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Abstract: The development of compressive sensing (CS) technology has inspired data gathering in
wireless sensor networks to move from traditional raw data gathering towards compression based
gathering using data correlations. While extensive efforts have been made to improve the data
gathering efficiency, little has been done for data that is gathered and recovered data with unknown
and dynamic sparsity. In this work, we present an adaptive compressive sensing data gathering
scheme to capture the dynamic nature of signal sparsity. By only re-sampling a few measurements,
the current sparsity as well as the new sampling rate can be accurately determined, thus guaranteeing
recovery performance and saving energy. In order to recover a signal with unknown sparsity,
we further propose an adaptive step size variation integrated with a sparsity adaptive matching
pursuit algorithm to improve the recovery performance and convergence speed. Our simulation
results show that the proposed algorithm can capture the variation in the sparsities of the original
signal and obtain a much longer network lifetime than traditional raw data gathering algorithms.

Keywords: adaptive compressed sensing; data recovery; step size determination; wireless sensor
networks

1. Introduction

Wireless Sensor Networks (WSNs), which are capable of sensing, computing, and wireless
communication, can be applied to a wide range of applications, such as scientific observation,
emergence detection, climate detection, ecosystem surveillance, and physical hazard prevention [1].
In many of these applications, sensor nodes are powered by battery and deployed in an unattended
hostile environment with high density. Once deployed, these nodes should send their sensing results
to the sink node periodically. Due to the constraints of application environments, it is crucial to prolong
the network lifetime of WSN. According to the energy consumption model presented in [2], the energy
consumed in a sensor node is exponentially increased with the communication distance. As a result,
sensor nodes usually follow the routine to the sink node via multihop transmission, thus saving
energy. Besides that, multihop communication is essential for large-scale WSNs for cases where the
transmission range of sensor nodes is much smaller than the size of the target area.

Since all the sensor nodes forward their data to only one sink node, the routing tree in WSNs
usually exhibits a many-to-one structure, which is often called convergecast [3,4]. The main drawback of
the convergecast structure is the energy hole problem, chiefly because the sensor nodes close to the sink
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node have to relay more packets and tend to run out of energy sooner. As a result, the entire network is
subject to premature death because it is separated by the energy hole. In order to avoid uneven energy
depletion and to extend the network’s lifetime, several advanced hardware and software solutions
have been recently proposed. As for the design of hardware, wireless energy charging technologies
are applied to harvest energy from ambient sources [5,6]. However, recharging is impossible or not
worth it in many applications [7]. As for the design of software, data gathering solutions have been
proposed to reduce the traffic load. Since the physical phenomena collected by sensor nodes often
possesses strong temporal and spatial correlations, it is inefficient to deliver raw data to the sink node.
Many solutions have incorporated data correlations into data gathering, such as distributed source
coding [8] and the distributed compression algorithm [9]. However, conventional data compression
techniques, which are usually associated with the design of routing, require heavy computation and
communication loads on sensor nodes [10]. Source coding techniques are also incompatible with
WSNs, since they work with the assumption that the statistical structure of the underlaying data
distribution should be known prior [11].

The emerging technology of compressive sensing (CS) opens up a new perspective for data
gathering in WSNs. The basic idea of CS is that if the signal is sparse or compressible at a certain level ,
it can be reconstructed from a small number of linear measurements lower than the Shannon–Nyquist
limit [12]. The application of CS for data gathering in multi-hop WSNs has drawn much attention
recently. [13] investigated how to apply CS theory for data gathering. They also designed a simple
but efficient measurement matrix that satisfies the restricted isometry property (RIP). CS based
techniques can substantially reduce the amount of data transmission and balance the traffic load
throughout the entire network with a very low level of complexity. In order to further reduce the
energy consumption and improve the energy efficiency, a novel measurement matrix generation
incorporating a transmission design was proposed in [14]. In [15], the CS principle was used as
a compression and forwarding scheme to minimize the transmission data. In Ref. [16], CS based
data aggregation combined with routing was designed to reduce the entire energy consumption.
In Ref. [17], a CS method of cluster-based WSNs was designed, and centralized and distributed
clustering methods were proposed to reduce the number of transmissions. Considering the spatial
correlations between sensor nodes, the compressive sleeping strategy was designed in Refs. [18,19]
for high density WSNs, where only a subset of sensor nodes were active and all the other sensor
nodes were turned off to save the energy and extend the network’s lifetime. By utilizing the spatial
correlations of the data in densely deployed WSNs, a distributed compressive sensing scheme for data
gathering was proposed in Ref. [20], where the belief propagation algorithm was employed for signal
recovery. In Ref. [21], the spatial interpolation method was proposed to transform a predetermined
sparsifying measurement matrix for WSNs with only local communications, avoiding the complete
position knowledge of the entire network being obtained. In Ref. [22], the CS based signal and
data acquisition for WSNs as well as the Internet of Things (IoT) was proposed, and a cluster-sparse
reconstruction algorithm was proposed for in-network compression to achieve accurate signal recovery
and energy efficiency. By exploiting a similar sparsity structure of acoustic signals from nodes in the
same array, a collaborative reconstruction method was proposed for data gathering in wireless sensor
array networks [23].

