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Abstract: Partial discharge (PD) is not only an important symptom for monitoring the imperfections
in the insulation system of a gas-insulated switchgear (GIS), but also the factor that accelerates the
degradation. At present, monitoring ultra-high-frequency (UHF) signals induced by PDs is regarded
as one of the most effective approaches for assessing the insulation severity and classifying the PDs.
Therefore, in this paper, a deep learning-based PD classification algorithm is proposed and realized
with a multi-column convolutional neural network (CNN) that incorporates UHF spectra of multiple
resolutions. First, three subnetworks, as characterized by their specified designed temporal filters,
frequency filters, and texture filters, are organized and then intergraded by a fully-connected neural
network. Then, a long short-term memory (LSTM) network is utilized for fusing the embedded
multi-sensor information. Furthermore, to alleviate the risk of overfitting, a transfer learning approach
inspired by manifold learning is also present for model training. To demonstrate, 13 modes of defects
considering both the defect types and their relative positions were well designed for a simulated GIS
tank. A detailed analysis of the performance reveals the clear superiority of the proposed method,
compared to18 typical baselines. Several advanced visualization techniques are also implemented to
explore the possible qualitative interpretations of the learned features. Finally, a unified framework
based on matrix projection is discussed to provide a possible explanation for the effectiveness of
the architecture.

Keywords: partial discharge; ultra-high-frequency signals; multi-resolution analysis; convolutional
neural network

1. Introduction

Gas-insulated switchgears (GISs) are widely used as the major control and protection equipment
in medium to ultra-high voltage substations, due to their superior compactness, high reliability,
strong dielectric strength, and maintenance-free properties. However, unavoidable imperfections
and deterioration in the insulation system pose serious threats to the reliability and safety of the
GIS and whole power grids [1–3]. The occurrence of partial discharges (PDs) is not only one of the
main characteristics that can effectively reflect the inner dielectric flaws, but is also the cause of the
accelerated degradation [4,5]. Therefore, it is imperative to assess the potential correlation between the
PD patterns and the defect types, so that corresponding maintenance activities can be taken before a
complete breakdown.

The conventional monitoring methods of PD could be summarized into three main categories:
chemical, electrical, and acoustic [6]. Among these, ultra-high-frequency (UHF) signals are becoming
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increasingly important due to their high sensitivity, better immunity against interference, and the ability
for real-time monitoring [7,8]. Considering the stochastic nature of PDs, machine learning has long
been the mainstream method for the diagnosis of UHF signals. The existing literature covers a wide
range of techniques, including Support Vector Machines (SVM) [9], Neural Networks (NN) [10–12],
cluster analysis [13], fuzzy logic [14] and so on. A more detailed taxonomy of NNs could give rise to
methodologies such as the self-organizing map (SOM) [10], Ensemble neural networks (ENN) [11],
and Probabilistic Neural Networks (PNN) [12]. Compared with classifiers, feature extraction plays
a more dominant role in the success of PD recognition due to the high dimensionality of the PD
data. A gamut of techniques have been applied to both the time-resolved partial discharge (TRPD)
and phase-resolved partial discharge (PRPD) patterns [6], of which the statistical parameters [15],
the time-power ratio map [16], fractal features [17], Fourier transform [18], wavelet analysis [12],
Hilbert-Huang transform (HHT) [19], and S-transform [20] are a few. In addition, some advanced
signal processing techniques such as compressed sensing [21] and principal component analysis
(PCA) [22] are also utilized. A summary of these implementations is shown in Table 1.

Although the cooperation of features and algorithms indicate a considerable degree of success,
it is pertinent to note that most of them suffer from a fundamental limitation: the carefully selective
feature extraction process usually calls for much human expertise and hence, it is subject to human
error. The significant randomness of the electromagnetic waves caused by propagation and reflection
makes the process even more intricate [23]. Besides, even with all these efforts, the features designed
for a particular task are not guaranteed to be the optimal choices for the other application scenarios
and datasets. Therefore, learning features directly from the dataset itself may be a better choice.

Among all of the analysis methods, time–frequency (TF) analysis is especially applicable, due
to its invertibility, and its ability to provide both time and frequency resolutions [24]. From the
perspective of manifold learning, the intrinsic advantage of the TF method is to obtain continuity
and compactness in a high-dimensional space at the cost of dimensionality. However, the high
dimensionality poses a substantial impediment for the traditional machine learning models. The matrix
compression algorithms for dimensionality reduction such as the two-dimensional PCA (2DPCA) [25]
and Non-negative matrix factorization (NMF) [26] inevitably share similar obstacles with the other
feature engineering-based methodologies, such as adaptation and generalization.

Fortunately, the recent advances in deep learning make it possible to extract high-level features
automatically from high-dimensional sensory data, and they demonstrate dramatic success in various
areas such as natural language processing, image classification, and auto-driving, of which the
Convolutional Neural Network (CNN) has been designed for vision-related tasks [27,28]. Therefore,
the combination of the CNN and TF maps becomes a potentially promising option for the PD signal
recognition tasks. Nevertheless, although it sounds transparent, directly applying CNN for TF maps is
not a good idea, due to the inherently non-local and serial characteristics of TF maps. In our preliminary
work [29], we proposed a CNN of frequency matching to obtain the semantic meaning. In this paper,
we further improve the framework into multiple columns to realize multi-resolution diagnosis, thus
promoting the diagnostic accuracy to a new level. The major contributions are summarized as follows.

1. We propose a deep multi-column architecture that incorporates multi-resolution information for
the recognition of UHF signals with specified temporal filters, frequency filters, and texture filters.
Multi-sensor fusion based on LSTM is also utilized to further improve the diagnostic accuracy.

2. To alleviate the risk of overfitting induced by the expanded structure, a spectral embedding
technique based on manifold learning is utilized for the pretraining. We demonstrate that
the transfer learning-based training process is able to achieve remarkable performance with
limited data.

3. A unified matrix projection-based framework is proposed to enhance the interpretability of the
proposed model.
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Table 1. Summary of the relevant features and classifiers that have been used for partial discharge (PD) recognition.

