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Abstract: Road traffic and its impacts affect various aspects of wellbeing with safety, congestion
and pollution being of significant concern in cities. Although there have been a large number of
works done in the field of traffic data collection, there are several barriers which restrict the collection
of traffic data at higher resolution in the cities. Installation and maintenance costs can act as a
disincentive to use existing methods (e.g., loop detectors, video analysis) at a large scale and hence
limit their deployment to only a few roads of the city. This paper presents an approach for vehicle
counting using a low cost, simple and easily installable system. In the proposed system, vehicles
(i.e., bicycles, cars, trucks) are counted by means of variations in the WiFi signals. Experiments with
the developed hardware in two different scenarios—low traffic (i.e., 400 objects) and heavy traffic
roads (i.e., 1000 objects)—demonstrate its ability to detect cars and trucks. The system can be used to
provide estimates of vehicle numbers for streets not covered by official traffic monitoring techniques
in future smart cities.

Keywords: traffic counter; WiFi signals; open hardware; traffic monitoring; low cost sensors;
smart cities

1. Introduction

The rapid escalation of the population in urban spaces accompanied by increasing demands for
mobility in cities [1], leads to substantial challenges in city planning. Increasing demands on mobility
lead to growing traffic on the road, inducing suffering for citizens concerning the reduction of travel
efficiency, increase in fuel consumption and health hazards from air and noise pollution caused by
vehicles. In addition to being a significant source of air pollution in cities, road traffic exposes a large
number of people to high daytime noise levels [2,3]. Road traffic also leads to anthropogenic heat that
together with reradiation effects from urban spaces can increase urban space temperature, resulting in
urban heat islands (UHI) [4]. Hence, it is of great importance to monitor the complex interplay of the
road network and traffic conditions for better of sensing Quality of Life (QoL) in future smart cities.

Road traffic is one of the major sources of air pollution in cities [5]. It is a significant anthropogenic
source of NOx [6], particulate matter (PM) and other harmful pollutants which impact human health [5].
Exposure to road traffic induced air pollution can lead to various health impairment for the current as
well as the future generation. Multiple studies demonstrated the association of traffic generated air
pollution to different heart-related disease in adults as well as for pregnant women [7,8]. Traffic data is
one of the critical input variables for air pollution modelling approaches [9,10].

For many years, various approaches have been devised to monitor air pollution at a higher
resolution in the city [10]. High-resolution monitoring approaches require input parameters also at a
higher resolution. However, most studies used traffic models and simulation to represent traffic data
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because the traffic monitoring datasets are usually available for a very limited number of roads in the
cities, hence limiting the possibilities to model air pollution at higher resolution in the city.

Traffic data collection was traditionally performed by using manual processes or with the
application of inductive loops at certain locations [11]. The inductive loops for traffic monitoring
became standards in many jurisdictions and are widely used till date [12]. Various other conventional
traffic monitoring approaches include passive infrared devices, Doppler and radar microwave sensors,
acoustic detectors, magnetic strips, Piezoelectric sensors, Pneumatic road tube counting devices and
video vehicle detection. However, these approaches inherit certain limitations (notably installation
and maintenance costs) making them hard to deploy for detailed data collection with better spatial
coverage in cities.

The vision of "smart cities" was proposed to address particular problems caused by urbanisation
and to promote sustainable urban development in cities. This vision relies on the efficient application
of information and communication technology (ICT) for sensing, analysing, integrating critical
information which can support efficient operation and development of cities. Improved traffic control
was identified in [13] as one of the possible benefits of advanced sensing in smart cities. Taking into
account the emergence and rapid growth of the Internet of Things (IoT) and analytical tools, future
cities may be able to enhance the execution and connectivity of urban services, reduce costs and operate
on better resource management. The recent advancements in microelectronics, telecommunications
and data analysis domains have led to the growing adoption of smart devices. With the application of
these smart devices, it is possible to overcome detailed traffic data collection challenges. Extending
the deployment of the low-cost IoT devices in a distributed model like crowdsourcing can support
well-spread data collection in cities. Altogether, the recent developments in low-cost hardware and
support from the crowd can help gather data, which can support transport planning and urban health
risk assessment for cities.

The benefit of involving citizens for crowdsourcing traffic data is the ability to provide real-time
information about traffic; better situation awareness especially in areas where official traffic monitoring
systems are not installed (e.g., rural areas and residential areas); and better spatial coverage. For cities
administrations which are not purchasing the data from various commercial third-party traffic data
providers (such as TomTom, or HERE), crowdsourcing traffic data can be a useful and low-cost data
source. In general (and as indicated by Degbelo et al. [14]), without engaging citizens in the creation
and sharing of data for the provision city services, a city may only be halfway open and smart.
Providing means which lower participation barriers to citizens (e.g., low cost sensors) is thus critical to
citizen empowerment in future smart cities.

In this paper, we present a novel system based on open-source hardware that has the potential to
benefit traffic monitoring technologies because of its low-cost, privacy-preserving, ease of application
and potential to large-scale deployment. Because the system is low-cost (less than $50), it can be used
to involve citizens in WiFi-based traffic data crowdsourcing projects, and this way expand traffic data
collection to streets currently not covered by conventional traffic monitoring techniques. Section 2
briefly discusses previous work done related to the topic. Section 3 describes technologies and the
sensor used for the traffic monitoring and presents the algorithm used to infer the results from the
proposed system. In Section 4, we present the results we obtained concerning the performance of the
proposed system in the real world, using two different scenarios. Section 5 discusses the results we
obtained, as well as the applications and limitations of the proposed system. Sections 6 and 7 present
the future work and conclude the work respectively.