Even though various applications of CS for data gathering have been extensively studied, they all
assume that the sparsity of the signal is static or changing sufficiently slowly over time. However,
such an assumption is too restrictive for many monitoring applications, where the sparsity of the signal
changes rapidly with time or conditions. For example, for an anti-fire forest monitoring WSN, due to
the fact that the number of measurements is linearly related to the underlying signal sparsity level,
the signal sparsity with and without fire is apparently different. When the sparsity of the signal is
changed, ignoring the rapid change of signal sparsity will result in performance degradation in signal
recovery. Therefore, it becomes important to design an adaptive compressive sensing in accordance
with the variation of the signal sparsity.
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After gathering the data with compressive sensing, another challenge is how to design a signal
recovery algorithm with fast reconstruction and reliable accuracy. Recently, the signal recovery
algorithm applied in WSNs was classified into two categories: (1) the basis pursuit (BP) which was
proposed to find the l1 minimization using linear programming, and (2) the iterative greedy pursuit,
for example, the orthogonal matching pursuit (OMP), the stagewise OMP (StOMP) [24] and the
compressive sampling matching pursuit (CoSaMP) [25]. Among them, BP requires the least number
of measurements; however, its high computational complexity prevents it from being used for large
scale applications. OMP and StOMP adopt a bottom-up approach in signal recovery, and their
complexity levels are much lower than that of BP. However, they require more measurements and
have a lack of recovery guarantee. CoSaMP adopts a top-down approach and can offer an acceptable
recovery performance, similar to that of the BP method, but with a much lower recovery complexity.
However, all these algorithms discussed above assume that the sparsity of the signal is known prior.
These algorithms cannot be directly applied to the construction of a signal with unknown sparsity.
For blind signal recovery with unknown sparsity, the most commonly applied algorithm is the sparsity
adaptive matching pursuit (SAMP) [26], where the sparsity of signal and the true support of the signal
is estimated stage by stage with the “divide and conquer” method. SAMP can also be viewed as a
generalization of existing algorithms, such as OMP or CoSaMP. However, the design of an appropriate
step variation to guarantee fast convergence and accuracy is still an open problem.

Different from aforementioned works, the aim of this work was to design an adaptive compressive
sensing framework for periodical monitoring of WSNs. As we know, the most related work to this
research is the intelligent compressive sensing scheme proposed in Refs. [27,28]. The main difference
between our work and their works is the sparsity determination. In Ref. [27], sparsity was obtained
with local correlations, and the signal was recovered by successive reconstruction applied at the sink
node. In Ref. [28], the compressive sampling was applied in a single-hop IoT system, and a learning
phase was designed at the central smart object to select the sparsity level. However, in our work,
compressive sampling is applied in multi-hop wireless sensor networks, and the variation in the
sparsity is determined by very few re-sampling iterations . Additionally, we present an improved
SAMP to recover signal with unknown sparsity. The main contributions of this paper are summarized
as follows:

• We propose an adaptive compressive sensing framework for periodical monitoring of WSNs,
where a reconstruction error estimation module is designed to check whether the current sampling
rate is still sufficient for signal reconstruction, and a sparsity determination module is designed to
estimate the sparsity and calculate the required sampling rate at the next monitoring period.

• We propose an efficient sparsity variation determination algorithm, which can determine the
current sparsity as well as the new sampling rate by only re-sampling a few measurements to
save the energy cost and guarantee the recovery performance.

• We propose an improved SAMP algorithm to recover the signal with unknown sparsity,
where both the linear and non-linear step size variation are designed to guarantee fast convergence
and reliable accuracy.