Reference PD Types Feature Extraction Classifier Recognition Accuracy

Umamaheswari and Sarathi [9] Four types of artificial
insulation defects Partial power analysis SVM Average of 95.25%

Darabad et al. [10] Ten types of PD sources Texture features + PCA SOM Grouped data visualization

Mas’ud et al. [11] Six PD fault geometries in oil, air,
and poly-ethylene-terephthalate

Statistical parameters from the
PRPD patterns ENN Average 95%

Evagorou et al. [12] Four types of artificial PDs in oil
and air.

Wavelet packet transform +
statistical parameters PNN 97.49%, 91.9%, 100%, and 99.8%

Wang et al. [13] Four types of artificial defect models in
the oil and air. S-transform Affinity propagation clustering 99.67%

Li et al. [14] Four kinds of typical defects in a
252 kV GIS

Cumulative energy in time and
frequency domain + mathematical

morphological gradient

Fuzzy maximum-likelihood
algorithm 98%

Li et al. [15] Four kinds of defects in GIS Statistical parameters of both the TRPD
and PRPD patterns

Dempster–Shafer evidence
theory + Neural network 97.25%

Albarracín et al. [16] Separation of PDs with
electromagnetic noises Power ratios and the signal times Grouped data visualization The separation criteria

was given

Li et al. [17]
Six types of artificial insulation defect

models in the oil, air,
and paper-fiber interface.

Wavelet packages + fractal features +
Linear discriminant analysis Finding the closest centroid 99.4, 94.5, 99.4, 91.9, 87.5,

and 97.7%, respectively.

Wang et al. [18] Three typical PD defect patterns in a
252 kV GIS

Fourier transform + Chromatic
methodology SVM 86.67%

Gu et al. [19]
Three common defect types of 25 kV

cross-linked polyethylene (XLPE)
power cable

HHT + Fractal parameters NN 100%, when 5% random
white noise

Dai et al. [20] Four kinds of artificial defects in GIS S-transform + Singular value
decomposition (SVD) SVM 98.33%

Majidi et al. [21] Air voids with dimensions of 1, 1.5,
and 2 mm

1-norm, 2-norm, and infinity-norm of
the statistical features Sparse representation vector 99.7%, 92.9%, 94.0%, and 81.6%

for four different scenarios

Khan et al. [22]
Parallel-plane stainless steel electrodes
in SF6 with 10 different particle lengths

and positions
Statistical features + PCA NN 88%
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The rest of this paper is organized as follows. Some related theories are introduced first in
Section 2. Section 3 provides the details of both the model architectures and the transfer learning
process. The platform presented in Section 4 provides the necessary dataset for verifying the proposed
method, and Section 5 describes the recognition results. Based on the experimental results, Section 6
discusses the effectiveness of the proposed model. Finally, Section 7 concludes the paper.

2. Related Work

In deep learning, the most straightforward way to improve the model performance has shifted
from feature engineering to network architecture designing. ResNet [30] proposed by Microsoft is
a good example, which introduces an extra column with residual mapping, and has state-of-the-art
performance. Although the early implementation of the multi-column neural network only aimed
at accelerating the training process with multiple Graphics Processing Units (GPUs) [28], it has been
realized that the several columns can become specified experts for different features. For example,
the Inception model [31] is a successful multi-column deep neural network (DNN) to approximate the
optimal sparse structure of the input with different convolutional kernels. The Xception model [32] goes
even further by decoupling both the cross-channel and spatial correlations to obtain a multi-branch
structure. In addition, Saining exposed a new dimension called cardinality to standardize the
multi-branch structure [33]. Ling attempted to train a multi-column neural network with spectral
clustering to embed the hierarchical manifolds into a compact vector [34].

Although sharing the similar structure of multiple columns, the multi-resolution theories focus
more on the structures of different scales. Sander attempted to learn music features by extracting the
mel-spectrograms with different windows [35]. Michael utilized CNN to predict future images from
different resolutions and concluded that a lower resolution was able to capture the entire context, while
a higher resolution recovered more details [36]. The similar idea was also shared by MMDenseNet [37],
which enables the neural network to model both the fine-grained structures and the long contexts
efficiently. In the Deep Belief Network, the multi-resolution structures also showed their superiority in
image-related tasks [38]. Furthermore, the idea of multiple resolutions has long been integrated into the
underlying design of neural networks. The pooling layers and the variants, such as subsequent spatial
pyramid pooling all attempt to obtain the larger space by reducing the resolution of the intermediary
layers [39].

3. Proposed Method

3.1. Gabor Representations and Multi-Resolution Analysis

Fourier transform is a powerful tool to provide the frequency distributions of complex signals.
However, we must simply remark that the one-dimensional solutions are delocalized in time and
not comprehensive enough. The bidimensional functions that provide both the frequency and time
localizations are preferred. To introduce the time resolution, a time-localized window is utilized to
suppress the signal outside the neighborhood, which is the well-known short-time Fourier transform
(STFT) [24]:

Fx(t, v; h) =
∫ +∞

−∞
x(u)h∗(u− t)exp[−j2πvu]du (1)

where x(u) is the original signal, and h is the analysis window. t and v represent the time and frequency,
respectively. In practical applications, the discrete STFT is preferred, which is given by:

Fx[n, m; h] = Fx(nt0, mv0; h) =
∫ +∞

−∞
x(u)h∗(u− nt0)exp[−j2πmv0u]du (2)

where m, n ∈ Z. t0 and v0 are the time and frequency steps. Specifically, the STFT with Gaussian
windows is able to theoretically maximize the concentration in the TF plane by approaching the lower
bound of the Heisenberg–Gabor inequality [24]:
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T × B ≥ 1 (3)

Here, T is the time duration, and B is the normalized bandwidth. The STFT of this particular case
is also called the Gabor transform. The most important inference of the Heisenberg-Gabor inequality
is the trade-off between time and frequency resolutions in accordance with the width of the analysis
window. An illustrative example is shown in Figure 1.Sensors 2018, 18, x  5 of 26 
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Figure 1. Gabor representations of different time and frequency resolutions: (a) windows of different
lengths; (b) spectrogram of higher time resolution; (c) spectrogram of higher frequency resolution;
(d) spectrum of medium resolution.