2. Related Work

Traffic monitoring in cities involves, among other things, estimating the number of vehicles on
the road. The vehicles are tracked from point to point along the road for their information. A traffic
monitoring station is used to measure traffic parameters such as vehicle count, speed and occupancy
at a specific location. The measurement at monitoring station locations is to be representative of the
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traffic on the road. Generally, vehicle detection and traffic surveillance involve a network of devices
deployed at various roads of the cities. This section presents a brief overview of the various types of
technologies and devices used for traffic surveillance with a particular focus on low-cost sensors, as it
is also the primary focus of this paper. Furthermore, this section also discusses in brief privacy-related
concerns while deploying traffic surveillance systems.

2.1. Traffic Monitoring Techniques

Traffic monitoring is a vital, yet challenging since to built traffic density maps traffic parameters
such as vehicle count, location, speed and follow of vehicles are required. One of the essential
requirement for efficient traffic systems is the reliable and real-time traffic data collecting network of
devices to facilitate instantaneous decision-making. The technologies used in the devices for vehicle
detection and traffic surveillance can be classified into the following five categories (See also the list of
traffic sensing technologies frequently employed in traffic surveillance for data collection provided
in [15]):

1. Intrusive devices
2. Non-intrusive devices
3. Off-roadways devices
4. Sensor combinations devices
5. Relatively low-cost devices

2.1.1. Intrusive Devices

Intrusive devices are installed directly into the pavement surface by creating saw-cuts or holes
in the road surface, by burrowing them under the surface, or by anchoring them directly into the
pavement surface. Devices such as inductive loops (IDL), magnetic detectors, micro-loop probes,
pneumatic road tubes, piezoelectric and other weigh-in-motion devices are considered as intrusive
devices. These devices are highly accurate for vehicle detection (>97%) [16]. However, a major
drawback concerning the use of the intrusive devices is the disruption of traffic caused for installation,
repair and failure associated with installation in poor surfaces and use of substandard installation
procedures [17]. These devices are also expensive, large and consume much power which limits their
implementation for better spatial coverage in cities [18]. Resurfacing and repair tasks on the roads can
also create the need for reinstallation of these devices. The safety of workers, those who are deploying
these devices has also been a matter of concern [18].

2.1.2. Non-Intrusive Devices

Non-intrusive devices are a more reliable and cost-effective vehicle detection and surveillance
devices than intrusive devices. They can be easily installed, maintained with safety with minimal
disruption to traffic flow, and can provide traffic data with similar accuracy to that of inductive loop
detectors [17]. Non-intrusive devices include technologies such as video image processing, microwave
radar, laser radar, passive infrared, ultrasonic, passive acoustic array, in which devices are mounted
overhead on roadways or roadsides. These devices are capable of measuring vehicle count, presence,
and passage on the road. Some devices also have the potential to provide vehicle speed, vehicle
classification, and multiple-lane, multiple-detection zone coverage [19,20]. However, the devices fail
to perform in certain environmental conditions. For instance, infrared devices can be affected by fog,
and temperature change, video image processing devices detection efficiency can be hampered by
weather conditions, shadows, vehicle projection into adjacent lanes, day-night transitions, vehicle/road
contrasts and water salt grime or cowebs on camera lens [17]. The relatively high deployment and
maintenance cost of the aforementioned technologies limits the large-scale integration of these devices
into the traffic surveillance systems [17].
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2.1.3. Off-Roadways Devices

These devices use the technologies that do not require any hardware deployment under the
pavement or mounted overhead/roadside. The devices enable traffic monitoring via aircraft or
satellite, as well as by probing the vehicles equipped with Automatic vehicle identification (AVI),
Global Positioning System (GPS) and mobile phones [21]. These technologies can help in enabling
the high percentage of roads coverage. However, privacy concerns and other technology-specific
limitations restrict their application [22].

2.1.4. Sensor Combinations Devices

Due to certain limitations of individual technologies, various studies suggested the application of
the off-roadway devices together with more than one technology to monitor traffic flow on the road.
Applications include the combination of passive infrared with ultrasound and Doppler microwave
radar, which enhanced the accuracy for vehicle detection in queues and counting them along with
their height and distance discrimination [17]. Nevertheless, the cost of deployment and its complexity
limit the well-spread deployment of a network in the cities.

2.1.5. Relatively Low-Cost Devices

The scalability and availability of traffic monitoring systems are essential for efficient and
reliable, real-time traffic monitoring [23]. Devices like Magnetometer (MAG) have been found to
serve the requirement [24] but the maintenance and installation cost along with limitations with
radar detectors impact the performance [24]. Low-cost, portable, and easy-to-install technologies are
desired to supplement existing data sources for efficient, detailed traffic monitoring in the cities [18].
The availability of new low-cost and miniaturised hardware platforms has enabled the idea of
developing advanced and pervasive image-based devices, which can help in vehicle counting and
traffic surveillance. Till date, several approaches have been proposed to investigate the feasibility of
vehicle detection and traffic surveillance using low-cost sensors.

A method which uses continuous-wave radar was presented by Fang et al. [25]. The method uses
an antenna, a microwave radio front, the analogue signal amplifier and the digital signal processor
(DSP) for vehicle detection. A computer vision application enabling vehicles monitoring by using
low-cost and low-complexity devices was proposed by Salvadori et al. [26]. Recently, WiFi signal-based
approaches were used for assessing human activity recognition [27–30] suggesting possible additional
applications of the WiFi technology other than providing easy internet access. Approaches based
on channel state information (CSI) [31], link quality indicator (LQI) [32], packet loss rate [32], and
received signal strength indicator were proposed for vehicle detection using radio waves [33,34].
However, the methods mentioned above are not well suited for crowdsourcing applications because
of their expensive specialised hardware (laptop specific WiFi cards and modules) or energy data
transfer requirements. With regards to computer vision applications, low-cost devices constrain
its computational capabilities and available onboard memory, making it unfeasible for effective
implementation [26]. Approaches using Bluetooth low-energy beacons and smartphones were also
proposed for enabling crowdsourcing of traffic data with low-cost devices [35]. However, use of a
smartphone by users at the roadside for traffic monitoring seems a bit impractical. Moreover, gathering
data by using smartphones or video analysis based system also impose the threat on the privacy of the
commuters on the road.

