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Abstract: At present, a number of computer vision-based crack detection techniques have been
developed to efficiently inspect and manage a large number of structures. However, these techniques
have not replaced visual inspection, as they have been developed under near-ideal conditions
and not in an on-site environment. This article proposes an automated detection technique for
crack morphology on concrete surface under an on-site environment based on convolutional neural
networks (CNNs). A well-known CNN, AlexNet is trained for crack detection with images scraped
from the Internet. The training set is divided into five classes involving cracks, intact surfaces,
two types of similar patterns of cracks, and plants. A comparative study evaluates the successfulness
of the detailed surface categorization. A probability map is developed using a softmax layer value to
add robustness to sliding window detection and a parametric study was carried out to determine its
threshold. The applicability of the proposed method is evaluated on images taken from the field and
real-time video frames taken using an unmanned aerial vehicle. The evaluation results confirm the
high adoptability of the proposed method for crack inspection in an on-site environment.
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1. Introduction

Civil infrastructures are aging in most of the industrialized countries, which is associated with
significant social issues. In the case of the United States, the condition of their infrastructure is graded
as D+ on average, and the rehabilitation cost for bridges in the USA is expected to be $123 billion [1].
In Korea, due to a slightly later development from the 1970s, the percentage of structures older than
30 years was estimated as 3.8% in 2014, while it is expected to increase exponentially and reach 13.8%
in 2024 and 33.7% in 2029 [2]. Similarly, most of the industrialized countries are paying attention to the
development of cost-effective structural maintenance strategies using state-of-the-art information and
communication technologies.

The vision-based technique, which uses imaging devices as sensors, is now emerging as the
most effective tool for structural inspection and monitoring. Current advances made in the field
of vision-based inspection and monitoring include noncontact deflection measurement [3–5], steel
corrosion detection [6–8], and spalling detection [9,10]. In the last few decades, especially many
attempts have been made to measure concrete cracks using the image binarization method [11], the
stereo-vision method [12], and sequential image processing [13]. Abdel-Qader et al. (2003) [14]
compared the effectiveness of four crack detection techniques: fast Haar transform, fast Fourier
transform, Sobel edge detection, and Canny edge detection. Rabah et al. (2013) [15] implemented
terrestrial laser scanning to detect cracks and suggested a three-step method composed of shading
correction, crack detection, and crack mapping. Prasanna et al. (2016) [16] adopted a robotic imaging
system and developed an automated crack detection algorithm called STRUM (spatially tuned
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robust multi-feature) classifier to detect cracks on bridge surfaces and succeeded in achieving a
95% performance accuracy.

But the vision-based technique has some limitations to be applied in the real world, since it is not
easy to develop an algorithm that is able to cover all of the unexpected situations of the real world.
Last several years, deep learning has been spotlighted as one of the most promising solutions for this
problem. Deep learning refers to machine learning techniques based on artificial neural networks with
many hidden layers for enhanced performance. It has shown outstanding performances especially
in object detection [17–19], natural language processing [20–22], advertising [23], biology [24,25], and
so on. Deep learning has been employed not only for the fields mentioned above but also for other
engineering problems. Zhao et al. (2017) [26] combined deep learning with speeded-up robust features
(SURF)-based approach to develop a traffic surveillance system which processes aerial imagery to
track vehicles and their movements.

Of special note, there have been several efforts to advance crack measurement using deep learning
techniques [27–29]. Tong et al. (2017) [29] proposed a two-step approach for pavement crack detection:
preliminary selection of images possibly containing cracks using a k-means clustering analysis, and
an application of a convolutional neural network (CNN) for training and testing using selected
images. So far, the crack measurement techniques reports have been validated for near-ideal laboratory
conditions as well as in the field. However, it was found that the test images reported in the literature
contain cracks and intact surfaces only, though the real structures have various apparent conditions
over cracks and intact surfaces. Hence, the testing under human-made conditions in the literature still
has limitations in dealing with all real outdoor conditions that most of the structures are exposed to.

