the data into high engagement and low engagement. If the
total score between the pupil and blinking indices were greater than 0, we classified the datum as high
engagement, and if it was less than 0, we classified it as low engagement.

3.2. Feature Extraction

In our features, we combined the results from the nonlinear and linear analysis. In total, there
were 59 features in this study (i.e., 34 features from EEG, 7 features from ECG, and 18 features from
NIRS). The feature extraction was calculated using a handmade program written in MatLab 2017b.

Table 2 shows the types of features that we used in this study. From the linear parameters, we
used the Hjorth parameter to investigate the signals (y(t)) (EEG, ECG, NIRS), based on their activity
(Equation (3)), mobility (Equation (4)), and complexity (Equation (5)). The Hjorth parameter has
been used in several EEG studies [19,31,32]. Mostly it was used because this parameter is of minimal
complexity and calculated in real time. In our study, we used it for the EEG, ECG, and NIRS:

activity = var(y(t)) 3)
mobility = \/((var((dy (1)) /dt))/ (var(y(1)))) )
complexity = (Mobility((dy (t))/dt)/(mobility(y(t))) (5)

The Kolmogorov complexity is an effective way to calculate signal complexity [32]. We used
this parameter on the EEG and ECG signals. The EEG signal was calculated in 10 s windows. A
third-order Butterworth filter with a frequency cutoff of 0.5 to 65 Hz has been used to filter the data.
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After applying the filter, Wavelet Daubichies-8 was applied in order to get the value of power spectral
density. After obtaining the power of the EEG oscillation, the relative power of each band (i.e., theta
(0) (Equation (6)), alpha (x) (Equation (7)), beta () (Equation (8)), and gamma (Equation (9)) were
computed from each electrode:

Relative 8 = (power 0)/(power 6 + power « + power 3 + power ) 6)
Relative o = (power o)/ (power 6 + power « + power 3 + power ) )
Relative 3 = (power )/ (power 0 + power « + power {3 + power ) (8)
Relative vy = (power v)/(power 6 + power « + power 3 + power ) 9)

We calculated the change of RR interval of the ECG for every 10 s window. Then, we calculated the
value of HRV activity by using a fast Fourier transform. In this study, we calculated the high frequency
(HF) ECG component to measure the level of parasympathetic nerve activity in the autonomic nervous
system. The HF component can be found from 0.15 to 0.4 Hz. Heart rate (HR) was also calculated,
using Equation (10). The maximum power spectral density and power density integral were calculated
after obtaining the value of the power spectral density:

HR = 60/ ((median(RR interval))/(frequency sampling)) (10)

We calculated the spectral entropy from EEG and ECG data in a nonlinear domain. This allows
the system to be quantified using the rate of information loss or generation and calculated the system
randomness, regularity, and predictability.

Table 2. Feature types.

Feature Type Extracted Features

Hjorth parameter: Activity (EEG, ECG, NIRS)
Hjorth parameter: Mobility (EEG, ECG, NIRS)
Hjorth parameter: Complexity (EEG, ECG, NIRS)
Kolmogorov complexity (EEG, ECG)

Maximum power spectral alpha (EEG)
Maximum power spectral theta (EEG)

Maximum power spectral beta (EEG)

Maximum power spectral gamma (EEG)

Power density integral alpha (EEG)

Power density integral theta (EEG)

Power density integral beta (EEG)

Power density integral gamma (EEG)

Relative power alpha (EEG)

Relative power theta (EEG)

Relative power beta (EEG)

Relative power gamma (EEG)

Heartrate (ECG)

HF (High frequency value from heart rate variability (ECG))

Time-frequency domain features

Nonlinear domain feature . Spectral entropy (EEG, ECG)

3.3. Predictive Modeling

We used Weka 3.8 [32] data mining for machine learning. We divided the dataset into two datasets,
using 70% from each participant as the training set; testing sets were chosen as a contiguous 30%
portion, from each participant’s dataset. In our study, the total sample from each participant was 261
samples, with approximately 182 samples for the training data. The total sample for our training data
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exceeded 2000 samples. For the first step, we investigated the best validation method by comparing
cross-validation methods with several folds; we also investigated the validation methods according to
the “leave one participant out” cross-validation (LOSOXV) and hold out validation. Afterwards, we
investigated the machine learning algorithm when the system, by using a feature selector and omitting
selectors, and investigated when this feature selector is combined with several classifiers such as KNN
and support vector machine (SVM). After we found the best performing algorithm, we applied it in
the comparison between the hybrid and stand-alone system for engagement recognition. An overview
of the analysis system is shown in Figure 5.