Table 1 presents an overview of all the existing technologies we discussed with their respective
advantages and disadvantages.
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Table 1. Overview of various traffic monitoring techniques.

Technology Concept Examples Advantages Disadvantages

Intrusive Installed directly into
the pavement surface

Inductive loops, magnetic detectors,
Micro-loop probes, pneumatic road tubes,
piezoelectric and other
weigh-in-motion devices [16,18]

Unresponsive to bad weather,
Accurate vehicle count

Installation and maintenance
need pavement cut and
lane closure, expensive, large and
consume much power

Non-intrusive Devices mounted overhead
on roadways or roadsides

Video image processing,
microwave radar, laser
radar, passive infrared, ultrasonic,
passive acoustic array [19,20]

Vehicle speed and
position information can be
accurately measured, enable
multiple lane monitoring

Performance affected by
environmental circumstances,
installation may require
lane closure, expensive

Off-roadways

Technologies that do not
require any hardware deployment
under the pavement or
mounted overhead/roadside

Automatic vehicle identification
(AVI), Global Positioning
System (GPS), mobile phones [21]

Enable high percentage
of roads coverage, traffic
surveillance at high accuracy

Expensive, remote sensing
of aerial images for traffic
monitoring is not real
time, privacy concerns

Sensor combinations

To overcome certain
limitations of individual
technologies discussed above,
combinations of
sensors are used

Passive infrared with ultrasound,
Infrared-Doppler microwave
radar, Series infrared-Doppler
radar-ultrasound sensors [17], Magnetic
sensor with optical sensors [36]

Synergistic effect to
enhance accuracy in
vehicle detection

Expensive, bulky, some limitations
of individual sensors
and high power consumption

Relatively low-cost devices

Low-cost, portable,
and easy-to-install
technologies
for real-time
traffic monitoring

Continuous-wave radar [25],
Computer vision low
cost sensors [26], Radio-wave
technologies [31–34]

Relatively less expensive
than other sophisticated
devices, easy to install

Specialised hardware and
procedures required, limited
computation capability for
large dataset analysis,
privacy concerns, and
unsuitability for
crowdsourcing applications
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2.2. Privacy and Traffic Monitoring

Traffic surveillance and vehicle detection systems are promising approaches which are
cyber-physical by nature. These cyber-enabled systems face various security and privacy preserving
challenges [37]. If the vehicles’ location privacy cannot be preserved, commuters may object to the
process of being monitored in such systems. If devices which can collect privacy sensitive data
is handed over for crowdsourcing, it could be a bigger threat to the society. Hence, the devices
should be capable of appropriately protecting the privacy of the vehicle and the commuters on the
road [38,39]. With the wider application of computer vision technologies for traffic monitoring, it is
important to realise the impact of the approach on the commuters. Privacy and security is one side
effect caused by the application of computer vision methods [40]. Several approaches are proposed
to solve the privacy problem in traffic monitoring approaches. Lu et al. [41] proposed conditional
privacy-preserving protocol, Lin et al. [42] presented conditional privacy and group signature building
techniques. The techniques for dealing with unlinkable pseudo-ID were also proposed by Raya and
Hubaux [43]. However, these are not implemented for the latest transition of approaches to low-cost
devices. Since the primary focus of the paper is to enable counting and identification of vehicles on
the road using low-cost devices for crowdsourcing, it is easy to have a system which only enables the
measurement of the specific parameter and discarding sensitive data collection on the origin itself.

The system proposed in this paper uses a low-cost open hardware which uses the WiFi signal,
which is commonly available at all locations these days to traffic data. The approach has the potential
to overcome various limitations existing in current systems discussed above and also preserve the
privacy of the commuters.

3. Materials and Methods

3.1. System Design

In this section, we present the proposed vehicle detection and counting system using the received
signal strength indicator (RSSI) data produced from the router and collected by the receiver, a low-cost
open hardware system. The deployment plan for the proposed traffic monitoring system is illustrated
in Figure 1.

Figure 1. Illustration of deployment plan for the proposed hardware system.

3.1.1. Receiver

The receiver hardware system was developed using an Arduino Uno R3 single-board
microcontroller mounted with a BlueFly-Shield (ATWINC1500) and an SD card shield V3.0 (Model:
INT106D1P). The hardware system receives the WiFi signal transmitted from a TP-Link router for our
study case.

Arduino Uno R3 is a simple microcontroller with simpler software structure. The Arduino works
according to the modular principle with the simple procedure to add components. We mounted two
components to capture and store WiFi signals. The first component was the WiFi shield (ATWINC1500),
which receive the WiFi signal from connection created via IEEE 802.11n standard and works with
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the encryption type WPA2. The second component was an SD card shield V3.0 (Model: INT106D1P)
that stores the WiFi strength in decibel (dB) and time in milliseconds (ms). The code was written in
the integrated development environment (IDE) which runs on the chip. No firmware, interpreter or
operating system was involved in the process, which makes the whole procedure easier to implement
and also limit the noise when receiving the signal.