In this paper, an automated vision-based crack detection method using deep learning is proposed
to pick out crack parts among a large dataset of images recorded under field conditions. One of the key
contributions of this paper is the development of multiple classes including non-crack objects using
training data collected from the Internet, which make the trained network capable to cover diversity of
on-field environment. This method aims to facilitate the regular inspection of concrete structures and
speed up the assessment of detailed crack distribution without losing accuracy using various cameras
and vision devices, such as drones. The proposed method is composed of three steps: (1) collection
of a large volume of images from the Internet with subsequent categorization into five classes (intact
surfaces, cracks, multiple joints and edges, single joint or edge, etc.); (2) development of a deep CNN
model using collected images and their augmentation; and (3) automatic selection of crack parts from
test images using the trained deep learning model.

Contributions to the abovementioned literature are made in each step. In the first step,
the Internet-based collection improves the collection of images taken under diverse structural,
environmental, and photographing conditions and enables easy classification of collected images
based on search keywords. In the second step, a transfer learning approach has been introduced to
save time and cost involved in developing a deep learning model. In the third step, the probability
map is introduced based on the last softmax output and overlapped searching to make the searching
process robust. The whole procedure of the proposed method has been validated for the images of a
building captured using a camera and a video of a concrete retaining wall recorded using a drone.

2. Methodology

2.1. Overall Framework of the Proposed Method

Figure 1 illustrates the overall framework of the proposed crack detection method in this study.
The framework is composed of three stages: (1) database (DB) building; (2) classifier development;
and (3) crack detection. In the DB building stage, thousands of images are scraped from the Internet
to create an image DB for deep learning model training. The images are scraped for various classes,
such as cracks, intact concrete surfaces, and non-crack objects that can be easily misclassified as cracks.
In the classifier development stage, a CNN classifier is developed to detect cracks against intact
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surfaces and non-crack objects. A transfer learning (i.e., fine-tuning of the developed neural network
model) of the well-known AlexNet [30] is used to develop the classifier in this study. In the crack
detection stage, the trained classifier scans a set of images from the testing structures by sliding a
window whose size equals the input of the classifier. With overlapped scanning, a probability map of
the classification is obtained from the output of the classifier. Given a probability threshold, groups of
pixels whose probability exceeds the threshold are selected as possible crack parts. The details of three
stages are described in the following sections.
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Figure 1. Overall framework of the proposed method.

2.2. First Stage: DB Building Using Internet Image Scraping

When training a classifier, the variety of the training images determines the performance of the
classification. A CNN classifier trained with images under constrained conditions may display poor
performance when classifying an image outside the considered conditions. Since obtaining training
images under all possible conditions is very difficult, big data from the Internet may be the best source
to obtain images taken under a wide variety of conditions.

The image DB in this study was established using a commercial scraper, called ScrapeBox [31],
which scrapes images from a search engine site (e.g., Google) for a keyword. The use of a scraper is
beneficial in two aspects: (1) it can collect various types of images from a huge database on the Internet,
and (2) it naturally provides images classified by the search keyword. Figure 2 shows examples of
valid and invalid images scraped by the keyword “concrete crack”. The valid images contain single or
multiple cracks on concrete or mortar surfaces, while the invalid images contain invisible, repaired,
man-made cracks or irrelevant objects such as texts and company logos.

The number of scraped images and their validity checked by the manual pick-out process are
tabulated in Table 1. For example, 497 images scraped by the keyword “concrete crack” were found
to be valid for the training by manual pick-out from 723 images. Search with various keywords in
different languages and subsequent manual pick-out resulted in 2073 valid crack images. In a similar
manner, more than 1000 images were obtained for joints, corners, and plants, as shown in Table 1.
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Table 1. Number of valid images scraped from the Internet.

Class Keywords Valid Images/Total Images

Crack

concrete crack 497/723
concrete wall crack 573/703
crack on concrete 537/683

crack on concrete brick 429/905
cement crack 485/681

After Deleting Duplicates 2073

Joint/Edge

concrete corner 456/697
concrete joint 225/794
concrete tile 396/701

grey concrete tile 446/705
After Deleting Duplicates 1400

Plant

moss on concrete 654/757
moss on concrete wall 773/929

plant on concrete 452/890
After Deleting Duplicates 1511

Intact Surface

cement texture 547/606
concrete surface 518/853
concrete texture 476/489

concrete wall 489/644
smooth concrete wall 493/619

After Deleting Duplicates 2211

2.3. Second Stage: Classifier Development Using a CNN

The development of a deep learning model for crack detection is the key part of this research,
but training a model from scratch takes a considerable amount of time even with a workstation-level
computer or computers with parallel CPUs. Training of the AlexNet [30], which is a well-known deep
CNN classifier, took five to six days on two NVIDIA GTX 580 3GB GPUs because of the large size of
the training image set (150,000 images). The long training time prevents quick validation of the trained
classifier with various training options.