• We evaluate the proposed algorithms with extensive simulations and study the impacts of
multiple environmental factors, including the number of sensors and the different sampling rates.
The simulation results show that our proposed algorithm could achieve substantial improvements
compared with existing algorithms in terms of sparsity matching and signal recovery.

The remainder of this paper is organized as follows. Section II presents the mathematical details
for the CS and data gathering. We propose our adaptive signal sampling method with unknown
sparsity in Section III. The signal recovery algorithm is presented in Section IV. Section V presents the
numerical results, and Section VI concludes the paper.
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2. Data Gathering Based on Compressive Sensing

We consider a monitoring WSN consisting of N sensor nodes and a sink node, where the set of
sensor nodes is denoted as N = {1, ..., N}, and the only sink node is denoted as S. We denote the
monitoring period as P. Sensor nodes are distributed in the target area to sense the physical conditions
and report the sensory reading to the sink node in each period (p ∈ P).

It is assumed that the sensed data for sensor node i (i ∈ N ) in time period p is xi,p, and the
signal of all the sensor nodes in time period p can be represented by an N-dimensional vector,
xp = (x1,p, · · · , xN,p)

T . It is said that xp is a k-sparse signal in domain Ψp if xp can be represented by a
k-sparse vector, dp, in domain Ψp, and is given by

xp =
N

∑
i=1

di,pψi,p = Ψpdp (1)

where Ψp = [ψ1,p; · · · ; ψN,p] (ψi,p ∈ RN) is the orthonormal basis, and dp represents the transform
coefficients with only k non-zero values.

The compressive sensing theory states that an N-dimensional signal with k-sparsity can be
represented by M (M < N) linearly projected measurements. Let Φ (M× N) be the measurement
matrix, xp can be given as

yp = Φxp = ΦΨpdp. (2)

According to Ref. [29], the exact recovery of xp can be achieved through solving the following
combinatorial optimization problem:

minx∈RN ||Xp||l0 s.t. yp = Φxp. (3)

This is an NP-hard problem, and it is hard to obtain the optimal solution. However, it is equivalent
to the following l1 optimization problem if the incoherence property between Φ and Ψ or the restricted
isometry property (RIP) [30] of matrix ΦΨ satisfies

mind∈RN ||dp||l1 s.t. yp = ΦΨdp, xp = Ψpdp. (4)

The above 1-minimization problem is more tractable and can be solved with linear programming
(LP) techniques [31]. We can further obtain the recovered signal, x̂p, with the known orthonormal
basis, Ψp.

With the above discussion, it is clear that applying CS to WSNs relies greatly on two important
issues: First, how to choose or find an efficient orthonormal basis to represent the original signal.
Generally, sensor readings are spatially smooth and sparse in the frequency domain; thus, we can use
the wavelet transform or the discrete cosine transform can be applied to add sparsity to the original
signal [14]. However, for signals with abnormal reading or transmission errors, it is hard to add sparsity
in the frequency domain. To cope with this, sparse representation based on overcomplete dictionaries
has been proposed [32]. With an overcomplete dictionary that contains prototype signal-atoms,
signals are described by sparse linear combinations of these atoms. Various dictionary learning
methods have been proposed in the literature. For example, the original (synthesis) K-SVD is one
such method which allows the construction of an overcomplete dictionary that is suitable for sparse
synthesis by learning the dictionary from the data itself [32]. After find a sparsity method, another
problem in designing compressive sensing is how to design a measurement matrix (Φ) such that a
good RIP is attained. It has been shown that a random matrix with Gaussian variables complying
to N(1, 1

M ) has a good RIP [33]. Algorithm 1 illustrates the process of compressed sampling with
sampling rate M in detail. In this algorithm, each time a sensor (i) in period p has a value xi,p to
transmit to the sink node, it first calculates a new value (ym

i,p) by multiplying value xi,p with a Gaussian
variable, φm

i,p (1 ≤ m ≤ M). Then, this new value (ym
i,p = φm

i,pxi,p) is aggregated and transmitted along
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the path to the parent node (j). In this way, the transmitted data of sensor node j is the summation
of ym

j,p and the value from all its children (∑i∈cj
ym

i,p), where cj is the set of children of sensor node
i. Finally, the sink node receives the value as ∑n φm

i,pxi,p. This process is repeated until M linearly
projected measurements are obtained, as shown in Figure 1. Similarly to Refs. [14,17,34], we assume
the measurement coefficient φm

i,p is generated using a pseudorandom number generator seeded with
the identifier of node i, which means that the measurement matrix can be easily constructed locally at
the node itself.