Data Preprocessing

E Separated into
i Raw EEG H 10second [  Dandpassfilter[0.565]Hz —|  Waveletdb 8 P :
b windows (butterworth 3rd order) Lo
\ I Separated into ‘
{| RawNIRS |~ 10second |[7 Bandpassfilter[0.011]Hz |—> 7 score LR
: b windows (butterworth 31 order) RN
5 H Pa
! i INDES
i i1 | Separated into Dfl> 3|
Raw ECG i 10second |*|  Band passfilter [0.5 45]Hz —> RR intervals Vo8 ‘
; i windows (butterworth 3™ order) Pog
i ! | Separatedinto Band il ‘ i i
: Ll L passfilter [0.5 | @ :
Raw EOG ' 10 second baseline drift removal 45]Hz (butterworth | | |
; ‘ windows 3 order , .
Separated into .
f Raw Eye ‘ T 10 second ; ;
tracking ¥ windows b |

Linear and non
linear feature
extraction

Accuracy Integrated
EEG-ECG- NIRS

Accuracy EEG

Training classifier

Linear extraction
Testing classifier

| Accuracy ECG ‘

Linear and non ’ Accuracy NIRS ‘

H
H
H
H
!
H
:
i
linear feature
H
H
H
H
H
!
H
H
1
H

5 Predictive modelling
extraction

Buissacoidaid ereq

zcore Blinking
frequency

Data Labeling

pupilometry

Zscore Mean [
!
1

Figure 5. Overview of systems analysis.

The feature selector is important for reducing the time needed to find the best features to be used
in a study case [5,22], and it also can increase the accuracy of classification. The CFES is a simple filter
algorithm that ranks feature subsets according to a correlation-based heuristic evaluation function [5].
This feature selector calculates features that are highly correlated with the class and uncorrelated with
each other. Irrelevant features would be ignored because they have low correlation with the class.
Redundant features would be screened out, as they are highly correlated with one or more of the
remaining feature. The acceptance of a feature will depend on the extent to which it predicts classes in
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an area if the instance space was not already predicted by other features. equations (11) through (13)
show the calculation process:

M = (k(rer))/+/(k + k(k — 1)(rg)) (11)
CFS = max s [(re) + 1+ -+ reio) N[k + 2(r@e) + -+ rg) +- -+ rm))] (12)
max (X al-xi)2

CFS = (13)

xe{O, 1}n ?:1 X; —l—z:l#] Zbi]‘x,'x]'
M; = Heuristic “merit” of a feature subset, S, containing k features.
r.s = Mean feature-class correlation.
rgs = Average feature-feature intercorrelation.
k = Number features.

This study used a KNN algorithm, which is an approach for data classification that estimates the
probability that a data point belongs to one group or another, depending on the group membership of
the data points nearest to it. The general details of the predictive learning in our study can be seen in

Figure 6.
CFS : Calculate Feature
Correlations
Feature-Class Selected Filter Data
Search Method

EEG 10-fold Cross Features Training
Data || Validation Best First || || Feature Datoa Classifier | | Perform
input Training Data L [ Search subset1 EE((ZCI)EéG v KNN | ance

(70% \ rm (k=9) Evaluati
ECG NIRS data)

EEG,ECG,NIRS Feature_ Feature on CCR

Pata I~ data) Test data
input TestData (30% EEG,
NIRS (30% ECG,NIRS
Data {* || EEG,ECG,NIRS data)
input data)

Figure 6. The flowchart of predictive modeling using a CFS and KNN combination (CFS + KNN) method.

In this study, the accuracy of performance was calculated on the basis of several variables, such as
the true positive (TP) rate. The TP rate was calculated as the proportion of cases that were correctly
classified as class high or low among all cases that are truly of the same corresponding class, i.e., the
extent to which part of the classes was captured. The TP rate value is also equivalent to the recall. We
also calculated the false positive (FP) rate. The FP rate is the proportion of cases that were classified as
class high or low but belong to a different class, among all cases that are not of class high or low. The
precision is the proportion of the cases that truly have a class low or high among all those that were
classified as class high or low. The recall (i.e., sensitivity) is the fraction of relevant instances that have
been retrieved over the total amount of relevant instances. The F-measure is simply twice time value
of the precision and recall divided by the sum value of precision and recall. We also investigated the
area under a receiver operating curve (ROC) for our performance evaluation.