Transfer learning reduces training time by fine-tuning a deep learning model that has been trained
for a similar purpose. By starting the training on the pretrained model, and not on the randomly
initialized model, the training process can be minimized. In this study, a CNN classifier for crack
detection was developed using transfer learning of a CNN classifier developed for object detection,
namely, AlexNet [30]. Since AlexNet [30] aims to classify objects in the images, it is a good model for
transfer learning to classify cracks as objects in an image. AlexNet [30] consists of five convolutional
layers followed by max-polling layers, and three fully-connected layers with a 1000-way softmax
output as shown in Figure 3. AlexNet [30] implemented rectified nonlinear unit (ReLU) nonlinearity
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as an activation function at the end of neurons (except the final layer) to reduce the vanishing gradient
effect. More details about AlexNet can be found in [30].

The MATLAB Neural Network Toolbox provides easy implementation of AlexNet [30] for transfer
learning to develop an image classifier. In this study, the final layer of AlexNet [30], was changed
to have five outputs to detect five different classes, namely Crack, Joint/Edge (Multiple Lines, ML),
Joint/Edge (Single Line, SL), Intact Surface, and Plant. Then, the pretrained AlexNet [30] model was
retrained using the image DB categorized into five classes.Sensors 2018, 18, x 5 of 18 
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Figure 3. Overall architecture of AlexNet (redrawn from [30]).

The five classes are determined to minimize false detection of cracks. In real concrete structures,
there are cracks as well as noncrack objects with thin and long shapes on the surface, e.g., joints,
and sediments flowing down. Since a deep learning model automatically finds features representing
each class during the training, a class containing various images without apparent similarity may
result in poor feature representation of the class. Assuming that two classes (e.g., Crack class and
Noncrack class) are used in the training in this study, the noncrack objects with thin and long shapes
should be included in the Noncrack class with the other noncrack objects with different shapes (e.g.,
intact surface, wide pollution). Then, the thin and long shapes of the objects may be ignored in the
representing features of the Noncrack class, while the shapes are representing the Crack class. Thus,
the classifier misclassifies them into cracks due to shape similarity, as will be shown in Section 4.1.

Image examples of the five classes are displayed in Figure 4. The images of various types of
concrete cracks from macro to microcracks are categorized into Crack class (Figure 4a). The images
containing multiple construction joints and joints between concrete tiles are categorized into Joint/Edge
(ML) class (Figure 4b), and those that have one line or two lines at most into the Joint/Edge (SL) class
(Figure 4c). To cover various types of real-world concrete surfaces, concrete surface images involving
diverse texture and different colors are categorized into the Intact Surface class (Figure 4d). Finally, the
images of moss-like plants which can be found on concrete surfaces are categorized into the Plant class
(Figure 4e). This detailed categorization of images contributes to the high accuracy of the trained CNN
model in detecting concrete cracks.
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(ML); (c) Joint/Edge (SL); (d) Intact Surface; and (e) Plant.



Sensors 2018, 18, 3452 6 of 18

2.4. Third Stage: Crack Detection Using a Probability Map

The trained CNN classifier, has softmax outputs in the final layer, and the outputs correspond to
the possibility of each class. The softmax function reduces down a real-valued N-dimensional vector
x to an N-dimensional real-valued vector σ(x) in the range (0, 1) that add up to 1. The function is
given as:

σ : RN → (0, 1)N

σ(x)i =
exi

N
∑

k=1
exk

for i = 1, · · · , N (1)

A CNN classifier, including AlexNet [30], has great but imperfect classification performance
because of its fixed input layer size. Most of the images contain cracks around the corner of the image.
Thus, the cracks located near the window border may be missing or misclassified during scanning
using the trained classifier. Figure 5 illustrates this issue. If a window slides from 1 to 4 to scan the
image of Figure 5a, the crack part located in the corner of Window 4 will be disregarded as shown
in Figure 5b. Figure 5c shows that the crack detection result without overlapped windows has low
accuracy on a pixel-level.