φ21d1 φ21d1+φ22d1

φM1d1

φ11d1

S1 S2 S3 SN-1 SinkSN

φM1d1+φM2d2
……

φ11d1+φ12d1

…
 

N

j jMjd1


 

N

j jjd1 2
…

 

N

j jjd1 1

Figure 1. Data gathering based on compressive sensing.

Algorithm 1: Compressive sampling with sampling rate M
m = 1
while m ≤ M do

Each sensor node (i) calculates its value, ym
i,p = φm

i,pxi,p

Sensor node i transmits ym
i,p to its parent (j) in the routing tree

The parent node (j) receives all its children’s value and calculates its own transmitted value
as ym

j,p + ∑i∈cj
ym

i,p and then forwards this to its upstream node.
The sink node obtains the sampling data, ym

p−1 as ym
p = ∑i∈N ym

i,p
m = m + 1

end

According to the CS theory in Ref. [33], when the number of measurements (M) satisfies M ∝ ck
with a constant (c), the original signal with k-sparsity can be recovered with high probability. Due to the
fact that the sparsity of a signal usually satisfies k << N, it is clear that the amount of data transmission
in CS-based data gathering is much smaller than that in these traditional methods; thus, reducing the
communication costs and achieving energy efficiency during data gathering.

3. Adaptive Sampling for Signals with Dynamic Sparsity

From the description of the CS based data gathering, it can be known that for a signal with
k-sparsity, the optimal sampling rate should be at least ck to guarantee the recovery accuracy and to
save communication energy. However, for a signal with unknown sparsity, it is very challenging to
select the optimal sampling rate to match the sparsity. In this section, we therefore propose an adaptive
sampling mechanism for signals with variable sparsity. In our approach, we assume that the sparsity
of the signal in period p, denoted as kp, remains fixed during the entire period, as shown in Figure 2.
However, at the starting time of the next period, its sparsity is re-examined, and the new sampling rate
is determined corresponding to its new sparsity.

t0 t1 t2 t3

Period 0

ˆ= ,  =M N x x ˆ= ( ), =K sparse x M K

……

ˆ= ( ), =K sparse x M K

Period 1 Period 2

Figure 2. Periodical monitoring with data re-sampling at the start of each period.
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It should be noted that at the starting time of period p + 1, it is hard to decide whether the
previous sampling (αp) still matches the sparsity of the signal at period p + 1. A straightforward
solution is to conduct raw data gathering with all active sensor nodes. This approach, however, results
in the decrease of the network’s lifetime and is inefficient for networks with larger numbers of sensor
nodes. Therefore, in order to determine the minimum sampling rate required to recover a signal with
unknown sparsity, a compressive sampling method based on sequential observations is proposed.

x̂M is denoted as the recovered signal with sampling rate M. When noiseless measurements are
taken using the random Gaussian ensemble, we have the following lemma [35].

Lemma 1. For a Gaussian measurement ensemble, if x̂M+α = x̂M, then we can conclude that x̂M = x̂ with a
probability of 1.

According to Lemma 1, the recovered signals with M samples and M + α samples are first
compared. If the samples match, we declare that these signals are correctly recovered. In a practical
setting, most of the coefficients after orthogonal transformations are relatively small, rather than being
exactly zero, which means only approximate sparseness is obtained. Thus, the recovery error between
the original signal and the recovery with M sequential samples is given by [35]

||x̂− x̂M||2 <
||x̂M − x̂M+α||2

sin θ
(5)

where θ is the angle between vectors x̂ and x̂M, and has the following approximation

E(
1

sin θ
) ≥ ||x̂M − x̂M+α||2

√
N −M

α
. (6)

The recovery error can be further approximated as

||x̂− x̂M||2 ≈ ||x̂M − x̂M+α||2
√

N −M
α

. (7)

In our paper, the recovery error between x̂M and x̂M+α is applied to determine the variation of
the sparsity, and an adaptive sampling approach is proposed for the periodical monitoring of sensor
networks.