3.1.2. Transmitter

For the transmission of the WiFi signals in the study, we used the router from TP-LINK (Model:
TL-WDR3600) with features like dual-band with 2.4 GHz & 5 GHz bands and an Atheros Chip.
We installed OpenWrt (https://openwrt.org/ (last accessed: 21 August 2018)), an open source project
based on Linux with the ability to allow specific changes in physical settings of the radio hardware
such as operating frequency, transmit power and encryption. OpenWrt runs on a router only with
necessary scripts. These scripts/activities can be enabled or disabled at any time. As a result, the router
works in a simple version without heavy background activities. The following settings were used
during our study:

• Band: 2.4 GHz
• Standard: Wireless-N
• Width: 20 MHz
• Encryption: mixed WPA/WPA2 PSK (CCMP)
• Bitrate: 144.4 Mbit/s
• Time lapse in the data capture: 100 ms
• Transmission time: 10 ms
• Packet size: 88.5 Bytes

The 2.4 GHz band was used in our study instead of 5 GHz because of the wide range and the
compatibility with the receiver hardware system. It should be noted that the introduced system
structure, which includes low-cost open hardware system has, to the best of the authors’ knowledge,
not been considered in the literature. The transmitter and the receiver were installed at different
(opposite) sides of the road, using WiFi signals to communicate with each other. The interference
caused by the passing vehicle to the communication pathway between the two devices is measured by
the receiver which is then stored in the SD card mounted present in the device. Distinct patterns of
change in RSSI are observed when vehicles pass, which is captured and further used for analysis to
count and detect the type of vehicle on the road.

3.2. System Implementation

For the implementation of the proposed system, we deployed the receiver and the transmitter on
the roadside as shown in Figure 1. The proposed system was evaluated for two different scenarios:
(1) low traffic road and (2) heavy traffic road. The low traffic road in our study is the road called
Heisenbergstraße, which can also be considered as the local road with fewer cars. The heavy traffic
road we used as an environment in our study is Steinfurter Straße, which is one of the busiest roads in
the city. Both roads are situated in the city of Muenster, Germany. More than 500 objects for Scenario
1 and more than 2000 objects were recorded for Scenario 2 during the real-world field data collection.
The distance between transmitter and receiver for Scenario 1 and 2 were 7.5 m and 12.5 m, respectively.

To collect the ground truth data we deployed GoPro HERO4 camera that collect video data.
Figures 2 and 3 depicts the setup of the proposed system in the two different scenarios under
consideration. The low traffic scenario was considered in the study to understand the accuracy
of the system under limited vehicles with complexity caused by bicycles, pedestrians and other objects
on the road. In contrast, the heavy traffic scenario was considered to assess the performance of the
proposed system with complications created by the large number and frequency of vehicles on a road
with two lanes. The speed of the vehicles were not assessed during the study, but the speed limit for

https://openwrt.org/
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the roads under consideration were 30 kmph (Scenario 1) and 50 kmph (Scenario 2). Based on the data
collected during the study time (and counted with the web application presented below) The hourly
average frequency of vehicles passing from both the roads are:

1. Heisenbergstrasse: 103 Cars/hour and 286 Bicycles/hour
2. Steinfurter Straße: 32 Trucks/hour, 684 Cars/hour and 50 Bicylce/hour

Figure 2. Experimental setup: Scenario 1 (Low traffic road: Heisenbergstraße).

Figure 3. Experimental setup: Scenario 2 (Heavy traffic road: Steinfurter Straße).

To evaluate the accuracy of the proposed system, it is important to prepare the ground-truth
data video stream at the same scale as the data collected by the receiver. We have also developed a
web application which enables the processing of video streams and register the type, number and
time stamp of the object on the road. Figure 4 illustrates the developed web-application. The user
of the web-application needs to watch the video and manually select the type of object (car, truck,
bike, pedestrian and so on), the system then takes the timestamp and count the total number of
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specific type of objects identified automatically. The input to select the type of object can be done by
clicking on the web application’s buttons or by using keyboard shortcuts. The outputs of the video
data analysis are stored as JSON files, with each file representing a vehicle type under study with the
timestamp in milliseconds, same time scale as that of the dataset generated by the proposed system.
During the study, the objects were mainly counted by one researcher. However, a second researcher
independently redid the count on 20% of video data for Scenario 1 to confirm the number of objects
counted. The Cohen’s kappa coefficient was calculated to assess the agreement between the two, and
the result indicates a very high overall inter-rater agreement (0.8 for bicycles and 1 for cars). The web
application and the scripts used in the study can be customised as per the requirement and is available
online (see [44]) as an open-source tool under Creative Commons licence.

Figure 4. Illustration of the web-application developed for ground-truth data video stream analysis.

4. Results

This section evaluates the performance of the proposed hardware device. The RSSI changes
detected by the open-hardware was stored in an SD-card. The stored data stream was then processed
to evaluate the performance. The data processing involves multiple steps as shown in Figure 5.

Stage 1 Stage 3

Stage 2 Stage 4Noise Filtering
Removing the noise from the signal

strength recorded by receiver at
various timestamps.  

Vehicle
Detection

Using algorithm to detect vehicle.

Vehicle
Identification

Using threshold values to identify
the type of vehicle.

Evaluation
Count the number and type of

vehicles identified by the algorithm.

Stage 5

Validation
Compare the results obtained from

the algorithm to the ground truth
data recorded using video.

Figure 5. Overall flow of analysis.

