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Abstract: To accurately measure human motion at high-speed, we proposed a simple
structure complementary filter, named the Fuzzy Tuned and Second EStimator of the Optimal
Quaternion Complementary Filter (FTECF). The FTECF is applicable to inertial and magnetic
sensors, which include tri-axis gyroscopes, tri-axis accelerometers, and tri-axis magnetometers.
More specifically, the proposed method incorporates three parts, the input quaternion, the reference
quaternion, and the fuzzy logic algorithm. At first, the input quaternion was calculated with
gyroscopes. Then, the reference quaternion was calculated by applying the Second EStimator of
the Optimal Quaternion (ESOQ-2) algorithm on accelerometers and magnetometers. In addition,
we added compensation for accelerometers in the ESOQ-2 algorithm so as to eliminate the effects
of limb motion acceleration in high-speed human motion measurements. Finally, the fuzzy logic
was utilized to calculate the fusion factor for a complementary filter, so as to adaptively fuse the
input quaternion with the reference quaternion. Additionally, the overall algorithm design is more
simplified than traditional methods. Confirmed by the experiments, using a commercial inertial and
magnetic sensors unit and an optical motion capture system, the efficiency of the proposed method
was more improved than two well-known methods. The root mean square error (RMSE) of the FTECF
was less than 2.2◦ and the maximum error was less than 5.4◦.

Keywords: human motion measurement; sensor fusion; complementary filter; fuzzy logic; inertial
and magnetic sensors; ESOQ-2

1. Introduction

Human motion measurement is a key technology in rehabilitation, gait analysis, man–machine
interaction, virtual reality, and other fields [1–4]. There are numerous kinds of human motion
measurement techniques such as mechanical, magnetic, optical, acoustic, and inertial/magnetic.
Most of these techniques require emissions from a source so as to track objects [5]. The magnetic
measurement technique requires a self-excited stable magnetic field. The ultrasonic measurement
technique needs to transmit ultrasonic waves. The optical measurement technique requires light
to illuminate objects. However, no self-emission source is required for the inertial/magnetic
measurement technique.

Motion measurement using inertial and magnetic sensors is a relatively new technique,
which has received wide attention in recent years [4]. The inertial/magnetic measurement technique
often uses a combination of micro-electromechanical system (MEMS) gyroscopes, accelerometers,
and magnetometers, called magnetic, angular rate, and gravity (MARG) sensors [6]. MEMS sensors
are usually low-cost, small in size, and can be manufactured into a wrist watch size [4], which is
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suitablefor the data collection of wearable devices. There are two advantages in the inertial/magnetic
measurement technique, namely: one, is that the measurement technique itself has no inherent latency,
and all delays are attributed to the data transmission, which is conducive to real-time measurement;
and the other, is its lack of a necessary self-emission source [5]. This makes inertial/magnetic
measurement systems easy to carry and use; moreover, the scope of use is not limited to a certain area.

We can obtain the motion of a human body by measuring the posture of the main limbs. In general,
human motion can be seen as the movement of a kinematic chain composed of multiple independent
limbs, and the members are bound by the connections between them. After the MARG sensors module
has been fixed onto the main limbs of a human, the posture of the entire human body can be obtained
by measuring the posture of each limb relative to the reference coordinate frame fixed with the earth [4].
According to the different data characteristics of the gyroscope, accelerometer, and magnetometer,
a corresponding data fusion method is needed.

There are two principal methods of data fusion: the Kalman filter algorithm and the
complementary filtering algorithm. The Kalman filter algorithm focuses on how to solve the effects of
linear acceleration, environmental magnetic field abruption [7], and accelerometer and magnetometer
data preprocessing algorithms [4]. There are also variations of the Kalman filter algorithm such as
extended Kalman filtering [7,8] and the particle Kalman filter algorithm [9]. Time delay is one of the
main downsides of the Kalman filter algorithm methods. The complementary filter algorithm is a
method of data fusion for the MARG sensors in the frequency domain. The complementary filter
algorithm mainly focuses on how to mix the accelerometer and magnetometer data so as to generate
corrections, which can modify the quaternion calculated with the gyroscope data [5,10]. In addition,
there is the gradient descent method that calculates attitudes by using an analytically derived and
optimized gradient descent algorithm [11].