As shown in Figure 1, the long window gives rise to harmonic information, while the pulses
emerge from the short time window. In this study, the spectrograms of different resolutions are
all employed for the diagnosis of the UHF signals. It should be noted that the concept of multiple
resolutions is different from the wavelet or S-transform, which still generate only a single resolution
for each frequency band.

Furthermore, a semiquantitative method is proposed as an assistance criteria for choosing
the proper analysis windows, considering the morphology characteristics of the STFT spectrums.
As indicated by Figure 2, centering on the max value, the time and frequency ranges before reaching
a certain threshold are calculated, which can be regarded as a rough description of the peak shape.
Intuitively, the greater the time range is, the less the time resolution is retained, while the frequency
isolation is more obvious. The frequency range varies in an opposite way. The proper window
can be selected based on the trade-off between the time and frequency resolutions, depending on
their priorities.
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3.2. Convolutional Neural Network and the Design of Convolutional Kernels

In recent years, CNN and its derivatives have been regarded as the state-of-the-art choices for
computer vision tasks. The key ideas in CNN include the concepts of local receptive fields, shared
weights, and spatial subsampling. Specifically, in each convolutional layer, the feature maps are first
convolved with several kernels. After the biases, activation function and sometimes, the pooling
operation, the outputs are then fed into the next convolutional layer, which can be summarized as:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ kl

ij + bl
j

 (4)

where ∗ donates the convolutional operator. xl−1
j and xl

i are the input and output of the lth layer,

respectively, and b is the bias. Mj is a selection of the feature maps, and kl
ij is the element of the

kernel matrix.
The activation function f is chosen as the Relu function for the convenience of the gradient

calculation. A simple parameter analysis can be given as follows. Assuming that the volume of input
is W1× H1× D1, after applying convolutions of k filters (without zero padding), the new volume of
W2× H2× D2 is:

W2 =
(W1− F1)

S1
+ 1 (5)

H2 =
(H1− F2)

S2
+ 1 (6)

D2 = k (7)

where F1 and F2 are the width and height of the filter cores, and S1 and S2 are the strides. One special
characteristic of CNN is the shift invariance. However, although dramatically useful in image
recognition, the invariance features pose an impediment for the recognition of Gabor representations
that own a clear physical meaning. Any shift of a generally rectangular filter may distort the original
TF distributions and confuse the CNN. To alleviate the restriction, three kinds of convolutional kernels
are designed in accordance with the spectrograms of different resolutions, namely frequency filters,
temporal filters, and texture filters.

As shown by the red rectangles in Figure 3, the temporal filters are designed for maps of higher
time resolutions, and they share the same widths with the maps, while the frequency filters are suitable
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for higher frequency resolutions, and they are as high as the spectrograms. The texture filters are of
medium size as supplements.
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The designing principles of the special convolutional filters may be explained qualitatively with
orthogonality, since the convolutional operation is basically a template matching process. The first
step is to make the filter cover either a complete frequency axis or a whole time axis, thereby allowing
for perfect frequency or temporal matching. Second, by assuming that the filter is also a kind of
special signal, it is assumed that orthogonality exists between the unfolding direction of the filters
and the spectrograms, to maximize the diversity in a filter as much as possible. Following this idea,
the frequency filters are applied to the Gabor maps of higher frequency resolutions, while the temporal
filters are applied to the higher time resolutions. Another advantage of the frequency and temporal
filters refers to Equations (5) and (6). The outputs of the frequency and temporal filters are only
one-dimensional, which dramatically decreases the model’s size.

3.3. Architecture of the Proposed Model

As has been mentioned before, TF maps of different resolutions can reveal different rhythms in
the 2-dimensional space. It is hypothesized that it would be of great benefit to explicitly provide TF
maps of different resolutions as inputs to a deep model. This combines the multiple views with deep
learning’s ability to extract intrinsic properties from raw inputs, so that the discriminative features
could be learned while maintaining explanatory factors with physical meaning.

Accordingly, the proposed multi-resolution network is summarized in Figure 4. It mainly contains
three parts, namely, single-resolution embedding, multi-resolution fusion, and multi-sensor fusion.
Here, the first part is realized by three subnetworks; the second part is a fully-connected neural network
attached at the end of the subnetworks, and Long Short-Term Memory (LSTM) [40] is implemented for
multi-sensor fusion.
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1. Single-resolution embeddings with the subnetworks

Each branch of the subnetworks has its own micro-structure, which is basically a CNN with
the convolutional operation. The main differences lie in the specified designed frequency filters,
temporal filters, and texture filters. After the convolutional filter, an activation function, a pooling
layer, and a dropout layer are arranged hierarchically as a basic building block, which repeats itself
twice before connecting to a flattening layer. Finally, a fully-connected layer is attached at the end of
each subnetwork to generate an embedding vector as the intermediate feature space.

2. Multi-resolution information fusion using the fully-connected neural network

The fully connected neural network is a normal multi-layer perceptron (MLP) containing two
layers of 100 units and 50 units, respectively, that are attached after the concatenation of the three
subnetworks. The model automatically chooses the best filters by assigning them higher weights,
and the information of different resolutions is merged to offer comprehensive representations of
compact forms.

3. Multi-sensor information fusion using the LSTM

The propagation and reflections of UHF signals in the GIS can significantly influence the
characteristics of the signals, especially at the L corner for the inconsistency of the wave impedance [41].
Therefore, the characteristics of sensors of different positions can reveal different patterns. By fusing
the information from different sensors, it is possible to obtain a more comprehensive understanding of
the PD patterns.