4.1. Noise Filtering

Whenever an object interferes with the communication path of receiver and transmitter, the RSSI
fluctuates. The pattern in fluctuation can be a useful indicator to detect the vehicle on the road.
In order to isolate the RSSI fluctuation patterns in the data stream, during prepossessing of data,



Sensors 2018, 18, 3623 10 of 22

we removed all fluctuations of strength less than or equal to 2 dB, as noise. The deletion of the 2 dB
signal was conducted to ignore the usual noises in the WiFi signals transmission and on the receiving
end. The leftover data stream was used in the subsequent steps to detect vehicles using algorithms
based on certain parameters of the RSSI fluctuation patterns.

4.2. Vehicle Detection

To detect the vehicle using RSSI fluctuations, an algorithm was used to detect the patters in the
data stream collected by the proposed device. Two parameters, namely: (i) Maximum RSSI value and
(ii) Time window were used in the algorithm to characterise the signal patterns from the stream of data.
These two parameter were then further used in machine learning algorithm; k-Nearest Neighbour for
vehicle identification.

4.2.1. Maximum RSSI Value

To recognise patterns which can represent vehicle movement, the data stream after noise
filtering was analysed. In the algorithm, we identify a pattern in signal fluctuation by comparing
the signal strength at each time stamp with the preceding and subsequent time stamp of the data.
During comparison, if the signal strength change is positive for the consecutive three time stamps
we start recording the initial time (say T1) and the end time (say T2) where the significant signal
fluctuation stops (difference between signal reaches 0). The T1 and T2 recorded for each fluctuation
pattern identified provides the time window along with the respective signal strength, which translates
several curves of the time window into a single integer. The maximum strength value for each time
window acts as an indicator of the presence of certain vehicle (see Figure 6).

−80

−70

−60

−50

182600 183000 183400 183800
Time

St
re

ng
th

t1(start)= red line  and  t2(end)= blue line; bicycle=black 
Heisenbergstrasse 4/7/2018 WI−Fi Strengths:

T1 T2

Signal Fluctuation

Figure 6. Illustration of time window and associated signal fluctuation pattern identification
(Units: Time = Milliseconds, Strength = dBm).

After the identification of the time window and the signal strength associated, the maximum
signal strength change for each time window was computed. This maximum change in signal strength
for a given time window can help in identifying the type of vehicle. However, threshold values
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are required to define the rule based on which the algorithm can further identify the different types
of objects.

4.2.2. Time Window

As can be inferred from Figure 6, the time window is used for recording the patterns in the
collected data stream. We also used the the length of time window, i.e., difference between T2 and
T1 to identify the type of vehicle (Equation (1)). The intuition behind this is that different vehicles
can produce disturbances of varied temporal length. For instance, if the fluctuation continues for a
long time window, there is a possibility of having a long vehicle between the transmitter and receiver
communication path. Here also, deciding the threshold for the time window size is important to
characterise different sizes of vehicles that can help in identifying the type of vehicle.

Time window size = T2 − T1 (1)

Figure 7 below represents the overall flow of the algorithm:

Start RSSI Data stream 
Significant change  

in subsequent  
three time stamps

Yes

No

Compare each 
value with 

 subsequent value

Register T1   
and T2 End

Calculate maximum
change in RSSI between

T1 and T2 

Calculate T2 -T1 

k-Nearest
Neighbour

Figure 7. Flow chart of algorithm for vehicle detection.

4.3. Vehicle Identification

In the study, we used the data from the hardware device to identify three types of vehicles, namely
bicycles, cars, and trucks. As discussed previously, defining thresholds is necessary to characterise
the type of vehicle. In our study, we defined the threshold using the summary statistics of both,
the maximum RSSI fluctuation value and time window size.

4.3.1. Using Two Parameter Values

Figures 8 and 9 present the summary statistics we observed for the data calculated using the
above-mentioned algorithm for Heisenbergstrasse and Steinfurter Straße. As the figures show, there are
lots of outliers at a time, illustrating a lack of regularity in the detection of signal fluctuations using the
device. This was not entirely unexpected, given the low cost of the receiver hardware.

Based on the summary statistics (and visual inspection of the data), we defined the most plausible
thresholds for vehicle identification. The threshold was calculated for both the scenarios separately
because of the infrastructure available around the study area. There are two possible reasons for this:
(1) the distance between the transmitter and receiver was different in the two scenarios, as said in
Section 3; and (2) the use of multi-directional transmitter, which could have induced different wave
propagation in the different environments where the device was deployed. For Scenario 1 the hardware
setup was deployed in an open space (Figure 2), while the setup was deployed in a partially close
environment in Scenario 2, as can be seen from Figure 3. The walls around the study area and the
distance between the transmitter and receiver could have contributed to noise caused by reflection
and diffraction of WiFi signals. Threshold values were chosen so that they coincide with the values of
the quartiles. Tables 2 and 3 present the threshold rules we used for vehicle detection in each of the
two test scenarios under consideration.
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Table 2. Threshold rules for vehicle identification using Heisenbergstrasse data.

Vehicle Threshold (in dBm)

Cars ≥611
Bicycles <611

Table 3. Threshold rules for vehicle identification using Steinfurter Straße data.

Vehicle Threshold (in dBm)

Trucks >1849
Cars ≥357.5 &≤1849
Bicycles <357.5

0 4 7.5 14 300 4 7.5 14 29

Heisenbergstrasse Straße AmplitudeMaxValue

(a) Box plot of RSSI maximum fluctuation value parameter from the isolated patterns of data stream
collected by the proposed hardware at Heisenberstrasse (Unit: Strength= dBm).

118 243 368 611 3664118 243 368 611 1134

Heisenbergstrasse Straße Width resultsT2MinusT1

(b) Box plot of time window size value parameter from the isolated patterns of data stream collected by
the proposed hardware at Heisenbergstrasse.