The purpose of this paper was to propose a simple structure complementary filtering
algorithm that was suitable for measuring high dynamic human motion. In the current research,
the complementary filter algorithm usually adopts a fixed conversion frequency, which is often difficult
to adapt to high dynamic human motion. To address this problem, we proposed a complementary
filter algorithm based on fuzzy logic and the Second EStimator of the Optimal Quaternion (ESOQ-2)
algorithm. The fuzzy tuned algorithm was used to adjust the conversion frequency adaptively,
which improved the adaptability of the algorithm for high dynamic human motion. The compensation
of the accelerator for the ESOQ-2 algorithm can improve the adaptability of the proposed algorithm
for high dynamic human motion. The MARG sensors’ data were then input into the Fuzzy Tuned and
Second EStimator of the Optimal Quaternion Complementary Filter (FTECF) to calculate the body
posture. Then, the result was compared with the optical reference attitudes. The experimental results
verified the performance of the proposed algorithm.

In Section 2, the basic definitions and details of the proposed algorithm are provided. Section 3
explains the measurement experiments with MARG sensors, and is devoted to the interpretation of
the results. The final section provides some conclusions and future work.

2. Materials and Methods

This section is divided into two parts, the material used in the proposed algorithm
(Sections 2.1–2.3) and the details of the proposed algorithm (Sections 2.4–2.6).

2.1. Coordinate System Definition

The inertial/magnetic measurement technique often refers to the body’s limbs as rigid bodies [3].
The human body can be represented by 15 to 19 rigid body models that are connected to each
other [12,13], so the overall body motion can be obtained by measuring the posture of each limb [9].
The human limbs are shown in Figure 1.
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Figure 2. The definitions of the coordinate frames. E is the reference coordinate frame, which is 

mounted on the earth; B is the coordinate frame of the upper arm; S is the coordinate frame of the 

magnetic, angular rate, and gravity (MARG) sensor. 

The reference coordinate for frame E is defined according to the orientation of the human body 

at the beginning of the measurement. The origin of the reference coordinate frame is in the vicinity of 

the human body in space. The directions of the three axes are defined as the Z-axis (upward in the 

direction of the gravity vector), the X-axis (pointing to the right of the body), and the Y-axis (pointing 

to the front of the body), which follow the right-handed coordinate system. Once the reference 

coordinate frame is defined, it is fixed in the space and does not change with the movement of the 

human body. 

The coordinate of frame B is fixed to the human skeleton, and the origin can be set along the 

skeleton, usually at the rotation center of the limb. The T-pose is where the arms are straight 

forward, with the palms facing down and the thumb pointing straight ahead [14]. The upper arm 

coordinate frame and the reference coordinate frame maintain the same direction at the T-pose, and 

can be transformed into each other through a translation in space [10]. 

The origin of the coordinate of frame S is at the center of the three axes of the accelerometer, 

axially along the housing of the MARG sensors, and the directions of the three axes follow the 

right-handed coordinate system. The data output of each sensor is represented in the corresponding 

sensor coordinate frame. 

Figure 1. The segmentations of human limbs.

In this paper, we studied the generic limb posture measurement, which can be applied to all major
limbs of the body. The upper limb movement is more agile and flexible than the other body limbs [9].
By convention, we chose the upper limb as the main research object [3,4,6,9,10]. In the upper limb,
the more flexible upper arm movement was selected for detailed study.

The definition of the coordinate frames involved in the upper arm is illustrated in Figure 2. For the
upper arm and MARG sensors, the coordinate frame was defined as B and S, respectively. In addition,
the reference coordinate frame mounted on the earth was also defined as E.
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Figure 2. The definitions of the coordinate frames. E is the reference coordinate frame, which is
mounted on the earth; B is the coordinate frame of the upper arm; S is the coordinate frame of the
magnetic, angular rate, and gravity (MARG) sensor.

