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Abstract: Visual object tracking is a fundamental research area in the field of computer vision and
pattern recognition because it can be utilized by various intelligent systems. However, visual object
tracking faces various challenging issues because tracking is influenced by illumination change,
pose change, partial occlusion and background clutter. Sparse representation-based appearance
modeling and dictionary learning that optimize tracking history have been proposed as one possible
solution to overcome the problems of visual object tracking. However, there are limitations in
representing high dimensional descriptors using the standard sparse representation approach.
Therefore, this study proposes a structured sparse principal component analysis to represent the
complex appearance descriptors of the target object effectively with a linear combination of a small
number of elementary atoms chosen from an over-complete dictionary. Using an online dictionary for
learning and updating by selecting similar dictionaries that have high probability makes it possible to
track the target object in a variety of environments. Qualitative and quantitative experimental results,
including comparison to the current state of the art visual object tracking algorithms, validate that the
proposed tracking algorithm performs favorably with changes in the target object and environment
for benchmark video sequences.

Keywords: visual object tracking structured sparse PCA; appearance model; online learning;
structured visual dictionary

1. Introduction

Visual object tracking systems have gained continuous attention and focus in the area of computer
vision and pattern recognition because they can be applied to various fields, such as robotics,
video surveillance, user-centered interaction systems, video communication and compression and
augmented reality [1-4]. A large number of tracking algorithms has been proposed to follow the
moving object in a given image sequence, while simultaneously keeping track of target identities
through the significant pose changes, illumination variations and occlusions by focusing on finding
appearance and motion models. To evaluate the performance of the state of the art visual object
tracking methodologies quantitatively and qualitatively, benchmark tests [5,6] were conducted using a
large database including ground-truth object positions to understand how these algorithms perform
and effectively analyze algorithm advances.
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Most state of the art visual object tracking algorithms with reported benchmark tests were
formulated using the Bayesian framework [7] where the maximum a posteriori (MAP) state of the given
observation was estimated by decomposing the visual object tracking system into three components.

1.  Anappearance model that captures the visual characteristics of the target object and evaluates
the similarity between observed samples and the model.

2. A motion model that locates the target between successive frames utilizing certain motion hypotheses.

3.  An optimization strategy that associates the appearance model with the motion model and finds
the most likely location in the current frame.

In the Bayesian visual object tracking framework, the main issue of robust target object tracking is
to find models for status and observation, such as target representation and localization, as well
as filtering and data association. Target object representation and localization methodologies
follow a bottom-up process that provides a variety of tools for identifying the moving object.
The specific strategy for successfully locating and tracking the target object depends on features
in the color, appearance and time spaces. Filtering and data association are mostly top-down processes,
incorporating prior information about the scene or object, dealing with object dynamics and evaluating
different hypotheses.

The core technique of visual object tracking in the Bayesian framework aims to robustly estimate
the motion state of a target object with a defined appearance model in each frame from given image
sequences. To achieve visual object tracking, it is necessary to categorize the appearance model into
several task-specific categories. Popular appearance models used in object tracking can be separated
into global and local visual appearance models [8]. Global visual representation of the target object is
simple and computationally efficient for fast object tracking, but is very sensitive to target deformation
and environmental changes, including illumination. A multi-cue strategy is adopted in relation to the
global features, incorporating multiple visual information types, to deal with complicated appearance
changes. In contrast, local visual appearance representation is robust to global appearance change by
capturing the local structural object appearance. However, the representation often suffers from noise
distribution and background distraction.

Sparse representation and dictionary learning for online appearance modeling have been recently
proposed as an alternative solution, formulating the over-complete dictionary as a linear combination
of basis functions. However, global linear sparse representation has problems with partial occlusion
and local deformation. Since the dictionary uniformly emphasizes the object, occlusion and local
deformation can be seen as noise when estimating similarity [9-11]. Another characteristic inherent
in natural images is their high dimensionality, which causes complex and expensive computation.
Exploration of the specific structure of sparsity as a prior enables dictionary learning to reduce
computational costs effectively [12-14]. Therefore, we propose a structured sparse principal component
analysis (PCA)-based subspace representation to represent the appearance model of the target object
effectively and online learning techniques for robust visual object tracking. We use the structured sparse
PCA to find a sparse linear combination over a basis library containing target and trivial templates
by reducing the data dimension. The proposed structured sparse PCA-based visual object tracking
within the Bayesian framework is decomposed into initialization, observation model, motion tracking
model and update. The structured spare PCA-based appearance model representation and learning of
domain-specific over-complete dictionaries are used to obtain MAP dictionary estimates within an
appropriately chosen dictionary. The main contributions of our proposed robust visual object tracking
system are as follows.

e  Structured sparse PCA-based appearance representation and learning for efficient description of
the target object with few dictionary entries, to reduce the high-dimensional descriptor and to
retain the structure.

e Local structure enforced similarity measures to avoid problems from partial occlusion,
illumination and background clutter.
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e  Training image selection for robust online dictionary learning and updating by considering the
probability that the training image contains the target, as opposed to the existing methods that
choose the most recent training images.