Recurrent neural network (RNNs) [42] is the most popular choice for sequence mining tasks
such as speech recognition, natural language translation, and video recognition. As shown in Figure 5,
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in each time step t, the hidden state ht is updated by a function of the last hidden state ht−1 and the
new input xt:

ht = tanh(Wxt + Uht−1 + b) (8)

where the hidden state ht is a d-dimensional vector, and b is the bias. W and U are the weights.
Tanh is the activation function. LSTM is a branch of RNN, which introduces a memory cell to preserve
the information for long sequences, and relieves the exploding or vanishing gradients problem in
the original RNN [40]. The basic unit of LSTM can be explained as a collection of a block input xt,
a memory cell ct, and a hidden state ht, controlled by an input gate it, a forget gate ft, and an output
gate ot as shown in Figure 5, with the following relationships:

it = σ
(

W(i)xt + U(i)ht−1 + bi
)

(9)

ft = σ
(

W( f )xt + U( f )ht−1 + b f
)

(10)

ot = σ
(

W(o)xt + U(o)ht−1 + bo
)

(11)

ut = tanh
(

W(u)xt + U(u)ht−1 + bu
)

(12)

ct = it � ut + ft � ct−1 (13)

ht = ot � tanh(ct) (14)

where σ is the sigmoid function and � donates the point multiplication. W(i), W( f ), W(o), W(u), U(i),
U( f ), U(o), and U(u) are the weights. bi, b f , bo, and bu are the biases. Intuitively, the input gate and
the output gate control how much the old memories and new information are recombined as the new
memory cell. The hidden state ht is a gated, partial view of the internal memory of the cell. By varying
the gate values in different time steps, the LSTM can keep itself up-to-date while maintaining the
most discriminable information acquired from different time steps. Finally, the features from different
sensors are integrated for information fusion to give the final diagnosis results.

As the net structure is very complex, more sophisticated techniques are required to relieve the
risk of overfitting. Details of the training process will be presented in the next part.
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3.4. Model Training by Transfer Learning

Although the multi-resolution views and the multi-steam structures gain great potential for more
comprehensive diagnosis, a larger number of parameters accompanies its bigger size, making the
model more prone to overfitting. Thus, a transfer learning framework was proposed that classifies
the training process into the three stages of single-resolution embedding, multi-resolution fusion,
and multi-sensor fusion, in accordance with the network’s structure.

Transfer learning is a technique focusing on transferring knowledge gained from one problem
to a different but related task [43]. The parameters of the target network are partly or all initialized
from another network that is pretrained from the source task, while the nontransferred weights are
randomly initialized. In most cases, transfer learning is done by weight transfer.

The usage of transfer learning was more flexible in this study, where the source and target problem
use the same dataset. The key idea is relative independence among columns of different resolutions.
The same dataset is much less prone to overfitting when it is applied to a smaller problem. Therefore,
it is beneficial if the single-column is trained first independently. The knowledge is then transferred to
the higher levels for more sophisticated targets. The details of the three learning stages are shown in
Figure 6.

1. The single-column features extracted by each subnetwork are learned using manifold embedding.
2. The weights of the MLP attached at the end of the three subnetworks are randomly initialized,

and the whole structure is fine-tuned.
3. The weights gained from step (2) are frozen as feature extractors. Only the weights of the LSTM

are updated for multi-sensor fusion.
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It is worth noting that the subnetwork that embeds the high-dimensional data into a fixed vector
is similar to a general dimensionality reduction problem that maps the high dimensional points onto a
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low dimensional manifold to make the similar points adjacent. Although some general dimensionality
reduction frameworks exist [44,45], the same key point is to preserve the distances of the original
vertex pairs. Given the data x1,...,xU , the loss function parameterized by α and embedding function
f is:

Loss =
U

∑
i,j

L
(
‖ f (xi, α)− f

(
xj, α

)
‖ −Wij

)
(15)

where Wij is the element of a pairwise distance matrix in a class-dependent or class-independent way.
For example, Multidimensional scaling (MDS) [46] can be used in this pattern by defining Wij as the
Euclidean distance. For the specified problem, the distances are defined in a class-dependent way as
follows. Wij = 0 if i and j belong to the same class, and 1 otherwise.

Furthermore, to make the loss function learnable and more suitable for the subnetworks, a Siamese
network structure [47] is implemented to realize the pairwise affinity calculation. A Siamese network
is a special neural network with two symmetric branches, as shown in Figure 7. Each time, only one
subnetwork is fabricated into the Siamese structure for pretraining with the following loss function:

Loss =

 ‖ f (xi, α)− f
(
xj, α

)
‖2 i f Wij = 0

max
(

0, m− ‖ f (xi, α)− f
(

xj, α
)
‖2
)

i f Wij = 1
(16)

where m is the margin. The loss function is different from MDS in two ways. First, the distance
is class-dependent. Second, the losses are chosen as the hinge losses for better generalization.
After accomplishing the model construction, Adadelta optimizer is utilized for the weights update.
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3.4.2. Transfer Learning for Cascaded Training

For the other two steps, the weights of the MLP that were attached at the end of the three
subnetworks were randomly initialized first, and then another layer with the same node number of
the classes was connected to make a complete single-sensor diagnosis model. After fine-tuning with
Adadelta, the weights gained from step (2) were frozen, and they only acted as feature extractors for
the information fusion of different sensors, while the weights of the LSTM were made to be trainable.
The convergence speeds of the two steps were likely to be much faster compared with the first step, due
to the existing class-dependent knowledge. In addition, some advanced training techniques such as
early stopping and heuristic learning rate adaption were also utilized.
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4. PD Laboratory Setup

For the purpose of the experimental study, a simulative L-shaped GIS tank with a coaxial
cylindrical conductor was implemented to simulate the realistic equipment, as shown in
Figures 8 and 9a, with the central conductor diameter being 90 mm, and the enclosure tank diameter
being 320 mm. The tank was filled with SF6 gas of 0.1 MPa to simulate the propagation medium.