Figure 8. Parameters summary statistics for Heisenbergstrasse.
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0 6 14 21 1150 6 14 21 43

Steinfurter Straße AmplitudeMaxValue

(a) Box plot of RSSI maximum fluctuation value parameter from the isolated patterns of data stream
collected by the proposed hardware at Steinfurter Straße (Unit: Strength= dBm).

117357.5607 974 7227117357.5607 974 1849

Steinfurter Straße time results(t2−t1) in milliseconds

(b) Box plot of time window size value parameter from the isolated patterns of data stream collected by
the proposed hardware at Steinfurter Straße (Units: Time= Milliseconds).

Figure 9. Parameters summary statistics for Steinfurter Straße.

4.3.2. Using Machine Learning: k-Nearest Neighbour (kNN)

After considering the sensitivity of the proposed low-cost device for vehicle detection,
we performed the preliminary investigation to identify the potential of machine learning method
for vehicle type identification. We used the values obtained for the two parameters calculated in the
previous steps for the machine learning method kNN. A dataset of RSSI values and its associated two
parameter values were used to train the algorithm and to get the two value parameter value mapped
for each vehicle type. The training dataset of n-dimension space is stored for two scenarios. Given a
target values of the two parameters, the method determines the training dataset to find the k nearest
matching data records, to find the target type of vehicle trained in the training process. To check the
performance of the classification process a two-fold cross-validation was performed. The k-value for
the complete dataset was increased to reduce the impact of noise in the kNN process. The training
for the classification process was done in supervised manner with following labels for two scenarios
under consideration:

• Scenario 1: Three labels - Bicycle, Car and No vehicle
• Scenario 2: Four labels - Bicycle, Car, Truck and No vehicle
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4.4. Evaluation

After defining the threshold rules, the algorithm is capable of identifying the vehicle type.
The vehicle identification finally helps in counting the number of vehicles using the particular road.
We compared the accuracy of the algorithm with the ground truth data we measured after interpreting
video recording into JSON files for each test case scenario. Tables 4 and 5 present the comparison
between the ground truth data from video and vehicle classification using the algorithm parameters
we used in the study.

Scenario 1 : Heisenbergstrasse

Table 4. Number of vehicles detected by the algorithm, according to vehicle type and classification
technique for Heisenbergstrasse.

Vehicle Type Classification Technique Ground Truth

Time Window Max. RSSI Time Window & RSSI k-NN

Cars 176 177 104 195 182
Bicycles 510 371 252 468 467

Scenario 2 : Steinfurter Straße

Table 5. Number of vehicles detected by the algorithm, according to vehicle type and classification
technique for Steinfurter Straße.

Vehicle Type Classification Technique Ground Truth

Time Window Max. RSSI Time Window & RSSI k-NN

Trucks 64 45 16 45 45
Cars 826 842 495 1004 1000

Bicycles 297 31 29 138 66

4.5. Validation: Precision, Recall and F Measure

To understand the reliability and performance measures of the proposed device in the two
different test case scenarios, we computed the precision, recall and F measure. The calculation for
precision, recall and F measure was done using the following equations:

Precision =
tp

tp + f p
(2)

Recall =
tp

tp + f n
(3)

F measure = 2 × Precision × Recall
Precision + Recall

(4)

where, the sum of tp (True Positive) and fp (False Positive) is the total number of Vehicles detected
using the parameters of the algorithm sub-steps, tp is the number of vehicles actually overlapping
(temporally) with vehicles in the ground truth data. In Equation (3), the sum of tp and fn (False
Negative) is the total number of objects detected in the video. Tables 6 and 7 summarise the results for
each object in both test case scenarios.

For Heisenbergstrasse:
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Table 6. Precision, Recall and F Measure using Heisenbergstrasse data (tp indicates the number of
true positives).

Classification Technique Vehicle Type Precision Recall F Measure

Time window Car (tp = 61) 0.3465 0.3351 0.3407
Bicycle (tp = 40) 0.0784 0.0856 0.08188

Max. RSSI Car (tp = 64) 0.3615 0.3516 0.3565
Bicycle (tp = 47) 0.1266 0.1006 0.1121

Time window & Max.RSSI Car (tp = 45) 0.4326 0.2472 0.3146
Bicycle (tp = 24) 0.0952 0.0513 0.0667

k-Nearest Neighbour Car (tp = 182) 0.934 1 0.9658
Bicycle (tp = 467) 0.997 1 0.9984

For Steinfurter Straße:

Table 7. Precision, Recall and F Measure using Steinfurter Straße data (tp indicates the number of
true positives).

Classification Technique Vehicle Type Precision Recall F Measure

Time window
Truck (tp = 21) 0.3281 0.4666 0.3853
Car (tp = 425) 0.514 0.425 0.465

Bicycle (tp = 2) 0.0067 0.0303 0.0110

Max. RSSI
Truck (tp = 15) 0.3333 0.3333 0.3333
Car (tp = 451) 0.5356 0.451 0.4896

Bicycle (tp = 0) 0 0 0

Time window & Max.RSSI
Truck (tp = 7) 0.4375 0.1555 0.2295
Car (tp = 249) 0.5030 0.2490 0.3331

Bicycle (tp = 1) 0.0344 0.0151 0.0210

k-Nearest Neighbour
Truck (tp = 42) 0.9333 0.9333 0.933
Car (tp = 1000) 0.9960 0.9860 0.9909

Bicycle (tp = 47) 0.3405 0.7121 0.4607

5. Discussion

This study has explored the potential of using low-cost open hardware for WiFi-based vehicle
count. Given existing initiatives to increase free WiFi hotspots in cities (e.g., European Commission [45]),
there is a need for techniques which take advantage of WiFi availability for traffic monitoring purposes.
The advantage of low-cost sensors over expensive, highly performant sensors is that they can be bought
by a large number of citizens. As a result, they can be deployed on any road of the city, enabling data
collection about traffic at places currently uncovered by official traffic monitoring techniques. It can be
inferred from the results that the proposed system is capable of identifying certain types of vehicles on
the road with great reliability. The classification accuracy on the low traffic road suggests the ability of
the system to identify objects like bicycles and cars with higher accuracy. However, the ability of the
system to detect a comparatively small object such as bicycles for the busy roads (Scenario 2) is low but
can characterise cars and trucks with high accuracy. That is, the proposed system is useful for collecting
data about cars and trucks in the residential areas, where traffic data is not generally collected.