The reference coordinate for frame E is defined according to the orientation of the human body at
the beginning of the measurement. The origin of the reference coordinate frame is in the vicinity of
the human body in space. The directions of the three axes are defined as the Z-axis (upward in the
direction of the gravity vector), the X-axis (pointing to the right of the body), and the Y-axis (pointing to
the front of the body), which follow the right-handed coordinate system. Once the reference coordinate
frame is defined, it is fixed in the space and does not change with the movement of the human body.

The coordinate of frame B is fixed to the human skeleton, and the origin can be set along the
skeleton, usually at the rotation center of the limb. The T-pose is where the arms are straight forward,
with the palms facing down and the thumb pointing straight ahead [14]. The upper arm coordinate
frame and the reference coordinate frame maintain the same direction at the T-pose, and can be
transformed into each other through a translation in space [10].

The origin of the coordinate of frame S is at the center of the three axes of the accelerometer,
axially along the housing of the MARG sensors, and the directions of the three axes follow the
right-handed coordinate system. The data output of each sensor is represented in the corresponding
sensor coordinate frame.
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For the sake of simplicity, we assumed that there was no relative displacement between the sensor
and the upper arm, so the sensor coordinate frame and upper arm coordinate frame were considered
to be identical. That is, the two frames had the same orientation, but with a different displacement.

2.2. Representation

The upper arm’s movement information can be represented with Euler angles or quaternions [3].
This paper used the quaternion to calculate the rotational movement of the limb, and converted
the quaternion into Euler angles for visual representation. The advantage of the Euler angles
representation method is that it can intuitively represent a rotation. However, the Euler angles
representation method is prone to the gimbal lock problem, resulting in the appearance of singularities.
In contrast, the quaternion representation method can avoid the occurrence of singularities, and is
more computationally efficient. In addition, the quaternion can be transformed with the attitude
matrix and Euler angles [15].

In previous studies [4–6], the motion of the upper arm was usually described by the kinematics
differential (Equation (1)).

.
qE

B =
1
2

qE
B ⊗ωB (1)

where qE
B denotes the quaternion from the upper arm coordinate frame, B, to the reference coordinate

frame, E, which is calculated based on the gyroscope measurement. ωB =
[

0 ωT
B

]
represents a

four-element column vector, and ωB =
[

ωB,x ωB,y ωB,z

]
is the measured value of the triaxial

gyro in the upper arm coordinate frame.
We can express a quaternion as follows:

q = q0 + qvert = q0 + q1i + q2 j + q3k (2)

Then, Equation (1) can be written as a matrix as follows:

.
qE

B,0
.
qE

B,1
.
qE

B,2
.
qE

B,3

 =
1
2


0 −ωB,x −ωB,y −ωB,z

ωB,x 0 ωB,z −ωB,y

ωB,y −ωB,z 0 ωB,x

ωB,z ωB,y −ωB,x 0




qE

B,0

qE
B,1

qE
B,2

qE
B,3

 (3)

If the gyroscope output, ωB,t, and the fused quaternion, qE
t−∆t, are known, then we can obtain the

input quaternion as follows:
qE

gyr,t = qE
t−∆t +

.
qE

gyr,t∆t (4)

where ∆t is the sampling time.
The motion of the upper arm can be represented by Euler angles (pitch–roll–yaw), as in Figure 3.

The pitch angle is a rotation angle with respect to the X-axis of the coordinate frame, E. Similarly,
we can define the roll angle and the yaw angle.
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2.3. Motion Speed

The maximum movement frequency of the upper arm of the human body is about 3.7 times
per second [16], therefore, it is difficult for a person to maintain long-term high-speed movements.
In this study, we choose two representative human motion speeds, namely: 0.5 movements per second
(0.5 mov/s) and 2 movements per second (2 mov/s), representing human low-speed motion and
human high-speed motion, respectively.