Four planar equiangular spiral antennas (PESAs) with impedance transformers were installed
inside the GIS chamber in the hand holes parallel to the axis of the GIS bus-bar, as shown in
Figures 8 and 9b. The PESA utilized in this study is an ultra-wideband antenna that can be installed
internally in the GIS. Its outside and inside radii are 109 mm and 2 mm, respectively, with the substrate
thickness being 1 mm. The other key parameters that can affect the performance of the PESA sensors
include the relative dielectric constant, the spiral growth rate, and the rotation angle, which are chosen
as 2.65, 0.364, and 3.5π, respectively. In practice, the most commonly quoted parameter to evaluate
the performance of the antenna is the reflection coefficient S11, which represents how much power
is reflected from the antenna. The range of the bandwidth that satisfies S11 < −10 dB was 0.8 GHz
to 3.5 GHz from the lower limit to the higher limit for the PESAs. Besides, the S11 parameter ranged
between −8 dB to −6 dB from 0.2 GHz and 0.7 GHz, and close to −10 dB in the 0.7 GHz to 0.8 GHz
range, which satisfied the measurement requirements of the UHF signals. The detailed S11 curve can
be found in our previous study [48]. The geometrical dimensions of the GIS tank and the relative
distances between the PESAs are also illustrated in Figure 8.

High voltage was introduced by an insulating bushing connected with a non-PD testing
transformer (Xinyuan Electric, Yangzhou, China, YDTW-30/150) with an amplitude of 0–150 kV, and a
capacity of 30 kVA. The four PESAs received the UHF waves successively, based on their locations.
Furthermore, a four-channel digital oscilloscope (Tektronix, Beaverton, OR, USA, DPO7354C, 3.5 GHz,
40 GS/s) was employed to acquire and record the TPRD UHF patterns.
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installation of the UHF sensors inside the tank.

Five types of PDs were fabricated to simulate the various insulation defects, including the floating
electrode, a metal protrusion on the conductor and the tank, surface contamination, and free metal
particles. Besides, three relative angles between the defect position and the PESA antennas, which were
0◦, 90◦, and 180◦, were integrated with the five defect types in the defect simulations.

As shown in Figure 10, the floating electrode defect was simulated by fixing two adjacent copper
nuts to an insulated bolt that was attached on the conductor. The nuts were 3 mm away from the
conductor, and the distance between the copper nuts was 1 mm. Two kinds of metal protrusions
were replicated by a 30 mm needle adhered on the high-voltage conductor and tank, respectively.
Surface contamination was replicated by a piece of aluminum foil (2 × 20 mm2) adhered to the
surface of the spacer. Finally, the free particles defect was produced by connecting an insulation
tube that contained some aluminum particles inside the conductor, with the length of the insulation
tube being 20 mm. The first four types of defects were arranged at three relative angles between the
defect positions and the sensor position for 0◦, 90◦, and 180◦, as shown in Figure 8, generating 13 PD
conditions in total (the free metal particles were only simulated at 90◦). Figure 11 shows some typical
acquisitions of the UHF signals within 100 ns, and their corresponding frequency spectra.
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5. Experiment Evaluations

A detailed analysis was carried out to ascertain the model’s discriminatory capability. Both the
relative angles and defect types were taken into consideration, including the floating electrode (0◦,
90◦, and 180◦), the metal protrusion on the conductor (0◦, 90◦, and 180◦), the metal protrusion on the
tank (0◦, 90◦, and 180◦), the surface contamination (0◦, 90◦, and 180◦), and the free particles (90◦ only),
thus creating 13 defect modes. There were 1386 samples in total, of which 20% were used for testing.
Two cases were designed for recognition with the same dataset, namely, (1) the combined diagnosis of
positions and defect types together, which had 13 classes in total, and (2) diagnosis of the defect types
only, which has five classes only.

5.1. Implementation Details

First, the lengths of the analysis windows were chosen based on the frequency decline range and
the time decline range described in Figure 2, and 50% of the max value was chosen as the threshold.
Instead of using the ranges directly, their proportions in the whole analysis time axis and frequency
axis were calculated for ease of comparison. The time range limit and frequency range limit were
chosen as 100 ns and 3 GHz, respectively. The sampling rate was 10 GHz, indicating that 0.1 ns is
added when the window length increases by 1. Figure 12 shows the variations of the percentages of the
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average time and frequency ranges. It is obvious that as the window length increased, the frequency
resolution increases as well, while the time resolution showed an opposite trend. In order to retain
enough resolution information for both the axis, 30% was selected as the threshold. It is observed that
the window lengths were near 6 and 100 at this point. Therefore, the temporal window and frequency
window were chosen as 6 and 100, respectively. Besides, the crossing point was obtained near 30,
which was selected as the window for the texture channel.
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Besides, in order to further reduce the input dimension, a bigger stride was used along the time
axis for the frequency channel, while a bigger frequency stride was utilized for the temporal channel
in STFT, which could be seen as a subsampling. A cut-off of 2 GHz was also utilized in the temporal
channel and the texture channel, considering that the details in the high-frequency band were trivial in
their diagnosis. Finally, the windows and the input shapes of the three subnetworks are summarized
in Table 2. Considering the limited amount of data, the neural network architecture was wide, but it
had only a few convolutional maps per column. The detailed net structures are also shown in Table 2.
The three columns are the time column, frequency column, and texture column, respectively.

Table 2. Detailed network structure.

Index Window Input Shape CNN Structures MLP LSTM

Column 1 6 30 × 50

(Conv2 × 50−MaxPooling2 ×
1−Dropout)−(Conv2 ×

1−MaxPooling2 ×
1−Dropout)−(Dense100−Dense50)

Flatten–
Concatenation–

Dense100–
Dense50

LSTM with 16
inner nodes–

Flatten–
Dense50–
Output

Column 2 100 150 × 36

(Conv150 × 4−MaxPooling1 ×
2−Dropout)–(Conv1 ×

3–MaxPooling1 ×
2−Dropout)–(Dense100−Dense50)

Column 3 30 100 × 64

(Conv50 × 4−MaxPooling2 ×
2−Dropout)−(Conv2 ×

2−MaxPooling2 ×
2−Dropout)−(Dense100−Dense50)

The learning algorithm setup was as follows: the Adadelta optimizer with a learning rate of 1.0
for the pretraining and MLP embedding stages, and a Rmsprop optimizer for LSTM with a learning
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rate of 0.001 and epsilon of 1 × 10−6. The pretraining was carried out for 1000, 800, and 400 iterations,
with the patience being 100, 50, and 50. All networks were realized by Keras and NVIDIA 750TI GPUs
(NVIDIA, Santa Clara, CA, USA). The tests averaged over five sets of initialization parameters were
reported as the final results.