Looking at Tables 6 and 7, one can conclude that the system can be used to count vehicles, as can
be inferred from the values for precision/recall after taking into account the machine learning method.
However, due care must be exercised in interpreting the kNN based results as the findings are in a
preliminary stage and were investigated to comprehend the potential of machine learning methods
with the proposed low-cost hardware device. Counting based on RSSI and time window alone is
not very efficient, as one can conclude from the recall values (roughly around 0.33) for cars/trucks
in both cases. The high improvement in precision/recall resultant from the use of kNN comes at the
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price, namely, the price of training the algorithm for each new context. If this expertise is not available,
RSSI and time-based techniques could be used as alternatives. They do not require training for the
algorithm and rely on thresholds determined systematically based on summary statistics. The recall
values being around 0.33 = 1/3 in the cases of RSSI/time-based detection suggests that RSSI-based
and time window-based counts can be used to make rough estimates about the number of cars/trucks
which have been on the street during a time period. For instance, if one would detect 2 cars/trucks
with the code, there were roughly 6 cars/trucks on the street; if one has 1000 cars/trucks in the
code, roughly 3000 cars/trucks were available in reality, and so on if only threshold values are used
without kNN process. Overall, there is evidence from Tables 6 and 7 that the whole approach of using
low-cost sensors to count vehicles based on WiFi signals is workable and pertinent on the road towards
smarter cities.

One thing worth mentioning regarding RSSI and time window based identification is that though
the precision/recall end up being relatively low, the numbers of vehicles identified by the proposed
hardware in Tables 4 and 5 are actually quite close to the numbers of the vehicles in the videos
(which suggests a good overall accuracy for the technique). The precision/recall values computed
subsequently using only the thresholds (Tables 6 and 7) led to much lower numbers when it comes to
the overall performance. This could be due to the process of computing precision/recall values during
the work. An object from the code was said to correspond to an object in the video if and only if the time
T0 of the video object was within the time window of the signal fluctuation (see Figure 6). Since the
units of measurements were all in milliseconds, and the times T0 of the video objects were manually
identified, there are chances that overlaps between the two were missed by the algorithm. Relaxing
the ‘if and only if’ constraint could have led to different values of precision/recall. Furthermore,
the precision of bicycle detection (Table 7) even after using the kNN method for Scenario 2 was very
low. This low precision can be because of the high rate of fluctuations in signals due to heavy traffic on
the road and the system setup where signal reflection are high, leading to several noisy signals which
algorithm interpret as bicycles (as RSSI change by bicycles is small). Hence, the method’s performance
to detect small vehicles on the busy roads is limited.

We believe that our system can help in overcoming limitations imposed by traditional existing
methods. The proposed system does not require any installation within the road surface or overhead
that can lead to hindrance in the normal traffic flow. This helps in overcoming the limitations imposed
by various intrusive methods as discussed by Mimbela and Klein [17]. The proposed system in its
current state only stores the WiFi signal data with particular time stamp value, making the data flow
easy and less in volume, which helps in overcoming the barriers imposed by low-cost computer
vision-based traffic detection methods. Overall the proposed system addresses limitations (i.e., cost,
privacy concerns, high maintenance requirements, weather and light effect) imposed by the various
methods discussed in Section 2. Since the system uses WiFi signals, it is tolerant to weather conditions,
such as rain or thunderstorms, which is a significant advantage over various computer vision-based
devices, ultrasonic devices and related technologies. The proposed approach can also be considered
as an excellent fit to overcome performance issues, such as the effect of weather and light condition,
pointed out by Balid et al. [18] for vision-based or radar-based low-cost devices. The system only uses
RSSI of WiFi signal to access the vehicles on the road, which can be considered as the simpler version
of the approach suggested by Won et al. [31]. Lastly, the technique proposed does not use any sensitive
data, making it privacy-friendly during traffic data collection. Table 8 presents an assessment of various
technologies with respect to the dimensions considered in the present paper, namely: high spatial
coverage, insensitivity to weather conditions, low-cost, compactness, usefulness for crowdsourcing
and the capability to preserve the privacy of the commuters. ‘High spatial coverage’ concerns the
ease of using the technology for widespread, large-scale deployment in a study area. ‘Compactness’
defines the aspect of the compact size of the hardware device, which can help in easy deployment of
the system; ‘Relevance to crowdsourcing’ refers to the pertinence of the technology to crowdsourcing
scenarios. For example, the Bluetooth technology-based solution proposed by Lewandowski et al. [35]
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for traffic monitoring can be useful for crowdsourcing, but the aspect concerning the deployment of
mobile phones at the side of roads seems impractical in our view. Hence we characterise it as not so
relevant for crowdsourcing in the table.