In this study, a probability map with an overlapped window sliding strategy is developed to
overcome this issue. The test image is scanned using an overlapped window, and the probability
map is obtained using the average softmax layer value of Crack class scanned by a sliding window
with overlapping. Using this strategy, a crack object near the border of a window is located near the
center of an overlapped window. Figure 5d shows an example of the addition of a 50% overlapped
window to Figure 5a, and Figure 5e shows that the probability of the disregarded part of the crack
in the detection result without overlapped windows was increased from 0% to 50%. By highlighting
the pixels whose probability exceeds a predetermined threshold, 50% in this case, crack parts in the
image can be extracted. The extracted crack parts in Figure 5f are more valid compared to the result
of Figure 5c. The window sliding strategy may be changed according to the image size, allowable
computing time, and target accuracy. Note that a window scans a test image twice with a quarter
overlapping of the image as shown in Figure 5e in this study.
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Figure 5. Performance enhancement using overlapped windows: (a) sliding windows without
overlapping; (b) softmax output of the windows; (c) detection result from sliding windows without
overlapping; (d) sliding windows with overlapping; (e) average softmax output of the windows; and
(f) enhanced detection result with sliding windows with overlapping and probability map.
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3. Development of a CNN Classifier

3.1. Data Augmentation

Since AlexNet has 60 million parameters to be trained, a number of training images must be
prepared. Though a few thousand images were scraped from the Internet as shown in Table 1, they
may not fully cover diverse photographing environments that significantly affect the accuracy of the
trained classifier in practice. To overcome this hurdle, data augmentation is the most effective method
for building up a number of training images by simulating diverse photographing environments, and
reducing possible overfitting of the CNN classifier.

The training images can be augmented in three ways: geometry transformation, blurring,
and color conversion. Geometry transformation, which aliases translation, reflection, and rotation,
considers the variation of direction and angle at which the images are taken. Blurring considers
the possible instability of the imaging camera under insufficient light and unfocused shot. Color
conversion, which aliases illumination of the color field (RGB), considers the variation of light and
color characteristics of the imaging camera. Figure 6 shows examples of the image modification for
data augmentation. Using data augmentation, the number of training data can increase up to at least
ten times.
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Figure 6. Example of image augmentation: (a) Original image; (b) rotation 90◦ to clockwise direction;
(c) flip left to right; (d) flip up and down; (e) blur; and (f) color conversion.

3.2. Training: Transfer Learning

In this study, a personal computer (PC) with a single GPU (CPU: Intel(R) Core(TM) i3-6100, RAM:
8192 MB, GPU: NVIDIA Geforce 1060 3 GB) was used for the training with the help of transfer learning.
The number of training images was increased to 10,000 for each class (i.e., a total of 50,000) by taking
image augmentation techniques. Figure 7 shows the accuracy of training and validation as epochs
proceed. To update the parameters using a stochastic gradient descent algorithm, the network takes a
subset of the image data set, called a “mini-batch”, for each iteration. Once the network completes its
pass through the full training set, it completes one epoch. The training accuracy is calculated based on
40,000 images, and validation based on 10,000 images not included in the training set. The highest
accuracies in the training are 100.00% at several epochs and 99.39% at the 51st epoch in the validation.
Despite the computer with relatively low computational power, the training during 60 epochs took
316 min since the training started from the parameters of the pretrained AlexNet. The result that the
accuracy of validation reached 98% at 8th epoch shows the efficiency of transfer learning. For the
sake of analysis, the CNN classifier was trained for 60 epochs even though the validation accuracy
reached 99% at the 22nd epoch. This result confirmed that transfer learning is very effective in saving
the training time, while the issue of overfitting does not arise.
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4. Skills for Increased Detectability

4.1. Detailed Categorization for Accurate Crack Detection

In previous literature related to crack detection, the deep learning model was trained for binary
classes, e.g., Crack or Non-crack classes. Though the purpose of crack detection is detecting cracks
against other objects, the binary classes do not result in accurate detection because of the presence of
objects with similar visual patterns. Cracks have narrow linear shapes, while there are many other
objects with similar, but not identical, shapes. In the case of binary classes, many objects with narrow
linear shapes, such as joints, edges, corners, pipes, and electrical lines, will be detected as cracks.
For example, Zhang et al. (2017) [32] reported that it is challenging to remove pavement edges in
detecting asphalt cracks, or any other object which has a similar shape.