5.2. PD Pattern Recognition Results

5.2.1. Diagnosis Accuracies

The recognition accuracies of the two cases of (1) diagnosis of both the defect positions and types,
and (2) the defect types only, are shown in Tables 3 and 4. Overall, we achieved 97.51% testing accuracy
for the recognition of both the angles and defect types, and 98.20% for the defect types only, based on
the experimental dataset.

Furthermore, the diagnostic accuracies of single resolutions and single sensors with partial
configurations are also presented as quantitative measures of the informativeness. The following
points may be observed, based on the recognition accuracies.

1. Multi-resolution diagnosis leads to a smaller misclassification rate than by using only the single
resolution information.

2. Sensor1 has the best accuracy among all the sensors with respect to the shortest distance to the
defect location. The information loss can be quite significant after the L-shaped corner.

3. A higher frequency resolution is more valuable for single resolution diagnosis.
4. The multi-sensor combination is not certainly better than a single sensor without appropriate

methods for the increasing the dimensionality and the confusing information carried by
different sensors.

Table 3. Diagnostic accuracies and the intermediate outputs for classifying both the positions and
defect types.

Index Structure
Single Sensor Diagnosis (%)

Multi-Sensor (%)
Sensor1 Sensor2 Sensor3 Sensor4

1 Temporal column 85.72 86.94 66.62 71.94 87.91
2 Frequency column 94.57 93.56 85.43 83.78 95.35
3 Texture column 94.42 93.05 84.78 86.30 93.70
4 Multi-resolution 96.08 95.07 91.01 90.18 97.51

Table 4. Diagnostic accuracies and the intermediate outputs for classifying the defect types only.

Index Structure
Single sensor Diagnosis (%)

Multi-Sensor (%)
Sensor1 Sensor2 Sensor3 Sensor4

1 Temporal column 89.53 90.86 81.22 81.04 94.53
2 Frequency column 95.58 96.29 90.14 87.81 96.51
3 Texture column 96.15 95.07 89.53 87.48 95.79
4 Multi-resolution 97.37 97.09 91.29 90.79 98.20

5.2.2. Loss Curves and Time Consumption

To diagnose the effectiveness of transfer learning, the loss curves and time consumptions of the
single column training, multi-column training, and the LSTM training are shown in Figures 13 and 14.
It is obvious that during the pretraining stage, the convergence speed of the texture channel was
the fastest, while the frequency channel ranked second, and the temporal channel was the slowest.
However, the time consumption was the other way around. The texture channel called for the longest
training time. This was attributed to the number of dot calculations for each iteration being much more
than the other two kinds of kernels. Besides, both the iteration number and the time consumption of
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the second and third training stages were much less, compared with their previous steps. For the final
LSTM information fusion stage, only less than 10 s was needed.

The results in Tables 3 and 4, and Figures 13 and 14 show the exhaustive role played by transfer
learning. It is significant that during the three training stages, the diagnostic accuracy increased, while
both the training iterations and time decreased dramatically, even with a larger network. This dynamic
indicates that the knowledge learned from earlier stages was successfully transferred to a higher level
with less proneness to overfitting.
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5.2.3. Visualization of the Convolutional Filters

Neural networks are usually considered as black boxes. However, with the help of visualization
methods, it is possible to obtain good qualitative interpretations of the black boxes of deep networks.
Besides, visualization is also an effective way to diagnose the misclassifications and evaluate the degree
of overfitting. In this study, the Activation Maximization [49] method was utilized to visualize the
learned filters. The idea of Activation Maximization is quite simple: generating an image to maximize
the activation of a hidden unit as:

x∗ = argmaxx s.t. ‖x‖=ρhij(θ, x) (17)

where x∗ is the visualization result, and θ donates the fixed neural network parameters. Thus, hij(θ, x)
is the activation values of unit j in layer i with fixed parameters θ and bounded norm ρ. For simplicity
and the convenience of comparison, only the first layer of filters were visualized, as shown in Figure 15.

It is clear that the learned convolutional filters were quite smooth in space, thus indicating that
the training was sufficient. The temporal filters were sensitive to pulses along the time axis, while the
frequency filters showed clear patterns of different frequency combinations. Besides, the diversity
of patterns was richer in the visualization results of the texture filters, where both the temporal and
frequency patterns revealed their importance. It is also encouraging that both the temporal filters and
frequency filters gained significant resolution power over multiple scales, as shown by the different
densities of the lines.
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Besides, a direct visualization of the outputs of the filters was helpful in illustrating the automatic
feature extraction and the information compression of the filters. An illustrative example is shown in
Figure 16. The outputs of the frequency filter and the temporal filter were only one-dimensional, while
the texture filter transferred the two-dimensional input to a smaller feature map. That is also why the
texture filter calls for the longest training time.
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5.2.4. Visualization of the Learned Embedding Features

Furthermore, by using a t-Distributed Stochastic Neighbor Embedding (t-SNE) projection
algorithm, the 50-dimensional features learned by the subnetworks were reduced to three dimensions,
as shown in Figures 17 and 18 for the cases of 13 and five classes, respectively. It was observed that
the features learned automatically by the CNN of different defects fell into distinct clusters in the
three-dimensional space, where each cluster showed clear manifold characteristics of a continuous
distribution in the space.
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5.3. Comparison with the Baselines

To further verify the effectiveness, some baselines were implemented. Instead of focusing on
the specified methods, we first extracted the common framework utilized in the practice of UHF
signal recognition, which were two-dimensionalization, matrix compression, decomposition, features
extraction, feature selection (FS), and the final classifier. Second, by using typical models in certain
steps, representative methods could be obtained. A description of some implemented techniques is
as follows.