4. Results

4.1. Classification Algorithm

We adopted several classifiers and investigated the best verification strategy for evaluating
recognition performance. We also investigated the best feature selector that decreases the time
combination for finding the best features. The feature selection was conducted on the training set, and
then the performance was evaluated on the test set. This procedure was iterated until each participant’s
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data had been tested. This strategy can eliminate the risk of overfitting. Due to technical problems
and participant health conditions, 11 participants were analyzed in this study. The sample statistics of
engagement level can be seen in Table 3. The sample statistic for the high engagement level is higher
than for the low engagement level. The percentage of low engagement level classes is 38% and that of
high engagement is 62%.

Table 3. Sample statistic of engagement level.

Engagement Level Sample Numbers Weight Percentage
Low 763 763 38%
High 1250 1250 62%

Because the data were imbalanced, we used balancing filter in Weka 3.28 [33], to balance the
sample data. This filter reweighs the instances in the data so that each class has the same total weight.
The total sum of weights across all instances will be maintained. Only the weights in the first batch
of data received by this filter were changed. The result can be seen in Table 4. The balancing filter
increased the weight of sample numbers for the low class and decreased the number of weight in the
high class, resulting in the percentage in each class becoming 50%.

Table 4. Sample statistics of engagement level after using balancing filter.

Engagement Level Sample Numbers Weight Percentage
Low 763 1006 50%
High 1250 1006 50%

To ensure the effect of data balancing, we calculated the accuracy when all 59 features were used
and also when only selected features were used and compared the results (Table 5). The use of a
balancing filter and the combination of the CFS and KNN have shown the highest accuracy, compared
with other methods.

Table 5. Feature selection method on engagement recognition.

Balancing + CFS + KNN KNN Balancing + KNN
Accuracy 71.65 £ 0.16% 71.17 £ 0.16% 70.84 £ 0.17%

We further examined the usability of the feature selector of the CFS and its search method with
other classification algorithms. Table 6 shows the comparison between the CFS and classifiers. In this
step, we tried to compare between the combinations of a CFS and a support vector machine (SVM),
and CFS + KNN, with several values of k. From the results, we conclude that the combination of CFS
and KNN, with a k value of 9, performed the best.

Table 6. Feature selector and classifier.

CFS + SVM CFS+KNN (k=1 CFS+KNN (k=3 CFS+KNN (k=9)
Accuracy 70.78 £ 0.19% 65.64 £ 0.14% 70.34 £ 0.16% 71.65 £ 0.16%

4.2. Comparison of Stand-Alone and Hybrid Systems

After determining the best algorithm, we adopted that algorithm in the hybrid system.
We calculated the recognition classification from each class. As shown in Table 7, the precision
(low = 0.735, high = 0.771) for each class became the highest in the hybrid system, from among the
others, during initial training. Other performance calculations in initial training, such as the ROC area,
have shown that the hybrid system has the highest value compared with stand-alone systems.
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Table 7. Detail accuracy recognition during initial training.

Class TP Rate FP Rate Precision Recall F-Measure ROC Area
hvbrid Low 0.788 0.284 0.735 0.788 0.76 0.811
y High 0.716 0.212 0.771 0.716 0.743 0.811
EEG Low 0.748 0.331 0.693 0.748 0.72 0.763
High 0.669 0.252 0.727 0.669 0.697 0.761
ECG Low 0.775 0.282 0.733 0.775 0.753 0.809
High 0.718 0.225 0.761 0.718 0.739 0.81
NIRS Low 0.701 0.302 0.699 0.701 0.7 0.764
High 0.698 0.299 0.7 0.698 0.699 0.764

We evaluated the accuracy when the algorithm was applied in stand-alone system by using
the CFS + KNN algorithm. As shown in Table 8, the hybrid system achieved the highest accuracy
(71.65 £ 0.16%).

Table 8. Accuracy comparison of stand-alone and hybrid.

Hybrid EEG ECG NIRS
Accuracy 71.65 £ 0.16% 65.73 £ 0.17% 67.44 + 0.19% 66.83 + 0.17%

We tested our data by comparing the results of the SVM and KNN + CFES classifier, which
extended our final choice for engagement recognition with the hybrid system. From our investigation,
the standard deviation of the SVM, among participants, (SD = 0.2) is higher than that of the KNN
method (SD = 0.16). The details can be seen in Table 9.