Section 2 reviews relevant previous visual object tracking approaches, and Section 3 details
tracking target objects from a given image by modeling the observation and motion using the proposed
structured sparse PCA-based representation within the Bayesian framework. Section 4 quantitatively
and qualitatively compares the proposed and current state of the art approaches experimentally.
Section 5 summarizes the outcomes, concludes the paper and discusses future work.

2. Review of Previous Related Work

There is a rich literature in visual object tracking methodologies dealing with target object
representations, search mechanisms and model updating. Sparse representation and modeling also
have a fruitful literature exploiting prior information within the predefined structure of the basis library
and contiguous spatial distribution of deformable target objects. We review some of the important
milestones in terms of visual object tracking and sparse representation-based modeling.

2.1. Visual Object Tracking System

Many tracking methods have been proposed, largely separated into generative and deterministic
methods. Generative visual object tracking methods search for the most similar region to the target
object within a neighborhood, whereas discriminative methods treat tracking as a binary classification
problem and aim to design a classifier to distinguish the target object from the background [15].

Early visual object tracking systems focused on generative methods, such as the Lucas—Kanade
tracker [16], Kalman filter [17,18] and mean-shift (MS) tracker [19,20]. The Kalman filter [17] used
for visual object tracking commonly uses the state and observation model uncertainties to calculate
actual Gaussian noise, which causes certain parameter estimations to produce errors in the model,
with consequent decreased estimation precision. The particle filter (PF) is efficient for conventional
tracking problems with non-Gaussian distributions and multi-modality [21]. MS-based approaches are
efficient for tracking non-rigid objects whose appearances are defined by histograms, but this makes
them poor at dealing with illumination and/or pose variations [19,20].

Multiple instance learning (MIL)-based tracking [22] implements discriminative tracking by
building a boosting classifier that tracks bags of image patches by incrementally updating the training
patches over time. Online appearance learning (OAL)-based visual object tracking uses different target
object appearances as a set of probability mass functions to adaptively deal with pose variations [23].
Many approaches attempted to efficiently represent the variation of rigid or limited deformation motion
using an adaptive appearance model, such as incremental visual [24] and fragment-based (Frag) [25]
trackers. Kelal et al. [26] proposed a paradigm for training a binary classifier from labeled and unlabeled
examples called P-N learning for visual object tracking. Tracking-learning-detection (TLD) is an
award-winning, real-time algorithm for tracking unknown objects in video streams that simultaneously
tracks the object, learns its appearance and detects it whenever it appears in the video [27]. Struct [28]
is an extended version of TLD using kernels. On the other hand, sparse representation-based visual
object tracking systems like sparse collaborative appearance (SCM) [29], visual tracking decomposition
(VTD) [30], the sparse representation-based [; tracker [31], the structured sparse tracking (SST) [32]
model and sparse mask models [33,34] use an appearance model to find the sparsest linear combination
of basis functions from an over-complete dictionary. However, most dictionary learning-based systems
still have problems in high-dimensional reduction. Deep learning-based machine learning techniques
have been recently applied to separate target objects from target candidate image templates [35-39] and
showed a good performance to track the target object, but this requires numerous training templates.

In contrast to visual tracking approaches based on pixel-based observation models, superpixel
tracking (SPT) [40] uses middle level features to both remove noise and enforce the target object color
of the candidate template.
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2.2. Sparse Representation-Based Learning

Sparse signal representation is an extremely powerful tool for acquiring, representing and
compressing high dimensional signals. Mathematically, solving a sparse representation and learning
involves seeking the sparsest linear combination of basis functions from an over-complete dictionary.
The basic concept of how to represent or reconstruct signals with sparse samples is an extremely
important problem in many practical fields, such as signal processing, machine learning, computer
vision and robotics. Compressive sensing (CS) is based on the principle that signal sparsity can
be exploited to recover the original signal from significantly less samples than required by the
Shannon-Nyquist theorem [41,42]. Generally, CS algorithms include three basic components: sparse
representation, encoding measuring and a reconstruction [12]. In particular, sparse representation
that approximately solves a system of equations with sparse vectors is popularly applied for pattern
recognition because it exploits a linear combination of training samples to represent the test sample
and computes sparse representation coefficients of the linear representation system [43—45].