1. Two-dimensionalization: Wavelet spectrum and Hibert–Huang spectrum;
2. Matrix compression: NMF and 2DPCA;
3. Signal Decomposition: Wavelet transform and Hibert–Huang transform (HHT);
4. Features extraction: The extracted time and frequency (T&F) features include the max value, root

mean square deviation, standard deviation, skewness, kurtosis, and the peak-to-peak value in the
time domain. The frequency features include the mean frequency, frequency center, root mean
square frequency, and the standard deviation frequency. Besides, the entropy is also calculated.

5. Feature selection: ExtraTrees Classifier and LinearSVC feature selection;
6. Classifier: Finally, both the SVM and DNN of dense layers are chosen as the final classifiers, due

to their high representativeness in engineering practice.

Through the combination of the different techniques, 18 diagnosis models are summarized
in Table 5 as the baselines, including both simple methods and complicated flows. However,
the recognition accuracies are not certainly proportional to the complexity of the methods.

All of the hyperparameters are selected based on cross-validation to the best of our knowledge.
The final recognition accuracies of (1) combined the diagnosis of positions and defect types
together, 13 classes, and (2) diagnosis of the defect types only; five classes are shown in
Tables 6 and 7, respectively.
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Table 5. Typical diagnosis models for comparisons.

Index Summary
Two-Dimensionalization Analysis Feature Extraction

Feature
Selection ClassifierTwo-

Dimensionalization
Matrix

Compression Decomposition Features

1 Map + CNN HHT Map - - - - CNN
2 Wavelet Map - - - - CNN

3 Raw input - - - - Yes SVM
4 - - - - Yes DNN

5
T&F features

- - - T&F Yes SVM
6 - - - T&F Yes DNN

7
Wavelet + T&F

- - wavelet T&F Yes SVM
8 - - wavelet T&F Yes DNN

9
HHT + T&F

- - HHT T&F Yes SVM
10 - - HHT T&F Yes DNN

11
STFT + NMF

STFT NMF - Yes SVM
12 STFT NMF - Yes DNN

13 SFTF + NMF
+ T&F

STFT NMF T&F Yes SVM
14 STFT NMF T&F Yes DNN

15
SFTF + 2DPCA

STFT 2DPCA Yes SVM
16 STFT 2DPCA Yes DNN

17 SFTF + 2DPCA
+ T&F

STFT 2DPCA T&F Yes SVM
18 STFT 2DPCA T&F Yes DNN

Table 6. Diagnostic accuracies of the baseline methods for classifying both defect types and positions.

Index Summary
Single Sensor (%)

Multi-Sensor (%)
Sensor1 Sensor2 Sensor3 Sensor4

1 HHT spectrum + CNN 65.58 61.73 45.94 48.49 60.79
2 Wavelet spectrum + CNN 90.72 91.83 84.82 84.46 90.61
3 FS + SVM 89.20 87.41 67.27 66.18 66.18
4 FS + DNN 89.17 86.58 67.66 62.99 78.77
5 T&F + FS + SVM 55.04 55.04 41.73 49.64 72.30
6 T&F + FS + DNN 55.58 56.73 43.20 46.37 74.31
7 Wavelet + T&F + FS + SVM 61.87 55.76 47.48 49.64 76.61
8 Wavelet + T&F + FS + DNN 65.07 58.02 46.62 50.58 76.87
9 HHT + T&F + FS + SVM 37.33 32.73 22.66 32.01 45.68
10 HHT + T&F + FS + DNN 38.41 36.76 30.14 33.45 42.58
11 STFT + NMF + FS + SVM 90.29 88.85 72.66 68.70 92.09
12 STFT + NMF + FS + DNN 90.93 90.58 76.12 71.04 91.55
13 STFT + NMF + T&F + FS + SVM 77.70 71.58 56.83 57.91 85.97
14 STFT + NMF + T&F + FS + DNN 80.14 72.91 59.57 58.09 84.86
15 STFT + 2DPCA + FS + SVM 87.41 84.53 57.19 55.39 87.05
16 STFT + 2DPCA + FS + DNN 87.62 84.10 60.28 55.36 85.89
17 STFT + 2DPCA + T&F + FS + SVM 84.53 76.25 49.28 49.64 82.37
18 STFT + 2DPCA + T&F + FS + DNN 84.06 76.47 54.60 49.78 81.72
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Table 7. Diagnostic accuracies of the baseline methods for classifying the defect types only.

Index Summary
Single Sensor (%)

Multi-Sensor (%)
Sensor1 Sensor2 Sensor3 Sensor4

1 HHT Spectrum + CNN 73.02 74.1 60.68 60.86 76.47
2 Wavelet Spectrum + CNN 92.41 93.81 90.32 89.82 91.94
3 FS + SVM 92.45 90.29 73.37 71.94 81.29
4 FS + DNN 90.72 89.28 76.80 76.16 77.48
5 T&F + FS + SVM 64.39 60.07 52.52 62.95 81.29
6 T&F + FS + DNN 67.63 68.71 56.87 66.22 82.01
7 Wavelet + T&F + FS + SVM 68.35 66.91 57.55 61.51 82.73
8 Wavelet + T&F + FS + DNN 72.60 67.63 60.07 65.00 81.85
9 HHT + T&F + FS + SVM 48.92 50.00 42.81 48.56 56.83
10 HHT + T&F + FS + DNN 54.93 54.14 44.82 53.53 60.07
11 STFT + NMF + FS + SVM 91.01 90.65 82.37 77.70 93.88
12 STFT + NMF + FS + DNN 92.59 90.72 83.67 76.73 93.48
13 STFT + NMF + T&F + FS + SVM 79.50 74.82 68.35 69.78 88.49
14 STFT + NMF + T&F + FS + DNN 84.03 78.13 70.36 68.71 89.28
15 STFT + 2DPCA + FS + SVM 87.76 87.76 66.19 67.63 87.41
16 STFT + 2DPCA + FS + DNN 89.71 86.01 70.14 71.94 86.47
17 STFT + 2DPCA + T&F + FS + SVM 86.69 80.58 64.03 63.31 87.05
18 STFT + 2DPCA + T&F + FS + DNN 85.79 82.41 61.83 65.32 84.38

The accuracy comparisons may provide some insights into the fundamental differences between
the traditional feature-based methods and the deep learning approaches, as well as some essential
flaws of the feature engineering methods.

