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Abstract: As a dedicated communication protocol for Internet-of-Things, narrowband internet of
things (NB-IoT) needs to establish the communication link rapidly and reduce retransmissions as
much as possible to achieve low power consumption and stable performance. To achieve these targets,
the low-power scheme of the initial cell search and frequency tracking is investigated in this paper.
The cell search process can be subdivided into narrowband primary synchronization signal (NPSS)
detection and narrowband secondary synchronization signal (NSSS) detection. We present an NPSS
detection method whose timing metric is composed of symbol-wise autocorrelation and a dedicated
normalization factor. After the detection of NPSS, the symbol timing and fractional frequency offset
estimation is implemented in a resource-efficient way. NSSS detection is conducted in the frequency
domain with a calculation-reduced algorithm based on the features of NSSS sequences. To compensate
the accumulated frequency offset during uplink transmission, a pilot-aided rapid frequency tracking
algorithm is proposed. The simulation results of the proposed cell search scheme are outstanding
in both normal coverage and extended coverage NB-IoT scenarios, and the accumulated frequency
offset can be estimated with high efficiency.

Keywords: Internet-of-Things; NB-IoT; cell search; NPSS; NSSS; frequency tracking

1. Introduction

Nowadays, the interconnection of all things has become a major trend. Internet of things (IoT)
is playing a key role in the fields of intelligent city, industry, agriculture and so on. According to the
investigation of the International Energy Agency, there will be more than 14 billion IoT devices by 2020.
With the aims of being green and reducing costs, these devices need to be connected to the Internet for
remote control. Therefore, IoT technologies that fulfil these features are called Low Power Wide Area
Network (LPWAN). There are two main categories of LPWAN technologies: technologies that operate
in the unauthorized frequency spectrum, such as Lora, Sigfox, etc.; the existing protocols working
with the cellular network, and Global System for Mobile Communication (GSM) and enhancements
for Machine Type Communications (eMTC). The technologies working in the authorized frequency
spectrum support every device to connect to the Internet independently, which makes the IoT networks
more flexible. However, existing cellular network protocols can hardly support such a large number of
IoT devices in the future.

To meet this urgent demand, the 5th generation wireless communication New Radio
(5G NR) outlines the massive Machine Type Communication (mMTC) scenario [1]. Nevertheless,
this machine-to-machine communication specification is scheduled to be released in the 3GPP
Release-16 by the 3rd Generation Partnership Project (3GPP). For this reason, a pioneer air-interface,
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namely narrowband internet-of-things (NB-IoT), is supplemented to the Long-Term Evolution (LTE)
which is complemented in 3GPP Release-14 [2]. As a specified machine type communication technology,
NB-IoT not only boasts low energy consumption [3], but can also access the cellular network.
This means that NB-IoT can be directly deployed in GSM, Universal Mobile Telecommunications
System (UMTS) and LTE. NB-IoT has four primary characteristics: (1) In the same frequency band,
NB-IoT gains 20 dB minimum coupling loss (MCL) compared with legacy LTE, so the coverage is
expanded by 100 times theoretically. (2) The mass connection capacity allows one NB-IoT sector to
support 100 thousand connections at most. (3) Low power consumption design guarantees that the
standby time of NB-IoT devices can be up to 10 years. (4) By reducing cost, the price of a single NB-IoT
module is expected to be no more than 5 US dollars.

The IoT scenarios deploying NB-IoT devices can gain special advantages. Hospitals, banks,
and other sites that need high trustworthiness should consider privacy and security at first before
deploying IoT services. NB-IoT has an innate feature to counteract this challenge: its spectrum is
licensed. Moreover, the authors of [4] also consider a specific scenario and model the reliability of
NB-IoT communication, and they give a trust-based solution with NB-IoT. Another area in need of IoT
is the automobile field, including connection among cars and self-driving. Vitaly P. et al. [5] present
an opportunistic crowdsensing scenario where traffic from a large number of connected sensors is
transmitted over NB-IoT, and the results show that NB-IoT technology has the ability of sharing
dynamic radio resources between vehicular base stations. In addition to the above, the positioning
function supplemented into NB-IoT in Release-14 is also proved capable of offering reliable positioning
function by Hu S. et al. in [6]; they also improve the positioning performance in NB-IoT with the
observed-time-difference-of-arrival (OTDOA) algorithm.

Although NB-IoT has many advantages, considering that billions of NB-IoT devices will be
deployed to every corner of the world, how to construct green IoT wireless communication networks
with NB-IoT is a challenging issue. Since green IoT wireless communication networks are required
to be built as economically and energy-efficient as possible, the massive NB-IoT terminals which
make up the core parts of green IoT networks still need to be further optimized with low power
consumption techniques. One significant majorization point is to optimize the process of the initial
cell search and frequency tracking. More specifically, novel detection and synchronization methods
should be presented to reduce the initial cell search and frequency tracking time in NB-IoT systems,
and this operation shortens the working time of each transmission, which will extend the battery life
of NB-IoT terminals.

In this paper, we investigate the efficient cell search and frequency tracking schemes to reduce
the communication link setup time and retransmissions. Everything is double-edged: if we want to
shorten the operation time, a certain amount of hardware resources and computation complexity will
be sacrificed. Nevertheless, the increased cost introduced by the digital circuit resources is almost
negligible, and the added power consumption caused by computation complexity is incomparable
when compared with the RF transceiver. That is because the RF transceiver consumes most of
the power of the whole transceiver. So, it is reasonable to exchange operation efficiency with
computation complexity. In this way, low-power IoT networks are obtained. For NB-IoT cell search,
robust performance and rapid estimation are two major objectives. The NB-IoT cell search process
can be divided into narrowband primary synchronization signal (NPSS) detection and narrowband
secondary synchronization signal (NSSS) detection. During the above procedures, coarse time of
arrival (ToA) detection, timing synchronization and carrier frequency offset (CFO) recovery are also
essential to ensure reliable cell ID detection. The MCL of NB-IoT can be 164 dB, which demands that
NB-IoT terminals can build communication links with the base station at a very low signal-to-noise
ratio (SNR). On the other hand, under economical considerations, a low precision oscillator is adopted
by NB-IoT devices. For this reason, frequency tracking must be conducted during the transmission.