Structured sparse representation is an extension of standard sparse representation in statistical
signal processing and learning [46,47]. Motivated by potential group structures on feature sets,
group sparse representation has become popular in recent years. Group sparsity is used not only for
estimating hyper-parameters in the sparse prior model, but also for group least absolute shrinkage and
selection operator (LASSO). Techniques using strong group for group LASSO have been developed
and show superior performance for strongly group-sparse feature sets [43]. However, group LASSO
works well only under the strong group sparsity assumption and does not apply for more general
structures, such as overlapping groups, and tonal or transient structures. Therefore, Huang et al. [14]
proposed that sparse representation can be solved by a structured greedy algorithm when a coding
scheme can be approximated by block coding with base blocks.

3. Structured Sparse PCA-Based Tracking and Online Dictionary Learning

For visual object tracking, it is reasonable to assume that the object trajectory is continuous and object
features are consistent or change insignificantly over a short time interval. Thus, once a representation of
the feature vector is found in terms of fix-ahead dictionaries, consecutive representations of the feature
vectors are almost constant. Therefore, we propose an object tracking method by classifying the target
appearance model’s coefficients. The dictionaries are generated from appearance features by applying
structured sparse PCA and updated using the last data. The object tracking comprises three modes:
observation, tracking and update within the Bayesian framework, as shown in Figure 1.
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Figure 1. Representation of the target object using structured sparse PCA and deterministic
classification between the target object and background image patches.
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3.1. Notations and Symbols

Before proceeding to the technical details, we introduce the notations and symbols used
throughout this paper, as shown in Table 1. Lower case letters denote real variables, and upper
case (capital) letters denote multi-dimensional variables, such as images and matrices, except for the
case Y, which denotes an observation random variable taking real numbers. Column vectors given
are shown as boldface, and mappings are denoted by letters of the Greek alphabet.

Table 1. Notations and symbols.

Symbol Description

n Frame at time ¢

X e RZxRxR  State variable X; = (J‘c’f,wﬁx,hiy)

Y; e {-1,1} Observation variable

X¢ = (x¢,y°) € R?  Location vector in the state variable X;
78 € RS Target descriptor vector

78 € R Background descriptor vector

Patch image
Column vectors of D
Column vectors of C
Feature descriptor
Feature dictionary
Feature coefficient matrices
Support vector machine classifier
4 x 4 Diagonal covariance matrix
(Xt; Xp-1,0) Multivariate normal distribution
Set of target descriptors
Probability function
Dimension of descriptors
Number of dictionary vectors
Number of background descriptors 7S
Number of vectors after updating
Time variable
Real number —1 or 1 related to width size
Real number —1 or 1 related to height size

SR TFAIAT HZALHGOT <O

w;* Width (x-axis) size of patch
h?y Height (y-axis) size of patch
~ Approximately equal

« Proportional to

T

Transpose operator

3.2. Bayesian Framework-Based Visual Object Tracking

The traditional visual object tracking algorithm can be formulated with the Bayesian framework
where the maximum a posteriori (MAP) estimation of the state given the observations up to time ¢ is
expressed as:

p(Ye|Yai—1, Xe) p(Xie|Y1:4-1)

X Y . =
p( t| 1.f) p(Yt‘Ylttfl) (1)
Y| X
- p(;it) / p(Xe| Xi-1)p(Xp-1Y14-1)d X -1,
where X; is the state at ¢; Y7.; denotes all the observations up to t; and #n; is a normalization term,
ng = p(Yi[Y14-1) = / p(Xe| Y1) p(Ye| Y11, Xp)dXs. ?

We use the following assumptions.
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(i) State X; is independent of the past given the present X;_1,
p(XelX1:-1, Y1:4-1) = p(Xe| Xp-1)- ®3)
(ii) Observations Yi. are conditionally independent given X;,
p(Yi[Yis-1, Xp) = p(Yi] X1). @
We also employed the Chapman-Kolmogorov equation for Equation (1),
pXiYia1) = [ pOGIXe )X Yia-1)dXoo.