This research proposes a detailed categorization of the Non-crack class to overcome the limitation
of crack detection techniques developed under idealized conditions. As stated in Section 2.3, five classes
are used and the Crack class is only one of them. The Non-crack class is divided into four classes,
two of which are Joint/Edge classes that include all possible linearly shaped objects.

Figure 8 illustrates the enhancement obtained by introducing multiple classes to consider the
confusing linear-shaped objects. Figure 8a,d,g shows three examples that contains both cracks and
confusing objects, which are a joint in Figure 8a, objects with linear edges in Figure 8d, and linear
concrete edges and rectangular tiles in Figure 8g. In the images, cracks are marked with cyan boxes
and the confusing objects are marked with purple boxes. Figure 8b,e,h is the classification results
of three images when two classes, Cracks and Surfaces, are considered. As presented in red boxes,
the confusing objects are misclassified as cracks, since their shapes are closer to cracks than surfaces.
Figure 8c,f,i is the enhanced results when multiple classes are used. The highlighted part with green
boxes shows the confusing objects are classified as the Joint/Edge (SL) class, and they have high
agreement with the misclassified parts as cracks in Figure 9b,e,h. The average precision of the three
images increased from 32.72% to 97.93% while the average recall slightly decreased from 100% to
98.93%. Thus, by separating the confusing objects from real cracks, the false positives can be minimized
in the practical environments.
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4.2. Parametric Study of the Probability Threshold

The threshold to determine cracks on the probability map may vary according to inspection
purposes. In cases where precision is more important than recall, the threshold has to be relatively
high, and vice versa. Mostly, recall is more valuable in the inspection of civil engineering structures,
in order not to miss any possible source of failure. In this study, a parametric study to determine the
proper threshold was conducted with six images obtained in diverse structural and photographing
conditions as shown in Figure 9a. Three performance measures (e.g., accuracy, precision, and recall)
were obtained by increasing the threshold on the six images as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where TP is the true positive, TN is the true negative, FP is the false positive, and FN is the false
negative. Their averages of six images calculated from 5% threshold to 95% in an increasing unit of 5%
are illustrated in Figure 9b. The average accuracy changed only slightly in relation to the threshold,
while the other two measures changed significantly. The average precision slowly increases from 0%
to 50% and remains relatively constant afterwards. However, the average recall decreases little from
0% to 50% and drops suddenly after 50%. The significant change of both precision and recall around
50% results from the sliding window that scans all the pixels of an image twice. This result seems
reasonable considering the case where a crack is at the center of a sliding window and at the border of
the overlapped window. At first scanning, the pixels containing cracks would get high probability near
100%, while the crack may be missed at the second overlapped scanning. Though the result suggests
the use of 50% as the threshold, the threshold is determined in order to make both precision and recall
exceed 90% and to minimize the possibility of missing cracks with a small possibility of false positives.
In the further detection using the probability map, the threshold is determined as 35% where precision
starts exceeding 90% as show in the Figure 9b. The threshold is set to 35% to maximize recall value but
users might change the threshold according to their purpose of inspection.

5. Automated Crack Detection on Real Concrete Structures

5.1. Automated Crack Detection on Still Images

To validate the automated crack detection method, i.e., the applicability of the trained classifier
to an on-site environment, tests were conducted with images taken from actual concrete structures
with commercial DSLRs and smartphone cameras. The results of crack detection in Figure 10 show
the performance of the proposed approach in extracting crack regions on concrete surfaces and the
probability map corresponding to each image. In Figure 10, the distributions of true-positive (TP),
false-negative (FN), and false-positive (FP) regions are highlighted as green, red, and yellow colored
boxes, respectively. Remaining regions without highlight are true-negative (TN). The presence of
cracks was detected successfully in all test images, though there were many obstacles. The obstacles
in Figure 10a–d are stain, scratch, tie holes, and imprint of concrete mold that can be found on
structure surfaces caused by poor handling and maintenance. Those in Figure 10e,f are pipes, electrical
distribution boxes, and interior materials having a rectangular shape for the sake of convenience
in construction. Despite the obstacles to crack detection varying according to each experimental
environment, the proposed method successfully detected cracks as shown in Figure 10. Looking at
the performance measures, the proposed method achieved more than 90% of accuracy for all the test
images and attained an average precision of 86.73% and an average recall of 88.68% on the pixel-level,
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Table 2. The performance of the trained network was also tested on other 34 images of concrete surfaces
which have similar patterns or textures and the results are tabulated in the Appendix A. The average
accuracy is 97.02%, the average precision is 92.36% and the average recall is 89.28% for the result in
Appendix A.
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Figure 10. Crack detection result of each case by the proposed method (left column) and corresponding
probability map (right column): (a) peeled concrete surface; (b) clean concrete surface; (c) concrete
surface with many pores and construction joints; (d) dark concrete surface; (e) concrete surface with
pipes and electric distribution boxes; and (f) floor with construction materials.