In Algorithm 2, the process of the adaptive sampling is illustrated in detail. In this algorithm,
Mp is denoted as the sampling rate at period p. Initially, raw data gathering is applied, to obtain
accurate sparsity of the entire signal. After that, at the starting time of period p, the sampled data
obtained at period p1, denoted as yMp

p−1, is recovered as x̂M. Meanwhile, a data re-sampling operation
is executed to get re-sampled data (yff

p ) with a fixed number of sampling points as α. After re-sampling,

yff
p and yMp

p−1 are further combined as yM+ff and recovered as yM+ff at the sink node. Therefore,
the performances of yp+ff and yff are compared to decide whether the gap between them is larger
than the predefined threshold (Tth). If it is detected that the recovery gap is smaller than Tth, it is
concluded that the sparsity is the same as that in period p1, and the sampling rate in period p is set as
Mp = Mp−1. If it is detected that the recovery gap is larger than Tth, the novel sparsity is calculated.
Due to fact that re-sampling with a fixed sampling rate (α) may be unable to recover the original signal,
extra sampling with sampling rate αs is executed, where αs = β||x̂M − x̂M+α||2 − α, and β is a scale
coefficient related to the recovery gap. From the expression of αs, it is known that the larger the gap
is, the more re-sampling iterations needed to obtain its new sparsity level. After that, the sampling
rate for period p is determined and broadcast to all the sensor nodes. Similar to Refs. [14,17], it is
assumed that the signal recovery and sparsity estimation are conducted at the sink node, and only
the determined sparsity is sent back to each sensor node, thus reducing the energy consumption of
each sensor node. It should be noted that our algorithm adopts the same data gathering procedure
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(shown in Algorithm 1) as that of traditional compressive based methods. The only difference lies in
the degree to which the sampling rate corresponds with the signal variation, which means that the
data transmission delay is almost the same. Compared with raw data gathering, the time consumed
in compressive data transmission is much longer, which is mainly because compressive based data
gathering needs to occur on the same date M times. However, it should be noted that compressive
based data gathering obtains balanced energy consumption among all sensor nodes, and has a much
longer network lifetime than raw data gathering. For clarity, Figure 3 illustrates the detailed process of
how to decide the sparsity at period p.

Algorithm 2: Adaptive compressive sampling
Set period p = 1
Use the raw data gathering to obtain x
Sparse x to obtain its sparsity (kp)
Set the sampling rate of Mp to kp log(N)

Sample the compressive data using Algorithm 1 with sampling rate Mp

while mini∈N Ei ≥ Emin do
p=p+1
The sink node obtains the sampling data yMp

p−1 and recovers it as x̂M

Carry out compressive data sampling using Algorithm 1 with the sampling rate α

The sink node obtains the sampling data yff
p

The sink node combines yff
p and yM

p−1 as yM+ff

The sink node recovers x̂M+α with yM+ff

if ||x̂M − x̂M+α||2
√

N−M
α ≤ Tth then

Mp = Mp−1

else
Set the amount of extra sampling as αs = β||x̂M − x̂M+α||2 − α

Carry out compressive data sampling using Algorithm 1 with the sampling rate αs

The sink node obtains the extra sampling data yffs
p

The sink node combines yM+ff and yffs
p as yM+ff+ffs

The sink node recovers x̂M+α+αs with yM+ff+ffs

Sparse yM+ff+ffs to obtain its sparsity (kp)
Set the sampling rate of Mp as kp log(N)

Carry out compressive data sampling using Algorithm 1 with the sampling rate Mp

end
Update the residual energy (Ei) of sensor node i, ∀i ∈ N

end
Return the total number of periods (p) of the entire network.

Combine 
yp and yα

Resampling data 
yα  

Data recovery with sampling data  yp and obtain Xp 

Data recovery with yp and yα to 
obtain Xp+α 

|Xp-Xp+α |<Tth
Setting sampling rate 

Mp+1 as Mp

Setting sampling rate 
Mp+1 as kp+1log(N)

Detecting 
sparsity kp+1

Resampling as 
needed

Figure 3. The process of adaptive sampling.

4. Signal Recovery with Unknown Sparsity

In sequential-based data gathering, signal recovery requires the use of non-linear algorithms to
find the sparsest signal from the measurements. One challenging question in CS research is the design
of a fast reconstruction algorithm with reliable accuracy and (nearly) optimal theoretical performance.
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The existing signal recovery algorithms always require the signal sparsity first. For signals with
unknown sparsity, the sparsity adaptive matching pursuit (SAMP) has already been widely used to
recover many blind signals with unknown sparsity.