In the visual object tracking scheme, the target state is defined as X; = (¥¢, wi*, hiy), where X}
represents the center location of the target and w§* and ;” denote its scale in the x and y directions,
respectively. In terms of observation, we need to construct an effective observation model p(Y;|X;)
and an efficient motion model p(X;|X;_1). The state estimate of the target X; at time f can be obtained
by the MAP estimate over the M samples Xi and its measurements Ytj forj=1,...,M, given X;_1,

X; = argmax p(XI|Y], X;1). (5)
Xi

It is worth noting that even though we need the measurement quantities p(Ytj |X¢_1) in solving the
optimization (5) from Bayes’ rule p(x|y,z) = p(y|x,z)p(x|z)/p(y|z), we may regard the denominator
as a constant for all j = 1,..., M and solve the maximization by finding the maximum of likelihood
times prior as given in (13). This is because given X;, the measurements (evidence) Y;;1 and Y; for the
two consecutive targets X;,1 and X; remain the same. We shall see this precisely in Section 3.4.

Based on the MAP estimation, we decompose the visual object tracking procedure into:

1.  structured sparse PCA-based observation and appearance representation using deterministic
target object separation from background patch images,

2. motion tracking and

3.  online update.

3.3. Deterministic Modeling Using Structured Sparse PCA-Based Appearance Representation

To construct the dictionary from the tg initial image sequences, we extract image patches using
windows surrounding the target object for each t = 1,.. ., tg. Figure 1 shows the proposed procedure
to separate the target object and background image patches around the target object, representing
appearances using structured sparse representation. Let us explain the learning mode of the target
object tracking in more detail. We create tracking dictionary vectors {d_;}Z’:1 by applying feature
descriptors extracted from observation frames Iy.¢, to the structured sparse PCA algorithm as follows.

1. We take the same sized image patches {faiurget}:o:l centered at (x{,y{) from frames I,.;, respectively.

Recall that states X; = (¥¢, w$*, ;") consist of the center location ¥ = (x¥,y¢) of the target and its
window size (w$¥, 1) in the _J,Ct and y directions, respectively. From each patch ﬁi”rggt, t=1,...,t,
we construct the descriptor ¥ € R of the target object by sequentially accumulating gradient

histograms from equally-divided subregions of ﬁimgd.

To enhance tracking performance, we also create background feature descriptors 5;7g € R® from

the four background patch images {ﬁi"ég’i b,) S It|ax,by =1,—-1and a,zc + b§ =1,t=1,...,t}

around the target patch ﬁiarget as follows.
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e Foreacht=1,...,ty, patches ﬁf‘é‘;’i b,) ate subimages of I; centered at (x{ + a wi™, y§ + byhfy )

. . —target
with the same size as 7, %"

e  When the domain of f)’f‘ECk does not entirely belong to that of I;, we regard it as an
, ax,by)
empty set.

o Let {5§7g };‘(:1 € R°® with « < 4ty be background appearance descriptors obtained from
=back

background patches p" (axby) in the same manner used to create the target descriptors.
2. After creating the appearance feature descriptors z’fﬁg and z")';jg , we apply the constrained structured
sparse PCA dictionary learning algorithm to the target and background descriptors to find
dictionaries {d;}/_; € R®,

(D,C) = argmin H(D,C) (6)
S

subjectto [|Cjllo <1, j=1...,tg+x,

where the objective function H(D, C) is given by:

1 r -
|V—DClF+AY. Qu(d)

H(D,€) = 25(to + K) =

and V = (51-)50;{'( is the s x (fp + x) matrix with 27%0 and 1711)5; column vectors; D = (072)1721 € R¥*7

is the dictionary matrix; and C = (E})fojlx € R™(0+5) js the coefficient matrix, such that for

i=1,...,t+x, U; is (approximately or exactly) expressed by a linear combination of a?} with
r

coefficients ¢; = (cj;) Y

L

.
G~ Y cid; = DG, T = (c1i,Cair- ., Cri) T

fori=1,...,tg+x.

n m
3. Let|| - ||r be the Frobenius matrix norm, || A||%2 = trace(AAT) = Y ¥ ”12]'/ for A = (a;;) € R,
i=1j=1
Il - |l2 the Euclidean norm; and ), a quasi-norm that controls the sparsity and structure of the
support of ci} In this work, the quasi-norm (), is defined as follows. Let Gy, Gy, G3, G4 be four
mutually disjoint subsets of {1,2,...,s}. Then, every vector d = (dy, ...,ds) € R® is decomposed

into four subvectors dj, = (d’l‘, .., d),k=1,2,3,4such thatfor1 <k <4and1<j<s,

dk: {d], iijGk

J 0, otherwise
Then, O, (d) is defined as:

2
= - 1 o 1 5 1 5 1
@) = (1613 + 1205 + 11} + 14613 )

We refer to [49] and the references therein for details on the quasi-norm. The decomposition of V
into DC enables us to reduce the dimensionality of the descriptors using Equation (6).