2.4. Description of the Proposed Algorithm

We proposed a complementary filter algorithm based on fuzzy logic and the ESOQ-2 algorithm.
The block diagram of the algorithm is shown in Figure 4. The ESOQ-2 algorithm calculates the reference
quaternion with accelerometers and magnetometers. The reference quaternion has a more precise
dynamic response at a low frequency. In contrast, the input quaternion calculated by gyroscopes has
a more precise dynamic response in high frequency. In this paper, a complementary filter fused the
reference quaternion and input quaternion, and the conversion frequency was tuned by fuzzy logic.
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In order to analyze the complementary filter, we performed a Laplace transform (s is the Laplace
operator) on qm,

.
qgyr, and q̂. As shown in Figure 5, qm(s) is the Laplace transformation (LT) of qm,

and sqgry(s) denotes the LT of
.
qgyr. F1(s) and F2(s) are two transfer functions and F1(s) + F2(s) = 1 [5].
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F1(s) =
q̂(s)

qm(s)
=

K
s + K

=
1

τs + 1
(5)

F2(s) =
q̂(s)

qgry(s)
=

s
s + K

=
τs

τs + 1
(6)

q̂(s) = F1(s)qm(s) + F2(s)qgry(s) =
K

s + K
qm(s) +

s
s + K

qgry(s) (7)

fc =
1

2πτ
=

K
2π

(8)

where τ = 1
K .

In Equation (7), F1(s) is equivalent to a low-pass filter and can filter out the high-frequency
noise of the reference quaternion. F2(s) is equivalent to a high-pass filter, and can filter out the low
frequency noise of the input quaternion. The conversion frequency of the complementary filter is fc, in
Equation (8), and can be adjusted by varying the filter gain, K [17].

The output of the complementary filter in the time domain in Figure 4 is as follows:

q̂t = [K(qm − q̂t) +
.
qgyr]∆t + qt−∆t (9)

By applying Equation (4) to Equation (9), we get the following [6]:

q̂t = (1− K∆t
1 + K∆t

)qE
gry,t +

K∆t
1 + K∆t

qE
m,t (10)

q̂t = (1− µt)qE
gry,t + µtqE

m,t, 0 ≤ µt ≤ 1. (11)

where µt =
K∆t

1+K∆t = 1− 1
1+K∆t = 1− 1

1+2π fc∆t , by using Equation (8) and fc ∝ µt. Therefore, it can be
seen from Equation (11) that tuning the fusion factor, µt, can change the conversion frequency, fc, of the
complementary filter. When µt increases, fc correspondingly increases. At this time, the complementary
filter output is more biased toward the reference quaternion, qE

m,t. Similarly, when µt decreases, fc

decreases correspondingly, and the complementary filter is more biased to the input quaternion, qE
gry,t.

To prevent the quaternion from being non-orthogonal, we performed orthogonalization on it.

q̂ =
1√

q̂2
0 + q̂2

1 + q̂2
2 + q̂2

3


q̂0

q̂1

q̂2

q̂3

 (12)
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2.5. The ESOQ-2 Algorithm and Computation for the Accelerator

2.5.1. The ESOQ-2 Algorithm and Reference Quaternion

We calculated the reference quaternion by using the ESOQ-2 algorithm. The ESOQ-2 algorithm
has been proposed for the Wahba problem [18]. The Wahba problem is used to estimate the attitudes
of a body in the least-squares sense, by using the vector’s reference values and the corresponding
measurement values, as shown in Equation (13).

LW(A) =
1
2

n

∑
i−1

αi‖Ari − bi‖2 = min (13)

where αi represents the relative weight of the observation vector (∑i αi = 1, i = 1 ∼ n). The weight is
related to the data credibility of the ith observation vector.

In Equation (13), r is the n-dimensional vector defined in the reference coordinate frame, b is
the corresponding vector definition in the body coordinate, and A is the attitude matrix from r to
b. In this paper, n is 2, r represents the gravity vector and geomagnetic field vector defined in the
reference coordinate frame, and b represents the accelerometer and magnetometer measurement vector.
Assuming that in the quasi-static condition (limb motion acceleration is negligible when compared to
gravitational acceleration) the magnetic field is not distorted, the attitude measurement in this paper
was used to determine the body posture through the reference and measurement values of the gravity
vector and the geomagnetic field vector.

The q-method demonstrates that the optimal quaternion, qopt, is the eigenvector with the largest
eigenvalue of the 4× 4 symmetric matrix K [19],

Kqopt = λmaxqopt (14)

Therefore, as long as the eigenvector with the largest eigenvalue of matrix K is obtained,
the optimal attitude quaternion can be obtained.