In contrast to other state-of-the-art greedy algorithms, SAMP takes advantage of both the
“bottom-up” approach and the “top-down” approach, where the “bottom-up” method is applied
to estimate the sparsity of the signal, step-by-step, and the “top-down” method is applied to identify
the true support of the signal by backtracking strategy. Figure 4 shows the conceptual diagram of
SAMP, and it can be observed that the sizes of the candidate set (|Ck|) and finalist (|Fk|) are adaptive.
However, the recovery accuracy and speed of SAMP highly relies on the step size (s). In order to avoid
overestimation, the safest choice is to set s as 1 for an unknown k, but many more iterations are needed
for convergence. How to provide a recovery accuracy with fast convergence speed has become a major
challenge.

Figure 4. A conceptual diagram of SAMP.

In this paper, we propose an adaptive step decision that corresponds with the number of iterations.
The step size at iteration t is denoted as st, which is given by

st = st + ωt∆t (8)

where ωt is the weight factor employed to regulate the trade-off between the speed and accuracy,
and ∆t is the fixed step difference between any two adjacent iterations.

In our paper, two step variation approaches are proposed: the linear decrement weight factor and
the non-linear decrement weight factor. For the linear weight factor decrement approach, the weight
factor is given by

ωt = ωmax −
ωmax −ωmin

Tmax
t (9)

where ωmax and ωmin are the maximum and minimum weight factors, and Tmax is the maximum
number of iterations. For the non-linear weight factor decrement approach, the weight factor is
given by

ωt = ωmax −
( t− 1

Tmax − 1
)λ
(ωmax −ωmin) (10)

where the parameter λ is applied to control the convergence speed, and ωt decreases with an increase
in λ. In constrast to the linear weight factor decrement, the decrease in the step size is much smaller
than that with the linear method, reducing the possibility of getting the local optimal solution.

Algorithm 3 presents the detailed pseudo code of the proposed recovery algorithm with an
adaptive step. Here, Φ∗ represents the transpose of matrix Φ, Φ† represents the Moore–Penrose inverse
of matrix Φ, s represents the step size of the finalist, and the function Max(F , s) returns s elements
corresponding to the largest absolute value of vector F . Additionally, for a set Λ = {1, 2, · · · , N},
ΦΛ is the sub-matrix of Φ with indices (i ∈ Λ). At the s-th iteration, St, Ct, Ft, and rt denote the
shortlist, the candidate list, the finalist, and the observation residual. In this paper, the maximum
iteration time (Tmax) is set as the stopping rule, and the recovering threshold (ε) is applied as the
halting condition.
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Algorithm 3: Adaptive compressive sampling
Input: The sampling matrix y, the measurement matrix Φ, and parameters concerned with
steps: ∆t, s0, ω1, ωmax, ωmin, λ, Tmax

Initialization:
x̂ = 0 {Trivial initialization}
r0 = y {Initial residue}
F0 = ∅ {Empty finalist}
s = s0 {Size of the finalist in the first stage}
t = 1 {Iteration index}
j = 1 {Stage index}
while t < Tmax do

St = Max(|Φ∗rt−1|, st) {Preliminary test}
Ct = Ft−1 ∪ St {Make candidate list}
F = Max(|Φ†

Ct
y|, st) {Final test}

r = y−ΦFΦ†
Fy {Compute residue}

if r− rt1 ≤ ε then
j ++
st = st + ωt∆t
update ωt according to (9) or (10)

else
Ft = F
rt = r
t ++

end
end

5. Numerical Results

In this section, we provide numerical results to illustrate the performance of our proposed
algorithm. We consider a WSN with a fixed sink node and no more than 400 sensor nodes randomly
deployed in a square area of size 500 × 500. It is assumed that the sink node is located in the center of
the area. The initial energy of each sensor node was set to 10,800 J. The corresponding simulations
were implemented in Matlab R2009a using a laptop with an Intel (i5-4300) CPU. All the results were
obtained by averaging over 100 simulations.