Table 9. Accuracy performance of each system to each participant.

Participant SVM KNN
S1 74.36% 75.64%
S2 88.46% 85.90%
S3 61.54% 61.54%
S4 34.62% 64.10%
S5 51.28% 46.15%
S6 96.15% 96.15%
S7 83.33% 83.33%
S8 78.21% 67.95%
S9 44.87% 50%

510 70.51% 62.82%
511 92.31% 91.03%

5. Discussion

In this study, we explored a novel way of combining EEG, ECG, and NIRS with a low-density of
electrodes/channels for engagement recognition. The combination of these three different approaches
is commonly termed a hybrid system. The integration of NIRS and EEG is complementary, because
they enable simultaneous analysis of the neuronal and hemodynamic components of brain activity and
do not interfere with each other [34,35]. Hybrid systems, especially low-density hybrid systems, could
be effective for engagement recognition under study conditions. They are also practical, especially in
a naturalistic condition. In a previous study, we implemented a hybrid system to study intellectual
disability child during cognitive training [17,18].

In this study, we sought to implement a low-density hybrid system for engagement recognition
during cognitive tasks. To reach our goal, there were several issues we solved, for example, the
problem of data imbalance during data labeling. The effect of data imbalance could cause overfitting,
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and this imbalance was solved by using the class balancer in Weka 3.8 data mining. This method was
chosen because other methods, such as under sampling, would prevent the classifier from learning the
character of excluded data instances [29]. Afterwards, we also investigated the best validation method
to be adopted in this study, in the hope of minimizing the overfitting. We chose the cross-validation
method after testing a 10-fold, 3-fold, 5-fold, leave one participant out (LOSOXV), and hold out
methods; the result showed that the accuracy in the 10-fold cross-validation method is higher than
other classifiers. On the other hand, cross validation method also saving the time of validation.
Hu et al. [23] also mentioned cross-validation is the best method for validation, and they used 3-fold
cross-validation. In our study, we chose a 10-fold cross-validation rather than a 3-fold cross-validation
because it allows the training set to contain 90% of the data instances and the validation set contains
the other 10%. With cross-validation, our trained model did not over fit to a specific training subset
but rather had the ability to learn from each data fold.

The other issue we tried to solve was the generalizability of features across participants.
Li et al. [19] offered a way to find EEG features in cross-participant emotion by exploring 18 kinds
of linear and nonlinear EEG features. They examined the effectiveness of these 18 features from a
dataset of emotional analysis, using physiological signals and a STJU motion EEG dataset. Their
results showed that the considered Hjorth parameter was suitable for analyzing EEG signals. In their
evaluation, they found the Hjorth parameter in the beta rhythm led to the best mean recognition
accuracy in cross-subject emotion recognition. In our study, we used nine types of linear and nonlinear
features to find the most common feature to be used in engagement recognition. As shown in Table 10,
the Hjorth parameter becomes the most selected feature by CFS + KNN. Oh et al. [33] applied the
Hjorth parameter for extracting EEG features. They found that the Hjorth parameter increased their
EEG classification by 4.4%, on average. Following that, we suggest that the Hjorth parameter could
be a useful feature for EEG, ECG, and NIRS in engagement recognition. The results from the feature
selection also showed that nonlinear parameter features (e.g., spectral entropy) were not chosen as
features for engagement recognition either stand-alone system or hybrid system.

Following feature extraction, we calculated a predictive model by using several classifiers. The
KNN with k = 9 was selected in this system, after we compared it with other kernels and other
classifiers. For example, we investigated SVM (poly kernel), but its accuracy performance was lower
(70.78 £ 0.19%) than that of the KNN (71.65 £ 0.16%). The KNN classifier mentioned in the study by
Hu et al. [23] had the highest accuracy among other classifiers, especially when combined with a CFS
feature selector. In their study, the obtained k value for their systems is 3. In our study, we tried to
investigate the KNN classifier with several k values (k =1, k = 3, k =9). To be thorough, the KNN with
k =1 has an accuracy of 65.64 =+ 0.14%; the k = 3 has an accuracy of 70.34 £ 0.16%; the k =9 has an
accuracy of 71.65 & 0.16%. The implementation of k = 1 was mostly full of noise. This is because the
larger the k value, the more smoothing takes place. From this result, we decided to implement the
KNN method with k = 9. Palaniappan et al. [36] compared the performance of SVM and KNN for
diagnosing respiratory pathologies. Their result also showed that KNN has a better accuracy than
SVM. Although the combination of a CFS and KNN algorithm has been used by Hu et al. [23] for
EEG attention recognition, their study used two types of search methods (i.e., best first search and
greedy stepwise search). In our study, we applied this algorithm to a low-density hybrid system for
engagement recognition during cognitive tasks and only used one searching algorithm. We decided to
use only one search method (i.e., best first search) after we found the best first search performed better
compared with the greedy stepwise search.
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Table 10. Features selected on the basis of CFS attribute evaluator.