The system is also subject to some limitations, one major one being its inability to differentiate
between noise and objects in a few instances. This can be because of the low power of the WiFi
signals. During the study, the system represented slow-moving pedestrians and fast-moving cars as
the same object, which lead to a few false vehicle identifications or sometimes even missing the vehicle.
The proposed method also has issues concerning the identification of small objects like bicycles on
busy roads. The low-cost sensor also showed unusual behaviours at certain temperatures because
of heating or ambient temperatures, which could be warrant a closer, more systematic look in future
studies. Sometimes the sensor behaves unexpectedly leading to no signals or very high peaks in data.
These limitations are inherent to any low-cost sensing device. Another limitation could the fluctuating
tolerance of WiFi receiver to specific signal strength, making some of the legitimate peaks of objects as
noise in the dataset.

Another critical factor is the identification of the time window for the calculation of the two
parameters used in the study. The start and end value identification may be different for different roads,
but also significant fluctuations in the signal may lead to selection of different T values. Furthermore,
various surrounding situations like the gathering of people or proximity to vehicle parking can
trigger changes in values of signal at any point during the deployment. These factors can change the
observation value fluctuation to other extreme values, changing the overall start and end time value
calculations for time window that can effect the vehicle identification accuracy.

In all, the proposed system is capable of overcoming some limitations which exist in various traffic
monitoring methods. It is also useful in addressing the privacy concerns, making the data collection
process easy and fast for real-time traffic monitoring. The system’s unresponsiveness to weather
condition and luminescence related conditions make this method more advantageous than other
sophisticated methods such as vision-based technologies or infrared technologies. The very low-cost of
the whole infrastructure ($50) can facilitate the traffic data collection using a large number of devices,
enabling better spatial spread for detailed city-level traffic data. The easy deployment capability and
operation with generally available WiFi signals make the system useful for crowdsourcing, which can
encourage citizen participation and open data collection for open smart cities initiatives.
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Table 8. Comparison of various traffic monitoring techniques to the proposed method.

Technology High Spatial Coverage Insensitive to Weather Low-Cost Compact For Crowdsourcing Privacy Preserving

Inductive loop [15,18] 7 3 7 7 7 3

Microwave radar [46] 7 7 7 7 7 3

Acoustic [15] 7 3 7 7 7 3

Magnetometer [24] 7 7 7 7 7 3

Infrared [17] 7 7 7 7 7 3

Aerial/Satellite Imaging/GPS [22] 3 7 7 7 3 7

Ultrasonic [20] 7 7 7 7 7 3

VIP (Video image processor) [19] 7 7 7 7 7 7

RFID (Radio-frequency identification) [47] 7 3 7 7 7 7

Relatively low-cost devices
Continuous-wave radar [25] 7 3 3 7 7 3

Computer vision [26] 7 7 3 7 3 7

WiFi [31] 3 3 7 3 3 3

Bluetooth based [35] 3 3 3 3 7 7

Our Method 3 3 3 3 3 3
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6. Outlook

The proposed system currently uses summary statistics for threshold identification for vehicle
type identification, if only parameter values are used. We extended the approach using kNN machine
learning process. Since the machine learning-based investigation presented in this paper is at an early
stage, extending it to use other sophisticated machine learning procedures for vehicle recognition using
the raw signal stream directly from the receiver, may help in overcoming some limitations imposed
by segregating data based on time window values. In addition, the technique has been only focused
on measuring the potential of the low-cost sensor device to detect one vehicle at a time. Extending it
so that it can identify aggregated peaks of two objects by using various statistical approaches could
also be worth considering in future work. The proposed method also has not considered the aspect
of congestion on the road and its impact on the vehicle identification process; future work could
incorporate these two aspects in the identification process. Another future work could be to improve
the performance of the proposed system by developing new modules which can help in differentiating
various small and big object with speed parameters. Extending the current method with approaches
suggested in [31,32] for low-cost open hardware is also another possible direction for future research.

The accuracy of the proposed method was evaluated by using the video data which is converted
to the same scale as data from the receiver by manually watching the video. This process is error-prone,
as the time ascribed by the human being while counting the video object may not be the exact original
time at which the object crossed the WiFi infrastructure. Future work may consider automating the
current manual process with the application of vision-based analysis, such as using old phone cameras
in combination with proposed hardware. The low-resolution camera from used phones or other
electronic wastes with just enough resolution to differentiate between small and big objects on the
road can help with the real-time feedback mechanism. Integrating the low-cost video devices data
with WiFi receiver data stream can improve the overall accuracy of vehicle detection and counting.

7. Conclusions

In this paper, we presented a WiFi RSSI-based traffic monitoring system using low-cost open
hardware that is capable of providing essential functionalities for vehicle detection and counting.
Real-world tests suggest that the proposed method is capable of detecting car and bicycles in low
traffic and car and trucks in heavy traffic scenarios. The proposed system relies on the use of summary
statistics to come up with thresholds for vehicle type identification, which once extended with a kNN
machine learning process, produce promising results. The proposed system is tolerant to weather
conditions and also helps in preserving the privacy of the commuters by not using any sensitive data
for vehicle identification. Since the technique is based on low-cost hardware, it has the potential to
enable well-spread traffic data collection and help improve various services in future smart cities such
as transport planning, and air/ noise pollution monitoring to improve Quality of Life (QoL).
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Abbreviations

The following abbreviations are used in this manuscript:

AVI Automatic Vehicle Identification
CSI Channel State Information
DSP Digital Signal Processor
GPS Global Positioning System
ICT Information and Communication Technology
IoT Internet of Things
LQI Link Quality Indicator
MAG Magnetometer
NOx Nitrogen oxides
PM Particulate Matter
QoL Quality of Life
RSSI Received Signal Strength Indication
UHI Urban Heat Islands
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