Although there is clearly a limitation in representing high dimensional descriptors using a smaller
number of vectors than the dimension, the proposed structured sparse PCA is more effective to
represent nonlinear and high dimensional descriptors by reducing the dimension while retaining
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the target object structure. For more details of structured sparse PCA algorithms, refer to the
original paper [49].

4. Finally, we find a linear support vector machine (SVM) @ : RS — R, such that ®((DC);) >
1(i=1,...,t) for the target feature-related column vectors of DC and ®((DC);) < —1 (i =
to, ..., to + k) for the background appearance feature related column vectors of DC, where (DC);
denotes the i-th column vector of DC, i.e., (DC); = Dcj. Using the classifier ®, we estimate
observation Y; € {1, —1} as:

v, — { 1 (target), ifCD(z_f:g) >0
= : @)
—1 (background), otherwise

where we recall that 5:37 is the target feature descriptor obtained from state X;. Note that when
the target object is occluded or not observed, the value of the observation becomes negative.

The procedure of deterministic separation using the structured sparse PCA-based representation
of the target and the background is shown in Algorithm 1.

Algorithm 1: Discriminative classification of target objects.

Input: frame images I, states Xy, integers 7y, Thg > 0

1. take target patches ﬁ;atrfd

. take background patches ﬁf“(;’; by)” t=1,...,1

. create target appearance descriptors 5‘;%0 eR®

. create background appearance descriptors 1711)%( eR°

. find (D, C) by applying structured sparse PCA (6)

. find optimized classifier ® such that ®((DC);) > 1
fori=1,...,tgand ®((DC);) < —1fori=ty,..., to+«

Output: target appearance descriptors z'ffto € R® and classifier ¢

NGk W N

3.4. Motion Tracking Model and Online Update

Using the learned dictionary of the target object and classifier, we track the target object for
frames {I;1}¢41>¢, from the previous states X;. The motion model p(X;,1|X;) starts from the
Gaussian assumption:

p(Xi1|Xi) = N(Xpy1; X1, 0) 8)

1 1 L
= ez O <_2(Xt+l = X)o7 (X1 — Xt)) ,

where 7 is a diagonal covariance matrix whose elements are the standard deviations for location and
size and |#| is the determinant of 7.
Let I; ;1 be the frame at t + 1 > tg, and assume we already have states X;.;. We randomly take M

candidate states {X] +1}].Ai 1 around (x{,§) in Ij4q with X |

mode, we build the M descriptors {z’fi 41 }]Ai 1 from sample states {X{ 41 }]Ai 1-
Since the observation model p(Y;|X:) with given state X;; implies the confidence of an

observation Y; at state X; being the target, the likelihood p(YtH\Xi 417

its confidence:

~ N(X¢, ). Similar to the observation

X¢) is proportional to

p(Yera|X) y, Xi) (Ve | K], q, Xi).-

Given the target state X; at time ¢, the confidence w(y|X;1, X¢) for the target candidates X; ;1 with
positive confidence value increases as we observe the targets in a larger area, whereas confidence for
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target candidates with negative confidence decreases. Therefore, we evaluate confidence w(y|X;1, X¢)
comparing with state X; as:

B 1 F41 +ht+1
ot 0= e () ®

where y =1, —1 and 71 is the feature descriptor extracted from the target state X;,1 and w}7 - hiZ_l
denotes the window size of X;, 1. We note that in the tracking mode, we estimate the observation
in (7) and the confidence in (9) by applying the descriptor ¥ directly to the SVM, ®(7), instead of using
the dictionary representation (DTD)~'DT% as we construct the SVM @ in the initialization mode.
This is because the descriptor 7 and its dictionary representation (D' D)1 D% are much similar for
(DTD)~'DT%, which minimizes ||& — D@||5, so that it is cheaper to apply the descriptor to SVM rather
than to utilize the representation, which requires the computation of the inverse matrix (DTD)~!