Features Selected

activity (Hjorth Parameter) (fz), power density integral gamma (fz), relative alpha
(fz), relative beta (fz), activity (pz), power density integral beta (pz), relative
power gamma (pz), complexity ECG (Hjorth parameter), mobility ECG (Hjorth
parameter), activity ECG (Hjorth parameter), mobility total (fp1), activity total
(fp1), complexity deoxy (fp1), mobility deoxy (fp1), activity deoxy (fp1), mobility
tot (fp2), complexity deoxy (fp2), mobility deoxy (fp2)

Activity (fz), alpha density (fz), theta density (fz), gamma density (fz),
Kolmogorov complexity (fz), relative power, relative alpha (fz), relative beta (fz),
relative gamma fz, activity (pz), alpha density(pz), beta density(pz), gamma
density (pz), relative alpha (pz), relative beta (pz), relative gamma (pz)

Hybrid

EEG

ECG Activity, mobility complexity (Hjorth parameter)

Activity [tot(fp1), deoxy(fp1), deoxy(fp2)], mobility [tot(fp1)), deoxy(fpl), tot(fp2),

NIRS deoxy (fp2)], complexity [tot (fp1), deoxy(fp1), deoxy (fp2) (Hjorth parameter)]

Our algorithm performance was evaluated using the Matthews correlation coefficient (MCC).
Based on Chiccho [37], if the MCC value is closer to +1, it means the testing algorithm exhibits a better
performance. Conversely, if the value is closer to —1, it means the testing algorithm exhibits a worse
performance. From those criteria, the MCC value of our proposed hybrid systems showed the highest
values among all other systems. The precision-recall curve (PRC) for our proposed hybrid system also
showed the highest value among others. The detail can be seen in Table 11.

Table 11. Evaluation performance.

System Class MCC PRC
T
w m m
ECG High 043 0795
NIRS High 03% 0751

Performance of participants for high engagement and low engagement experiments is shown in
Figure 7. There were no significant differences in high engagement and low engagement compared
with reaction time (p > 0.05) and response accuracy (p > 0.05) from 11 participants, based on t-test. In
the other hand, blinking rates (p < 0.05) and pupillometry (p < 0.05) shown significant differences in
both states. This could be happened because our task contain multiple levels. Level one consisted of
series 30 sets of four digits, level two: 30 sets of five digits and level three: six digits. Aghajani et al. [5]
mentioned performance-based information as data labeling can be misleading since multiple level of
tasks could be grouped together with the same level of performance. This could explain the reliability
of physiological data in our recognition.
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Figure 7. Mean + SE of reaction time (A), incorrect response (B), pupilometry (C) and Blinking rates
(D) in high engagement and low engagement (1 = 11).

However, there are still some limitations in this study. We have not studied the effect of fatigue
to the brain activities. In future studies, we will also investigate the fatigue effect. Due to the small
participant pool, sampling could be a limitation of this study. Even though the small number of
participants used for training (1 = 11) may limit our conclusions, the preliminary results demonstrated
the capability of a low-density hybrid EEG, ECG, and NIRS system for use in engagement recognition.

6. Conclusions

This study sought to investigate the usability of a low-density hybrid system in engagement
recognition. In our investigation, we used a 10-fold cross-validation to validate this hybrid system,
after comparing it with other validation methods. We considered using CFS + KNN for engagement
recognition. CFS + KNN showed the highest accuracy compared with other selector combinations;
the value was 71.65 £ 0.16%. When comparing the result between hybrid and stand-alone system,
the hybrid system showed the highest accuracy. We also found that the Hjorth parameter was
useful for engagement recognition. From this, we concluded that hybrid system can be validated for
engagement recognition.
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