5.1. Sparsity Analysis

First, we took the raw signals from the real ocean temperature monitored by the National Oceanic
and Atmospheric Administration (NOAA) for the sparsity analysis. For instance, Figure 5a shows
the sea temperature monitoring data collected at half past 6, February 23, 2012 in the location of 5 N,
95 W. This data contains 1040 temperature measurements at different depths. From Figure 5a, it can
be observed that the signal in the time domain is not sparse. We therefore used the Discrete Wavelet
Transform (DWT) to find its sparsity. As shown in Figure 5b, it can be observed that the raw data
has good sparsity in the DWT domain—it only has 76 non-zero values. We thus conclude that it
is a 76-sparse signal in DWT domain. We further took a raw RSSI measurement of an access point
(AP) from a smartphone detected in a real environment [36]. Due to the channel-path fading and
interference from nearby equipment, it was hard to find an orthonormal basis from the DWT domain,
as shown in Figure 6a. We thus applied the K-SVD algorithm based on an overcomplete dictionary to
sparse it. Figure 6b shows that the raw data has good sparsity with the K-SVD algorithm. It has 13
non-zero zones, which also showcase that the RSSI value is concentrated on 13 parts.
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Figure 5. (a) Raw signal from monitoring the sea temperature, (b) sparse analysis of the raw signal in
the Discrete Wavelet Transform (DWT) domain.
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Figure 6. (a) Raw RSSI signal of a smartphone from a real environment, (b) sparse analysis of the raw
signal based on the K-SVD algorithm.

Considering that signal sampling rate greatly relies on signal sparsity, and the number of sampling
times M should satisfy M ∝ ck, we compared the signal recovery performance with different c values.
The measurement matrix Φ was constructed by creating an M × N matrix with i.i.d. draws of a
Gaussian distribution (N(0, 1)). The recovered signals with different sampling rates are shown in
Figures 7–9, where Figure 7 illustrates the signal recovery with a sparsity of k = 76 in the DWT domain,
Figure 8 illustrates the signal recovery with a sparsity of k = 122 in the DWT domain, and Figure 9
illustrates the signal recovery of the RSSI data with an unknown sparsity in the DWT domain, but it
can be sparsed with an overcomplete dictionary with a sparsity of k = 13. From these figures, it can be
observed that as the signal recovery performance increases, the sampling rate c increases . This can be
explained by the fact that a larger sampling rate c results in a larger measurement matrix (Φ), and thus,
more energy is consumed in data gathering. Besides that, it was observed that for signals sparsed at the
frequency domain, the recovered signal is almost the same as the raw data when the sampling rate is
larger than 2k. However, for signals with an unknown sparsity at the frequency domain, the sampling
rate should be set larger than 4k. Therefore, in this paper, when a signal could be sparsed at the
frequency domain, and its sparsity was k, we set the sampling rate as 2k, whereas for signals that could
not be sparsed at the frequency domain and for which the sparsity (k) was detected at the overcomplete
dictionary, we set the sampling rate as 4k. With this scheme, for the signals shown in Figures 7 and 8,
the sampling rates were set as 2× 76 and 2× 122, which means the size of the measurement matrices
(Φ) were 152× 1024 and 244× 1024. For the signals shown in Figure 9, the sampling rate was set as
4× 13, and the size of its corresponding measurement matrix (Φ) was 52× 132, respectively.
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Figure 7. Signal recovery with a sparsity of 76 with different sampling rates.
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Figure 8. Signal recovery with a sparsity of 122 with different sampling rates.

0 20 40 60 80 100 120 140
-100

-50

0

R
S

S
I(

d
B

m
)

raw data

0 20 40 60 80 100 120 140
-200

0

200

R
S

S
I(

d
B

m
)

c=1

0 20 40 60 80 100 120 140
-100

-50

0

R
S

S
I(

d
B

m
)

c=2

0 20 40 60 80 100 120 140

No. of locations

-100

-50

0

R
S

S
I(

d
B

m
)

c=4

Figure 9. Signal recovery of RSSI data with different sampling rates.
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5.2. Adaptive Sampling

In this simulation, we tested the performance of our algorithm for signals with dynamic sparsities.
We considered a 200-node wireless sensor network, and applied Dijkstra as the routing algorithm.
We compared our algorithm with the fixed sampling algorithm proposed in Ref. [13]. Figure 10 plots
the sparsity estimation in the first 30 monitoring periods. Figure 11 plots the recovery performance in
the first 30 monitoring periods. From Figure 10, it can be observed that during the time between the
10th and 15th periods, the sparsity of the signal changed. However, the fixed sampling method still
uses a sampling rate settled at the initial state and cannot guarantee the required recovery performance.
Compared with the fixed sampling algorithm, our algorithm always captured the variation in the
sparsity; the estimated sparsity was almost the same as the real sparsity. Our algorithm obtained
a much lower recovery error rate despite the changes in the environment, which shows that it is
important to apply an adaptive sampling rate for the periodical monitoring of sensor networks.