The procedure for the ESOQ-2 algorithm is as follows:

(1) Calculate the structure matrix

K =

[
B + BT − tr[B]I3×3 z

zT tr[B]

]
(15)

where B = ∑i αibirT
i is the attitude profile matrix, I3×3 is the 3× 3 unit matrix, and z is the vector

z = ∑i αibi × ri = {B(2, 3)− B(3, 2), B(3, 1)− B(1, 3), B(1, 2)− B(2, 1)}T .

(2) Calculate the maximum eigenvalue of the approximated matrix K

λmax =
1
2
(

√
2
√

d− b +
√
−2
√

d− b) (16)

where b = −2(tr[B]) + tr[adj(B + BT)]− zTz, d = det(K).

(3) Calculate the reference quaternion

From the formula [(tr[B] − λmax)S − zzT ]e = Me = 0, the best robustness vector can be
obtained, so

q =

{
(λmax − tr[B])ek

zTek

}
(17)

Thus, the direction of the optimal quaternion is obtained by normalizing q, that is, qopt = q/
√

qTq.

(4) Avoid singularity adjustment
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For the singularity problem that this method may produce, the specific details of the solution are
in the literature [19].

In this paper, the gravity vector is expressed as g =
[

0 0 9.78
]T

, assuming that the local
geomagnetic vector modulus is h, and the declination angle of the local geomagnetic vector is ε.
When the X-axis of the reference coordinate frame points to the east and the Y-axis points to the north,

the geomagnetic vector can be expressed as m =
[

0 h cos ε h sin ε
]T

.

2.5.2. Compensation for the Accelerator

The quasi-static condition in the ESOQ-2 algorithm is rare in human motion. Therefore, we needed
to compensate the accelerator in order to handle a high dynamic movement. Because of the acceleration
of the limb movement, the accelerometer output is the combination of the gravity acceleration and
the motion acceleration. In this case, the input quaternion is more reliable, so we replaced the
accelerometer’s output with the gravitational acceleration vector calculated with the input quaternion.
Based on the aforementioned concept, the input vectors, f, (gravity-related) for the ESOQ-2 algorithm
were calculated using the following equations:

f B =


fm,t
‖ fm,t‖ , i f |‖ fm,t‖ − ‖g‖| ≤ δa and ‖ωb,t‖ ≤ δw,

CB
E

g
‖g‖ , otherwise.

(18)


‖ fm,t‖ =

√
f 2
mx,t + f 2

my,t + f 2
mz,t

‖ωb,t‖ =
√

ω2
bx,t + ω2

by,t + ω2
bz,t

(19)

CB
E =


q2

gyr,0 + q2
gyr,1 − q2

gyr,2 − q2
gyr,3 2

(
qgyr,1qgyr,2 + qgyr,0qgyr,3

)
2
(
qgyr,1qgyr,3 − qgyr,0qgyr,2

)
2
(
qgyr,1qgyr,2 − qgyr,0qgyr,3

)
q2

gyr,0 − q2
gyr,1 + q2

gyr,2 − q2
gyr,3 2

(
qgyr,2qgyr,3 + qgyr,0qgyr,1

)
2
(
qgyr,1qgyr,3 + qgyr,0qgyr,2

)
2
(
qgyr,2qgyr,3 − qgyr,0qgyr,1

)
q2

gyr,0 − q2
gyr,1 − q2

gyr,2 + q2
gyr,3

 (20)

where fm,t =
[

fmx,t fmx,t fmx,t

]
is the accelerometer triaxial output data, and ωb,t is the gyroscope

triaxial output data. CB
E represents the attitude transformation matrix from the reference coordinate

frame (E) to the sensor coordinate frame (S) and the upper arm coordinate frame (B), assuming that
the latter two coordinate frames are consistent in direction. qgyr =

[
qgyr,0 qgyr,1 qgyr,2 qgyr,3

]
is the input quaternion. δa and δw are the corresponding thresholds for acceleration and angular
velocity, respectively.