Now, the likelihood p(Y;11|X] L1, Xt) of Y11 given states X! 111 and X; is defined as:
1
(Yt+1|Xt+1' t) = o w(Yiq |Xt+1' t), (10)
forj=1,2,...,.M with the normalizing factor n, = w(— 1|Xt+1, X¢) + w(1|Xt+1, £)- Applying the
motion model p(X] t1/Xt) obtained from Equation (8) and the observation model p(Y;11 |Xt 41 Xt)

obtained from Equation (10) to the Bayesian formulation in Equation (1), we estimate the a posteriori
probability p(f(iJrl |Yi1, Xt) as:

(Yt+1|Xt+1/ ) ( |Xf)
p(Ye1]Xe)

(Yt+1|Xt+]/ ) (X 1|Xt)
14 e Y1 @(@) '

p(X Y1, Xe) = (11)

Finally, we obtain the most likely target state X; 1 at t + 1 with estimated MAP over the M

samples X] 141 and its observations Y, , forj =1,..., M, given X;,

t+1

Xps1 = argmax  p(X] 4|, Xp)

&1, 1<j<M
i A N 12)
Y X, X p(X X (
= argmax P( H'l’ i1 ]t> <H 1’ t>.
X, 1<j<M 14e~ T ®(@)

On the other hand, it is reasonable to infer that the maximizing target state X, is very similar to

X¢, which implies Y; 11®(7;) > 0, so that Y;1D(7;) > Yt]+1 (7¢) forall 1 < j < M. From this aspect,

let X; 1 be a sample state such that Y;, 1®(7;) > 0 and the solution to the maximization:

Xy = argmax p( t+1|Xt+1rX) ( t+1|Xf) (13)

Xt+1,1<]<M
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Then, forall 1 <j < M, we have:

p (Ve K1, Xe)p (Ko | X2)

1 4+ ¢ Ve ®(@)
1+ e*YH—l@(?’t)
1 + e~ Ve+19(@)

> PVl K, X0p(Ria 1X0)

t+l

)
2 ( 1|Xt+1' )(Xt+1|Xf)' Vi

qu)(ﬂ)

14+e”

for1+exp (—=Y;+1P(7:)) <1+exp(— Yt+1q)( ¥t)), so that:

P(YtJrl|Xt+1rXt)P(Xt+l|Xt) p(Y, +1|Xt+1’ Dp(X},41X)
1 4+ e~ Vi1 ®(@) 14e 7, @)

forallj =1,..., M. This shows that we may regard the denominator 1 + e V11 ®(@) jn (12) as a constant
forallj=1,..., M.

Figure 2 shows the steps of how to detect the target object when a new frame comes in.
M candidate samples are separated into positive and negative labels using ®(7). Usually, the ideal
target template contains all of the target features, although there is some background. However, in most
cases, a sample with the highest probability tends to contain less background. Figure 3a illustrates
this problem. The first row of Figure 3a shows candidate samples sorted without the window size
ratio in Equation (9). The ideal candidate sample is located in the fourth. However, the second row,
which applied the window size ratio in Equation (9), shows that there is the ideal candidate in the first
position. Consequently, we prioritize templates with the same or similar & such that larger window
sizes are assigned a larger weight, based on the scale information of the last target estimate X;
(see Equation (9)). Figure 3b illustrates how the result changes when the prioritization is applied.

M candidate sampling
(including scale variation)

I Targeting at time ¢t +1 !

P(yt+1 |th+1: Xt)p()?tjﬂ |Xt)
p(Yes1Xe)

i p(RL,1|Yerr, Xe) =

1 1

back
Ve+1,1

OX)=XTw+b

e
D>
-

7’

back
Vt+1,3

Figure 2. Representation of the target object using structured sparse PCA and deterministic
classification between the target object and background image patches.
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8 i@ N
® ©i6 N
TTE

Figure 3. Procedure to find the most similar target object templates using confidence (Equation (9)).
(a) Typical explanation to find the target object by weighting the scale factor from positive candidate
templates to prevent drift, partial occlusion and scaling problems; (b) real image-based re-weighting

procedure to find similar templates from positive image templates.

The proposed motion tracking model is summarized in Algorithm 2.

Algorithm 2: Motion tracking model.

for t +1 = to + 1 to the end of the frame sequence
1. take M candidate states {X{;H}j]\il ~ N(X;, )
around the point (x{, yf)
2. build up the M descriptors {7} , | }]I\i 1

and their measurements {Yt] 1 }]Ai 1
. compute the motion model p(f({ +11Xt) (Equation (8))
. compute the observation model p(Y/ “ X! 41, Xt) by Equation (10)
. estimate the a posteriori prob. p(X], |Y/, , X) using Equation (11)

. find the most likely target state X;; by Equation (12)
. create the target descriptor 5:‘11 e R°

R NN U = W

d. create the background descriptors ?_Jff_l/ (axbe) € RS
en

Since the appearances of the target may change during tracking, we need to update the classifier
@ every k frames by updating the dictionaries as follows.