Table 2. Crack detection result of six images in Figure 10.

Image. Resolution Elapsed Time (s) Accuracy (%) Precision (%) Recall (%)

(a) 3343 × 2191 1.63 96.25 93.67 94.22
(b) 4099 × 2773 2.43 97.46 100.00 71.19
(c) 4160 × 3120 2.85 96.09 86.72 97.32
(d) 5941 × 3961 4.26 99.03 94.33 95.87
(e) 6000 × 4000 5.31 98.5 94.74 86.86
(f) 4128 × 2322 2.88 92.53 50.93 86.67

Average 3.22 96.64 86.73 88.68

Despite of the excellent performance of the proposed method, it still has limitations in detecting
cracks against objects that are indistinguishable in vision. Looking into the details, FPs were observed
in various patterns that can be categorized into four groups. Figure 11a–d shows example images of
four FP groups with their crack probabilities. The first group represents crack-shaped contaminants
left on the surface as exemplified in Figure 11a; the second group is overlaid cement paste, as seen
in Figure 11b; and the third group consists of continuously-distributed concrete pores, shown in
Figure 11c. Due to their shapes, the possibilities of obtaining crack FPs for these three groups are
estimated at over 35% (i.e., the threshold determined in Section 4.2). Under visual inspection, these
FPs can be easily distinguished from cracks by checking for the existence of splits, which cannot
be investigated in the monocular images. Instead, in order to reduce FPs in the proposed method,
sufficient illumination may be used to unshadow these objects and contrast the split cracks; other
techniques, such as stereovision [33] and infra-red, may also be implemented. The last group consists of
a small number of discontinuous edges of linear-shaped construction material which are misclassified
as cracks, Figure 11d. Though the proposed method suggested detailed categorization of surfaces to
remove these patterns, a few which have relatively irregular shapes are classified as cracks. This FPs
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may be removed out by considering the region areas, shapes, and continuities in the further study. FNs
are also observed in various patterns that can be categorized into four groups. Figure 11e–h shows
the example images of four FN groups with their crack probabilities estimated as being low. The first
group are the cracks hidden behind other objects as exemplified in Figure 11e. In this case, the major
object in the window (e.g., the pipe) reduced the crack possibility while increasing the possibility of
other classes (e.g., Joint/Edge (ML) and (SL)). The second group are the cracks having a linear shape
without irregular patterns, as seen in Figure 11f. The training image categorization of the proposed
method is based on the assumption that cracks generally have an irregular linear shape, and thus
the second group is mostly classified into Joint/Edge (SL). These FNs are the result of inevitable
trade-off in the process removing crack-like objects, and may be removed out by considering the region
areas, shapes, and continuities. The third group are the cracks obscured by dark surfaces, shown in
Figure 11g. This may be overcome by implementing sufficient illumination. The last group are the
cracks located on the corner and boundaries of the detecting window, as in Figure 11h. Since this FN
is related to the FOV, it may be solved by taking another image with an altered FOV or by using a
video stream.Sensors 2018, 18, x 13 of 18 
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Figure 11. Example images of FP groups (a–d), FN groups (e–h) and their crack probabilities (a–d):
(a) crack-shaped contaminants; (b) overlaid cement paste; (c) continuously distributed concrete pores;
and (d) edge of linear-shaped construction material; (e) crack hidden behind object; (f) crack having
straight line; (g) crack obscured by dark surface; and (h) crack on the corner of detecting window.