2.6. Quaternion Fusion Factor

In this paper, fuzzy logic was used to generate the fusion factor for the reference quaternion and
the input quaternion. As a fuzzy input, e1 can be calculated as Equation (21), as follows:

e1 =
ξ

ξ + ‖ .
qE

gyr‖
(21)

where the quaternion differential value,
.
qgyr, is calculated from the gyroscope output. In addition,

ξ represents the minimum value of the angular velocity differential mode value ‖ .
qE

gyr‖ under normal
human motion, which can be obtained through simple experiments.

The specific steps for designing a fuzzy controller are as follows [20]:

(1) Fuzzification

That is, a fuzzy set is used to represent real-valued signals. This paper used a single-valued method.
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(2) Establish fuzzy inference rules

In this part, e1 is the fuzzy input, and u is the fuzzy output. The fuzzy output, u, was µt in the
paper. From Equation (21), we can see that when the acceleration of the line motion was large,

.
qgyr

increased and e1 decreased. According to Equation (11), µt should be tuned to be smaller, as the
quaternion calculated by the gyroscope is more reliable. On the contrary, when the linear motion
acceleration is small,

.
qgyr decreased and e1 increased. Therefore, µt should be tuned to be larger.

The rules of the fuzzy inference are set according to the aforementioned principles in Table 1.

Table 1. Fuzzy rules.

e1 u

small small
large large

The inference rule language is expressed as follows: Rule 1—if e1 is small, then u is small; Rule 2—if e1 is large, then
u is large.

(3) Determine the weights and rule reliability

In practice, it is important to establish the relationship between the weights of the fuzzy rules and
the reliability of the fuzzy rules in the knowledge base. There is a reversible mapping between the
weights and the corresponding fuzzy rule confidence vectors.

(4) Choose the appropriate relationship generation method and inference synthesis algorithm

The selection of appropriate relationship generation methods and inference synthesis algorithms
is required when designing a fuzzy controller. This article used the Z-shaped membership function and
the S-shaped membership function in the MATLAB fuzzy toolbox. The fuzzy membership functions
designed based on the fuzzy inference rules and rule reliability are shown in Figure 6.
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(5) Defuzzification

When the output of an inference process forms a fuzzy output set, it is necessary to compress its
distribution in order to produce a single value that expresses the output of the fuzzy system, that is,
anti-blurring. This study used the maximum membership degree average method.
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3. Experimental Results and Discussion

In this section, we consider the experimental testbed and evaluate the performance of the proposed
FTECF method at different test times and motion speeds. We also compare the FTECF with two other
methods in terms of accuracy and structure, so as to further evaluate its performance.

To verify the proposed algorithm, we used the MARG sensors named MTi-3 [21]. MTi-3 is
produced by Xsens Technologies (Enschede, The Netherlands). Figure 7a shows that we bound
MTi-3 to the subject’s right upper arm to measure its motion. All of the sensor signals were sampled
at 100 Hz and were interfaced to a personal computer (PC) via a universal serial bus (USB) cable.
The accompanying software MT manager provided the calibrated sensor measurements. An Oqus
7+ optical motion capture system (Qualisys, Göteborg, Sweden), shown in Figure 7b, provided
the reference orientation, which captures motion by using passive reflective technology with three
cameras [22]. The spatial positioning accuracy of Oqus 7+ is less than 1 mm, and the latency time is
less than 4 ms.
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In the experiment, the subject swung his upper arm according to the procedure of Figure 8. First,
the subject stretched his upper arm and remained stationary at the T-pose for about 10 s, in order to
calculate the initial position. Then, the subject swung his upper arm in the order of roll–pitch–yaw,
and subsequently repeated the motion for about 55 s in the same order. As shown in Figure 8,
we referred to the entire experiment as the 110 s test, and the approximately one-minute portion of the
110 s test as the 55 s test. By comparing the results of the two tests, we could conclude the influence
of time on the algorithm. In addition, two motion speeds were mentioned in Section 2.3. In order to
study the performance of the proposed algorithm at different motion speeds, we performed three trials
for each speed.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 15 

 

In the experiment, the subject swung his upper arm according to the procedure of Figure 8. 