1. We save the t( target descriptors 272%0 e R°intoaset F = {vig ooy vif } at time t = t.

2. Atevery t > ty, if p(X{|Yj ,Xi—1) > By, we add the target descriptor v:g and background
descriptors z"jfg(ax by O F. Otherwise, k, = k, + 1.

3.  After every k frames, we create the dictionary matrix Dy, and coefficient matrix C, using the
vectors in F by applying the structured sparse PCA.
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4.  Similar to the initiation algorithm, we update ® using the new D, and Cy,.

5. We check ®(7) for all target descriptors 7 € F and sort the descriptors according to their values,
while keeping the k¢ largest target descriptors in F and deleting the remaining target descriptors
and all the background descriptors from F.

The update interval k = ko + k is between the range of ko and 2k(. Because occlusion frames do
not have (whole or partial) target patch, we need to update the dictionary slowly by increasing the
value of k.

We continuously update the training dictionaries using the ko prior templates, which have a high
probability, from the target as shown in Algorithm 3. This way, if the confidence of the target is high,
it will participate in the update continuously. Therefore, the target models with high confidence in the
previous update and the target models in recent frames participate in the update. The target models in
recent frames keep tracking when the appearance of the target object is almost unchanged, and the
target models with high confidence help tracking to not fail when the appearance of the target object
changes suddenly. Figure 4 shows the target models in F at the update time and the detection of the
changed target appearance after the update. In the 84th frame, the top ky target models from previous
updates are different from the current target appearance, but show a similar look to the target in the
94th frame. It can be seen that this is more suitable for detecting the changed appearance.

Algorithm 3: Dictionary update.

for t = tp + 1 to the end of the frame sequence
L if p(X)|Ye, Xi—1) > 0y
1-1. add the target descriptor vig

and background descriptors 5?8(’1)( by O F
1. else
1-2. kp =kp +1

for every k frames

2. build the new metrics Dy, and Cy, using the vectors in F
by structured sparse PCA
3. update classifier ® using Dy, and Cy
4. compute ®(7) for 7 € F
5. keep the k¢ largest target descriptors in F,
and delete the rest descriptor from F
6.kp =0

end
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Figure 4. Target models in F at the update time and the detection of the target at a later frame.

4. Experimental Validation

This section validates the robustness of the proposed method by quantitatively and qualitatively
comparing it to current state of the art approaches using the TS-50 public visual object benchmark
video sequences (available online: http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
(accessed on 8 May 2012)). The benchmark sequences include background clutter (BC), deformation
(DEEF), fast motion (FM), in-plane rotation (IPR), illumination variation (IV), low resolution (LR), motion
blur (MB), occlusion (OCC), out-of-plane rotation (OPR), out-of view (OV) and scale variation (SV).
The proposed tracker was implemented in MATLAB on a standard 4-GHz machine with 2 GB RAM.
To create the descriptors, we resize all patches to [72, 72] and use the scale-invariant feature transform
(SIFT) [50]. The number of samples M is set to 600. fy and r are set to three and 30, respectively. The kg
and 6, are set to 10 and 0.2, respectively. We also tested the prototype VID [30], MS [19], MIT [22],
SCM [29], Frag [25], IVT [24], TLD [27], Struct [28], and ASLA [11]. The experimental results are
compared in Table 2.

Table 2. Average of overlap score of the proposed tracker and several current state of the art trackers
((BC), deformation (DEF), fast motion (FM), in-plane rotation (IPR), illumination variation (IV),
low resolution (LR), motion blur (MB), occlusion (OCC), out-of-plane rotation (OPR), out-of view
(OV) and scale variation (SV)). The top two methods for each dataset are highlighted in red and blue,
respectively. VID, visual tracking decomposition; MS, mean-shift; MIL, multiple instance learning;
SCM, sparse collaborative appearance; Frag, fragment-based; TLD, tracking-learning-detection.