Figure 10. Sparsity estimation with different period numbers.

Figure 11. Signal recovery comparison within different period numbers.

Considering that α extra data sampling is needed to estimate the sparsity in each period, we further
tested the energy consumption and network lifetime performances and compared them with other
algorithms. Here, the intelligent sampling represents the algorithm proposed in Ref. [27]. Figure 12
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plots the energy consumption of each node in the 200-node sensor network in one working period. It
can be observed that our algorithm obtained more balanced energy consumption compared with raw
data gathering algorithm. Figure 13 plots the network lifetime comparison versus the number of sensor
nodes. It can be observed that our algorithm achieved nearly the same network lifetime as that of fixed
sampling or intelligent sampling. This can be explained by the fact that although adaptive sensing
requires extra data gathering at the start time of each monitoring period, its sampling rate may be
lower than the other two algorithms during the following sampling period. It can also be observed that
our algorithm obtained a much longer network lifetime than that of raw data gathering, which shows
that compressive sensing is an efficient data gathering method in wireless sensor networks.

Figure 12. Energy consumption in one working period.
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Figure 13. Network lifetime comparison with different numbers of sensors.

5.3. Signal Recovery

This simulation presents the signal recovery performance with unknown sparsities in a 200-node
sensor network. Our algorithm was compared with the regularized orthogonal matching pursuit
(ROMP), SAMP, and regularized adaptive matching pursuit (RAMP) [37]. We evaluated the
reconstruction performance by using the averaged relative error (Re) and signal-to-noise ratio (SNR),
where the relative error was defined as the average of Re = ||x||2

||x̂−x||2 over 100 trials, and SNR was defined
as SNR = 10 log10 Re. Figures 14 and 15 plot the signal recovery performance with different algorithms.
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It was observed that the signal recovery performance can be substantially improved with an increase
in sampling rate. It was also observed that our algorithm obtained a similar performance with linear
or non-linear factors. Table 1 further shows a comparison of the convergence times. From this table,
it can be observed that our algorithm took no more than 0.5 s to converge for the optimal solutions,
while the traditional SAMP with step = 1 (denoted as SAMP-1 in Table 1) needed nearly 0.5 s and the
SAMP with step = 3 (denoted as SAMP-3 in Table 1) needed about 0.1 s. This shows that our algorithm
not only improves the recovery performance, but also converges much faster than the traditional
SAMP method.

Table 1. Convergence time comparison.

Algorithm ROMP SAMP-1 SAMP-3 RAMP LA-SAMP nLA-SAMP

Time(s) 0.344 1.622 0.542 0.453 0.437 0.438
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Figure 14. Comparison of the relative error with different sampling rates.
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Figure 15. Comparison of the signal-to-noise ratio (SNR) with different sampling rates.

We further tested the recovery performance with different sensor deployment densities and
compared it with different sampling algorithms. Figure 16 plots the SNR versus the number of sensor
nodes. Combined with the results shown in Figures 13 and 16, it can be concluded that although our
algorithm obtained a lower network lifetime compared with other compressive sampling methods,
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it obtained the best recovery performance. In addition, the SNR value was almost the same as that
of raw data gathering. However, our algorithm was much more energy efficient than that of raw
data gathering.
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Figure 16. Comparison of SNR with different numbers of sensors.

6. Conclusions

In this paper, we presented an adaptive sampling data gathering scheme for the periodical
monitoring of wireless sensor networks. We developed a sequential observation based scheme to
observe the variation in sparsity with fewer re-sampling measurements. We designed an adaptive
construction step determination to improve the performance of SAMP in which both linear and
non-linear step variation were designed to guarantee fast convergence and accuracy. Our simulation
results demonstrate that our algorithm can efficiently capture the sparsity variation, and obtain greater
recovery performance compared with existing compressive sensing methods with fixed sampling or
intelligent sampling. It also obtains a much longer network lifetime than the traditional data gathering
algorithm.
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