First, the subject stretched his upper arm and remained stationary at the T-pose for about 10 s, in 

order to calculate the initial position. Then, the subject swung his upper arm in the order of 

roll–pitch–yaw, and subsequently repeated the motion for about 55 s in the same order. As shown in 

Figure 8, we referred to the entire experiment as the 110 s test, and the approximately one-minute 

portion of the 110 s test as the 55 s test. By comparing the results of the two tests, we could conclude 

the influence of time on the algorithm. In addition, two motion speeds were mentioned in Section 

2.3. In order to study the performance of the proposed algorithm at different motion speeds, we 

performed three trials for each speed. 

 

Figure 8. The experimental illustrations of motion. 

Two other algorithms, Madgwick’s method [11] and Yun’s method [4], were used to compare 

the proposed FTECF method. In order to verify the orientation estimation accuracy, the root mean 

square error (RMSE) value of the Euler angles from the quaternion-based orientation was chosen as 

the criterion to evaluate the performance of the proposed FTECF method [4–6,10]. The calculation 

formula is as follows: 

2

1
( )

n

obs trui
RMSEe

n

 






 (22) 

where obs  indicates the Euler angles calculated by the FTECF or other methods, the Euler angles, 

tru , are the reference attitudes, and n indicates the number of calculations. 

Note that Yun’s method was assumed in the quasi-static state, which means that the 

acceleration of motion is small relative to the acceleration of gravity. The experiment obviously did 

not meet this assumption. We performed Equations (18) and (19) on the QUEST algorithm in Yun’s 

method (similar to the ESOQ-2 algorithm in this paper, which uses a gravitational acceleration 

vector and a geomagnetic vector to determine the attitudes). 

The relevant parameter of the fuzzy tuned algorithm was selected as 0.0006325  . The 

corresponding thresholds for acceleration and angular velocity were 20.1 m/sa   and o10 /sw  , 

respectively. g  and h  were selected as 29.78 m/s  and 0.6 Gauss , respectively. The declination 

angle of the local geomagnetic vector   was −58°. 

3.1. The Effect of Motion Speed and Test Time on the Proposed FTECF 

We plotted the typical measurements of the proposed FTECF at two motion speeds. Figures 9 

and 10 are the typical measurement results of FTECF at 0.5 mov/s and 2 mov/s, respectively. In 

Figures 9a and 10a, the red solid lines indicate the Euler angles measured by the optical motion 

capture system, and the blue dotted lines indicate the Euler angles calculated by the FTECF. The 

blue lines in Figures 9b and 10b indicate the angle errors calculated by Equation (22). As can be seen 

from Figures 9b and 10b, in terms of the fluctuation of the error, yaw was the largest, pitch was 

second, and roll was the smallest. In addition, the results showed that the proposed FTECF 

maintained a RMSE within a certain range of accuracy. 

Figure 8. The experimental illustrations of motion.



Sensors 2018, 18, 3517 11 of 14

Two other algorithms, Madgwick’s method [11] and Yun’s method [4], were used to compare
the proposed FTECF method. In order to verify the orientation estimation accuracy, the root mean
square error (RMSE) value of the Euler angles from the quaternion-based orientation was chosen as
the criterion to evaluate the performance of the proposed FTECF method [4–6,10]. The calculation
formula is as follows:

eRMSE =

√
∑n

i=1 (βobs − βtru)
2

n
(22)

where βobs indicates the Euler angles calculated by the FTECF or other methods, the Euler angles, βtru,
are the reference attitudes, and n indicates the number of calculations.

Note that Yun’s method was assumed in the quasi-static state, which means that the acceleration
of motion is small relative to the acceleration of gravity. The experiment obviously did not meet
this assumption. We performed Equations (18) and (19) on the QUEST algorithm in Yun’s method
(similar to the ESOQ-2 algorithm in this paper, which uses a gravitational acceleration vector and a
geomagnetic vector to determine the attitudes).

The relevant parameter of the fuzzy tuned algorithm was selected as ξ = 0.0006325.
The corresponding thresholds for acceleration and angular velocity were δa = 0.1 m/s2 and
δw = 10

◦
/s, respectively. ‖g‖ and ‖h‖ were selected as 9.78 m/s2 and 0.6 Gauss, respectively.

The declination angle of the local geomagnetic vector ε was −58◦.