Based on the investigations of FPs and FNs, the four types of solutions suggested for reducing
FPs and FNs are summarized in Table 3. This table shows that the proposed method can perfume
excellently in practice if the solutions are combined in the further study.

Table 3. Grouping of FPs and FNs, and their possible solutions.

False-Positive (FP) False-Negative (FN)

Groups Solutions Groups Solutions

crack-shaped contaminants 1, 3 crack hidden behind object 4
overlaid cement paste 3 crack having straight line 2

continuously-distributed concrete pores 2 crack obscured by dark surface 1
edge of linear-shaped construction material 2 crack on the corner of detecting window 4

Solution 1: Enough illumination; Solution 2: Consideration of region areas, shapes, and continuities; Solution 3:
Additional vision techniques (stereovision, IR, etc.); Solution 4: Moving image FOVs (e.g., using a video stream).

5.2. Automated Crack Detection on Video Taken by Drone

There has been an increasing number of research on bridge inspection using unmanned aerial
vehicles (UAVs) in the last several years because of their advantages such as safety and high
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productivity [34–37]. In this section, the feasibility of the proposed method is evaluated for UAV-based
concrete structure inspection over still images.

The test video was taken at a concrete retaining wall located at the University of Seoul as shown
in Figure 12. The wall has a varying height between 2 and 4 m, and a width of approximately 20 m.
A region of 2 × 5 m was inspected using a drone, and 16 cracks were found visually with varying
shapes and sizes. The wall is highly contaminated with sediments by leakage, and it attaches several
pieces of rectangular sidewalk lighting equipment that initiate the cracks as in Figure 12.
Sensors 2018, 18, x 14 of 18 
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Figure 12. Automated crack detection using UAV: (a) Video shooting using UAV, (b) Example image of
real-time crack detection.

The drone used in this study is Phantom 4 advanced (SZ DJI Baiwang Technology Co., Ltd.,
Shenzhen, China) equipped with a 1-inch 20-megapixel CMOS camera along a FOV 94◦ 20 mm lens.
While shooting the video, the drone kept a distance from the concrete wall of about 2 m during
the entire flight, and the approximate FOV was 0.75 mm × 1.60 m based on camera specifications.
The working distance of 2 m was found to be sufficiently close for detecting major and minor cracks
that formed on the concrete surface. The trained classifier was used to detect cracks from an image
taken from the video every 0.5 s.

The real-time detection is demonstrated in the video [Link: https://youtu.be/5sNbfEaRwkU].
As shown in the video, the developed method successfully detected 15 out of 16 cracks, missing only
a very small crack whose width was approximately 0.05 mm. For all images used in the detection,
the precision and recall in the pixel level were calculated as 88% and 81%, respectively. Considering
that the video frames taken by the moving UAV are quite blurred, the result shows that the proposed
method is at the edge of practice for a UAV-based structure inspection.

6. Conclusions

This paper proposed an automated crack detection method based on deep learning to detect
cracks on a large set of images taken on real structures. The entire procedure of the proposed method
consists of fine-tuning AlexNet with Internet-based training images and crack detecting based on the
probability map. The training and validation images covering diverse environments of on-site concrete
structures were collected from the Internet using a web scraper. Data augmentation skills such as
rotation, blurring, and color adjustment were implemented to enhance the diversity and quantity
of the thousands of training and validation images. AlexNet was fine-tuned for five categories,
Crack, Joint/Edge (ML), Joint/Edge (SL), Intact Surface, and Plant on 42,000 augmented images with
227 × 227 pixel resolutions. The probability map is suggested to strengthen the robustness of the
sliding windows detection method. To construct the probability map, pixels accumulate the softmax
layer value of the Crack class regardless of the highest detection result during the specified number
of detections. After scanning all pixels, pixels with a larger value than a specified threshold are
determined as cracks.

https://youtu.be/5sNbfEaRwkU
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The comparative and parametric study examined the two main skills for increasing detectability
of the CNN classifier, detailed categorization of the concrete surfaces and probability map.
The comparative study was conducted to confirm how five categories increase the adoptability of the
proposed CNN classifier for on-site inspection. The proposed CNN classifier was compared with a
crack detection method based on a subtraction process and another CNN classifier having two classes:
crack and intact surface. The proposed CNN classifier succeeded to extract the crack parts out of
intact surfaces and objects having similar patterns to cracks while other methods determined the
objects as cracks. An optimized threshold for the probability map was chosen through the parametric
study. According to the result of the parametric study, the threshold is determined as 35% where both
precision and recall are higher than 90%.