1. The misclassification rate of the proposed multi-resolution CNN clearly indicates its superior
capability compared with the baseline methods. STFT’s performance is slightly better than the
Wavelet spectrum in certain resolutions, and much better than the HHT map.

2. The best performance in the baseline methods is gained by the combination of STFT, NMF,
and SVM, which is 92.09% for the 13 classes, and 93.88% for the five classes. Firstly, it is observed
that NMF slightly outperforms 2DPCA, which may be explained as follows. In the experiments,
the NMF gains the best performance with four dimensions, compared with the 12 dimensions
of the 2DPCA, indicating that the redundancy is huge in the STFT maps. Thus, searching for a
global projection in the redundancy data may be not a good idea. Second, the features extraction
usually does not increase the model performance, which reflects the eternal contradiction among
the learning ability of the model, the input dimensions, the distribution of the data, and the
discernibility of the features.

3. The performances of SVM and DNN are similar when utilizing the same input features. Therefore,
for traditional feature-based recognition methods, the recognition accuracy relies much on the
discriminative features.

4. Similar to the conclusion drawn from Tables 3 and 4, the performance of multiple sensors is not
certainly better than the single sensor, especially when the nearest single sensor can gain good
diagnostic accuracy.

6. Discussion

Although the deep networks have gained tremendous performance in many areas, low
interpretability is always an obstacle to applying them in some highly regulated environments, due to
the uncontrollability that comes with the unclear mechanism. Sometimes, the training of the neural
networks becomes a trial-and-error problem. In recent years, a great number of studies have focused
on the interpretability of deep learning, and great progress has been made in both the theories and
experiments. In the discussion, instead of pursuing a general solution, we only concentrate attention
on the special CNN structures that are implemented here, and try to explain its effectiveness from the
perspective of manifold learning.
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A comprehensive comparison of the similarities between the filters learned by the CNN and
the matrix projection-based methods, such as 2DPCA, is presented to provide some insights into the
advantages of deep learning methods, compared with the feature extraction solutions. It is quite
interesting to notice the similarity between the projection operation in 2DPCA and the convolutions in
CNN. In 2DPCA, an image A of m× n matrix is projected into a lower dimension by:

Yk = AXk (18)

where Xk is a vector of n dimensions, and k is the index. A visualization example of the 2DPCA’s
compressed result of the STFT spectrum is shown in Figure 19. It is easy to notice its similarity with
the outputs in Figure 16, while the information concentration in Figure 16 is better.
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Moreover, it is also possible to reconstruct the original image from the compressed information by:

Â =
d

∑
k=1

YkXT
k (19)

where d is the compression dimension. Therefore, in 2DPCA, it is assumed that any input can be
approximately reconstructed as a weighted sum of smaller collections. In summary, the key points in
2DPCA include:

(1) The projection operation for compressing,
(2) The assumption that complex images are composed of eigenimages.

It is quite interesting that similar characteristics are shared by the proposed temporal and
frequency filters.

(1) The dot production between the frequency filters and the spectrum, and the similar operation
between the temporal filters and the spectrum can be seen as a projection operation,

(2) In the CNN, it is also assumed that images are formed from elements of the lower level, like
pixels to more composite representations [28].

Therefore, a common framework that distinguishes different categories by matrix projection
may be extracted to unify the deep structure and 2DPCA. The CNN and 2DPCA both try to classify
different categories by using matrix projections, and the main differences lies in their supervision
methods, where the CNN is supervised by labels, while 2DPCA is supervised by the inner product in
a high-dimensional space. Furthermore, a special case of NMF that aims at reducing the reconstruction



Sensors 2018, 18, 3512 24 of 27

errors by projecting could also be defined to fit this framework. The main specialty lies in that the loss
function is defined at the single sample, and it uses the mean square error between the original images
and the reconstructed ones.

Moreover, based on this framework, the 2DPCA can also be reformulated and approximated as a
special case of the CNN with the following setups: (1) Use only a single layer of convolutions, and the
width of the convolutional kernels should be restricted at one. (2) The loss function is defined as the
sum of the pairwise Euclidean distance losses to force the model to maintain its relative relations in
higher space. Some new algorithms may be developed based on this idea.

Therefore, the superiority of the proposed may be explained as follows. Based on the same
framework, only the CNN is goal-oriented at the final classifying task, while the 2DPCA and NMF aim
at the other specified goals. It is usually hard to determine the effectiveness of these specified goals
until obtaining the final results. Is it better to maintain the global information as 2DPCA, or to keep
the local completeness as in NMF? In addition, the multiple projections also equip the CNN with a
better learning ability to handle more complex problems.

7. Conclusions

Inspired by the phenomenon that the PD spectrograms of different resolutions can capture
the information of different patterns, both multi-resolution and multi-sensor fusion algorithms are
proposed. They are realized by a multi-column deep CNN characterized by specified filters and a
sequential LSTM network. A multi-stage transfer learning framework is also presented to train the
model with limited data. Several conclusions may be drawn based on the detailed analysis.

1. The proposed multi-resolution model gains accuracies of 97.51% and 98.20% on the tasks of
diagnosing (1) the positions and defect types together, and (2) the defect types only; thus
indicating its clear superiority compared with the baselines.

2. The loss curves, time consumptions, and diagnostic accuracies show the effectiveness of transfer
learning, which successfully transfers knowledge from a lower level to a higher level with less
proneness to overfitting.

3. The comparisons with the baseline methods reveal several fundamental flaws of the feature
based methods, such as the difficulties in choosing the most suitable approach, and the curse of
dimensionality when encountering too many features from multiple sensors.

4. A matrix projection framework is proposed to enhance the interpretability of the proposed deep
network structure.
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