3.1. The Effect of Motion Speed and Test Time on the Proposed FTECF

We plotted the typical measurements of the proposed FTECF at two motion speeds.
Figures 9 and 10 are the typical measurement results of FTECF at 0.5 mov/s and 2 mov/s, respectively.
In Figures 9a and 10a, the red solid lines indicate the Euler angles measured by the optical motion
capture system, and the blue dotted lines indicate the Euler angles calculated by the FTECF. The blue
lines in Figures 9b and 10b indicate the angle errors calculated by Equation (22). As can be seen from
Figures 9b and 10b, in terms of the fluctuation of the error, yaw was the largest, pitch was second,
and roll was the smallest. In addition, the results showed that the proposed FTECF maintained a
RMSE within a certain range of accuracy.Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 
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Figure 11 shows the RMSE of the FTECF under four different test conditions. In Figure 11, the blue
bars indicate the RMSE of the FTECF at the 0.5 mov/s, 55 s test condition. The meaning of the red,
yellow, and purple bars can be inferred from the legend. In order to obtain the influence of the motion
speed on the proposed algorithm, we compared the blue and yellow bars with a test time of 55 s,
and the red and purple bars with a test time of 110 s. The results show that yaw had a smaller RMSE at
higher motion speeds, while pitch and roll changed less at different motion speeds when compared
with yaw. Similarly, in terms of the influence of test time on the proposed algorithm, we compared the
blue and red bars with a motion speed of 0.5 mov/s, and the yellow and purple bars with a motion
speed of 2 mov/s. From Figure 11, we can see that the three Euler angles showed a small change at
different test times.Sensors 2018, 18, x FOR PEER REVIEW  13 of 15 
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3.2. Compare the Proposed FTECF and the Other Two Methods

To compare the performances of the proposed FTECF and the other two methods, we listed each
of the Euler angle’s maximum RMSE from each method, as shown in Table 2. We also listed the
maximum errors of each method. The maximum RMSE of each method and the smallest maximum
error of the three methods are in bold.

Table 2 shows that the maximum RMSE of the FTECF was less than 2.2◦, and the maximum error
was less than 5.4◦. In addition, the RMSE of the pitch and roll of the FTECF were also smaller than the
other two methods, while the RMSE of the yaw was slightly larger than that in Madgwick’s method.

The proposed FTECF found a balance between high precision and simple structure.
Compared with the Kalman filter algorithm represented by Yun’s method, the proposed method
needed lower calculation costs and adapted well to high-speed human motion. The gradient descent
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algorithm represented by Madgwick’s method was also simple in structure. However, the proposed
method had a higher precision than Madgwick’s method.

Table 2. Summary of errors. RMSE—root mean square error; FTECF—Fuzzy Tuned and Second
EStimator of the Optimal Quaternion Complementary Filter.

Euler Angles (◦) FTECF Madgwick’s Method Yun’s Method

RMSE (pitch) 1.8024 2.2313 1.9024
RMSE (roll) 1.0884 1.2695 1.4793
RMSE (yaw) 2.1605 2.1393 2.5881

Maximum error 5.376 5.801 9.463

4. Conclusions

In this paper, we proposed a complementary filter, based on fuzzy logic and the ESOQ-2 algorithm,
for human motion measurement. Firstly, the proposed method was effective at handling high dynamic
movement with the fuzzy tuned algorithm and the compensation of the accelerator. The proposed
algorithm did not accumulate errors under either 55 s and 110 s of measurement, indicating that it
had the potential for long-term human motion measurement. Secondly, the RMSE of the proposed
FTECF was less than 2.2◦, which was comparable to the other two methods. In summary, this
paper demonstrated the different speed motion measurements of the human upper arm by using the
proposed method, and the results also illustrated its high accuracy.

Due to its high accuracy and computational efficiency, the proposed algorithm can be potentially
implemented in a network of miniature MARG sensors for human body motion, forming a truly
portable and ambulatory motion measurement system. The motion measurement system can be used
in patient rehabilitation and behavioral monitoring. Future work will further study the influence
of magnetic interference on the proposed algorithm. The complexity of the algorithm and the
measurement effect for a longer time will also be studied. In addition, we will study the joint
orientation assessment when the sensors are used in combination.
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