The performance of the proposed detection method using a CNN classifier was evaluated on
40 images representing on-site environments and a real-time video of a concrete wall taken using
a UAV. Despite the existence of the concrete mold marks, pipes, and tie holes around cracks, the
proposed CNN classifier successfully detected cracks against intact surfaces and similar objects. The
average precision and recall for the images were 92.35% and 89.28% on the pixel level, respectively.
The CNN classifier also succeeded in detecting cracks from the real-time video taken by the UAV at 3
frames per s with a recall of 81% recall and precision of 88%. The evaluation of results confirmed the
applicability of the proposed method to on-site crack inspection.

This research confirmed that the CNN-based method shows a high degree of applicability for
crack detection when proper skills are applied. The feature-extracting capability of CNN carries a huge
advantage for computer vision-based inspection in civil and infrastructural engineering. The proposed
method is beneficial in analyzing the crack morphology by eliminating the interrupting objects in an
image in prior. Thus, the CNN-based method is expected to replace current visual inspection in the
near future because of its automated feature-extracting capabilities and objective assessment of cracks.
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Appendix A

Table A1. Crack detection result of forty images.

Image No. Resolution Elapsed Time (s) Accuracy (%) Precision (%) Recall (%)

1 3343 × 2191 1.63 96.25 93.67 94.22
2 4099 × 2773 2.43 97.46 100.00 71.19
3 4160 × 3120 2.85 96.09 86.72 97.32
4 5941 × 3961 4.26 99.03 94.33 95.87
5 6000 × 4000 5.31 98.50 94.74 86.86
6 4128 × 2322 2.88 92.53 50.93 86.67
7 5875 × 3943 4.59 98.77 86.85 96.96
8 5101 × 3805 4.30 98.50 100.00 92.19
9 2515 × 2101 1.09 95.33 100.00 63.42
10 2431 × 2047 0.94 97.82 100.00 90.26
11 1107 × 925 0.39 98.44 100.00 93.66
12 5863 × 3877 4.74 97.51 90.22 79.05
13 3953 × 2593 2.20 94.85 87.19 80.14
14 1960 × 1540 1.11 96.94 94.86 100.00
15 3656 × 3082 2.14 98.48 97.20 96.27
16 5496 × 3670 4.50 100.00 100.00 100.00
17 2425 × 2095 1.06 96.27 100.00 86.68
18 6000 × 4000 4.84 97.92 80.11 95.02
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Table A1. Cont.

Image No. Resolution Elapsed Time (s) Accuracy (%) Precision (%) Recall (%)

19 3421 × 1987 2.59 95.99 94.60 95.92
20 1855 × 1153 0.98 98.09 90.78 98.84
21 1969 × 1369 0.93 93.76 90.40 67.17
22 1052 × 1000 0.60 98.96 100.00 95.37
23 4160 × 3120 2.60 97.92 93.75 83.82
24 2119 × 1411 0.94 96.40 95.12 94.62
25 1481 × 947 0.71 92.13 100.00 83.24
26 1442 × 926 0.57 90.04 100.00 48.15
27 1742 × 930 0.71 100.00 100.00 100.00
28 1506 × 931 0.55 94.61 55.81 100.00
29 1064 × 732 0.42 98.61 100.00 93.81
30 4096 × 2160 1.70 99.38 100.00 97.27
31 819 × 614 0.49 98.15 100.00 92.23
32 4160 × 3120 3.36 98.44 94.48 94.21
33 4597 × 3175 3.55 95.67 61.91 89.77
34 1456 × 937 0.58 98.34 90.48 100.00
35 3120 × 4160 3.0 98.98 91.13 96.86
36 3094 × 2174 1.91 95.73 100.00 57.25
37 1891 × 925 0.88 100.00 100.00 100.00
38 1723 × 914 0.65 96.54 95.76 86.65
39 1480 × 935 0.68 97.10 97.06 90.32
40 1828 × 939 1.39 95.17 86.12 100.00

Average 97.02 92.36 89.28
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