All BC DEF FM IPR v LR MB OCC OPR OV SV

Proposed 5850 60.19 5878 56.74 56.22 52.03 60.86 5896 55.00 57.13 56.51 52.33
VTD [30] 49.3 55.1 462 417 502 537 471 43.5 52.3 53.7 515 489
MS [19] 35.6 367 328 405 36.8 346 284 412 374 373  41.0 36.0
MIL [22] 459 486 457 441 457 471 43.5 437 476 489 52.7 445
SCM [29] 544 61.3 51.5 428 51.8 61.1 61.7 452 56.8 57.0 56.4 55.8
Frag [25] 442 461 418 448 433 426 426 461 46.6  46.1 50.1 44.2
IVT [24] 464 516 405 373 464 512 558 413 49.3  49.0 523 471
TLD [27] 46.8 483 374 446 489 467 533 51.0 452  46.0 502 471
Struct [28] 57.5 59.3 524 55.6 570 59.0 59.1 59.9 55.9 57.3 58.9 57.8
ASLA [11] 532  59.2 50.5 420 521 59.6 593 44.6 56.0 56.3 55.3 54.0
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The proposed method can be extended to track the target object using the observation model by
incorporating various descriptors, and the results are presented in the Supplementary Material. All the
MATLAB code and results are available on our web site.

4.1. Qualitative Analysis

The public TS-50 video sequences used in the experiments include illumination change, partial
occlusion, background clutter, low resolution and pose variations. The proposed structured sparse
PCA-based visual object tracking system addresses the main problems by feature optimization and
dimensionality reduction.

4.1.1. Significant Occlusion

Heavy occlusion leads to target object tracking drift due to a lack of features, but the learned local
structure of the appearance model and online updating prevent the proposed tracker from creating
a bias toward part of the target, mitigating the influence of background pixels. Figure 5 shows that
although the target object undergoes significant occlusion for a long period, the tracker robustly retains
the key appearance structure, reducing the background effect. The Girl sequence in particular shows
heavy occlusion from an object with a similar shape to the target object, but the proposed system
retains target tracking.

Figure 5. Tracking during partial occlusion and drift.

4.1.2. lllumination Change

The appearance model using structured sparse representation with an SIFT descriptor is relatively
insensitive to illumination changes. Figure 6 shows that although the image sequences include
significant illumination changes, the target object remains continuously within the bounding box
using the proposed tracking system. Simultaneous update of target images and retention of important
structures using the structure sparse PCA method ensure the proposed system continuously tracks the
target object even with large illumination changes.
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(c) David image sequence

Figure 6. Tracking during illumination changes.

4.1.3. Background Clutter

Discriminative classification of the target object and background images provides clear separation
between the target object and background, which have similar color, appearance and motion.
Figure 7 shows that the separation of the background and target is very robust against background
clutter changes.

(c) Girl image sequence

Figure 7. Tracking during background clutter changes.

4.2. Quantitative Analysis

We obtained the ground-truth reference values for the eight image sequences, and employed the
average of overlap scores (AOS) between the tracking window and ground truth center to quantify the
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proposed and reference tracker performances [6]. As shown in Table 2, our proposed approach is good
for deformation, fast motion, out-of-plane rotation (OPR) and out-of-view (OV), but showed balanced
performance per various challenging issues in the visual object tracking. Struct [28] shows a robust
performance for various performance test. SCM [29] has good performance in background clutter,
illumination variation, occlusion and scale variation because it extracts the features of the target object
using sparse representation, but still has variation in the video sequences like fast motion and motion
blur. Figure 8 compares the performances for the proposed and current state of the art trackers for
the various image sequences. The proposed tracker system tracks the target object under the partial
occlusion, drift, background clutter, scale and pose variation challenges.

#107 #116 #262 #355

Frag == SPT = PROST === VTD T L] ==m== TLD = ML Our

Figure 8. Tracking comparison for the proposed and current state of the art trackers for the Bolt,
Lamming, Racecar and Singer image sequences.
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5. Conclusions

We proposed a structured sparse PCA-based visual object tracking incorporating initialization,
motion tracking and online dictionary learning and update. In the initialization stage, a discriminative
classifier was applied to target object and background image template coefficients extracted from the
structured sparse PCA. The best candidate samples were selected by jointly evaluating the appearance
distance and learned classifier. Online dictionary learning was based on a sparse representation
appearance model where the dictionary and classifier were continuously updated. The structured
sparse PCA provided dimensionality reduction of high dimensional descriptors, while retaining the
structure of the appearance model.

We experimentally evaluated the effectiveness of the proposed tracking system by comparing with
the twelve current state of the art trackers using eight publicly available benchmark image sequences.
The proposed method performed favorably against all current trackers and was able to handle all the
various tracking challenge scenarios. Quantitative and qualitative comparison of the outcomes from
the challenging image sequences validated the effectiveness and robustness of the proposed algorithm.

Thus, exploiting a linear combination of key structure features using structured sparse PCA is a
robust method to track target objects through illumination, partial occlusion and background clutter
changes, because the structure of the appearance model effectively estimates the similarity between
the target object and candidates.
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