To describe the whole process and the problems encountered clearly, an overview of each
procedure is presented. Firstly, when the downlink NB-IoT frames arrive, the NPSS detector will
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perform coarse ToA detection with the assistance of NPSS [7], and the detector is conventionally
constructed with a timing metric function which is the ratio of sliding autocorrelation and a
normalization factor. However, the NB-IoT needs to adapt a low SNR environment and large frequency
offset, but the performance of the traditional timing metric function is seriously affected by noise
and frequency offset. Secondly, after the coarse timing synchronization is completed, fine timing
synchronization and frequency offset estimation will also be done in the time domain. Then, the NB-IoT
cell ID is detected in the frequency domain. In legacy LTE, the cell ID is jointly determined by primary
synchronization signal (PSS) and secondary synchronization signal (SSS) [2]. However, the cell ID
of NB-IoT is decided by NSSS entirely, which has more diverse sequences compared with LTE [8].
Finally, when a stable communication link has been built up, frequency tracking is essential for NB-IoT
systems because of the residual frequency offset after CFO recovery and the continuous frequency
drift caused by low-cost oscillators.

In the proposed cell search scheme, the fractional frequency offset (FFO) pre-estimator and
noise elimination circuit are applied to promote the performance of NPSS detection. The IFO
is compensated with a maximum likelihood (ML) cross correlation method in the time domain.
Additionally, considering the timing uncertainty introduced by the multi-path fading channel,
fine timing offset is estimated jointly by the aforementioned ML solution. Then, the fast Fourier
transform (FFT) transforms the time domain signals into frequency domain signals. NSSS detection
is conducted under the premise that symbol timing synchronization and CFO recovery have been
completed. Since the extended coverage of NB-IoT demands that the systems can tolerate very low
SNR, e.g., −15 dB, a low computation complexity method is proposed to lessen the burden of NB-IoT
terminals. Considering the diversity of NSSS sequences, divide-and-conquer is applied to accelerate
the traversal search. When performing frequency tracking, NPSS, NSSS and NPBCH are jointly used
to estimate the residual frequency offset. Related indicators and simulation results are presented to
evaluate the performance of target designs.

The rest of this paper is organized as follows. Related work is discussed in Section 2. Section 3
illustrates the frame structure of NB-IoT. Problems of cell search and frequency tracking are formulated
in Section 4. Section 5 presents the NB-IoT cell search method with the assistance of synchronization
signals. The efficient frequency tracking procedure is suggested in Section 6 during the NB-IoT uplink
transmission gap (UTG). We discuss the simulation results in Section 7. Finally, some conclusions and
future work are given in Section 8.

2. Related Work

Both cell search and frequency tracking are important issues in NB-IoT and legacy LTE, and many
articles on these points have been published by scholars. As the cell search procedure can be divided
into NPSS detection and NSSS detection, we will discuss the existing solutions in three parts: (1) for
NPSS detection, (2) for NSSS detection, and (3) for frequency tracking separately.

(1) Although NPSS detection is a problem of deterministic signal detection, the signal location
is uncertain and it is actually a synchronization problem. Traditionally, NPSS detection is
accomplished with symbol-wise sliding autocorrelation by using the duplicate property of
NPSS [7], and this method tries to use quite several NB-IoT frames to achieve acceptable
performance. However, to reduce the hardware consumption and computation complexity,
this method operates at very low frequency with the decimated samples. As a result, lots of
radio frames are occupied by the NPSS detector which increases the communication link setup
time of the NB-IoT transceiver system and results in excessive power consumption. To shorten
the detection time, Abdelmohsen A. and Walaa H. [8] adopt a full rate autocorrelation method.
As they make the autocorrelation window longer than one subframe, the detected location of
NPSS will become indistinct. In [9], Kroll H. et al. present an ML NPSS detector which can
jointly estimate the frequency offset and symbol timing. The authors declare that this solution can
estimate the whole range frequency and timing offset simultaneously, and it is true that it can
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deal with small range frequency offset. However, the estimation accuracy is severely restricted by
the FFT points and working frequency. If high-precision frequency offset tracking is demanded,
more than 64 k points FFT is demanded, which is unrealistic in NB-IoT terminals. Another aspect
is that the existence of an integer frequency offset is not considered in this solution. Additionally,
frame synchronization based on duplicated synchronization signals becomes the research object
of many scholars. Timothy M. Schmidl and Donald C. Cox [10] proposed taking advantage of
the preamble to construct a timing metric (TM) which consists of an autocorrelation part and a
normalization factor (NF). To ensure that the TM is robust to CFO, a modified TM is proposed
in [11]. To deal with different CFO and SNR scenes [12], summarizes two TMs based on two
differential NFs and gives the suitable CFO and SNR ranges for each TM. The results show
that these methods reduce the ability to deal with low SNR conditions. The authors of [13–15]
make use of high-order statistics to accelerate the detection and synchronization procedures.
Nevertheless, even though these methods bring some performance improvement, the enormous
amount of calculation is difficult to achieve with the hardware of IoT terminals.

(2) When NPSS detection is conducted, and timing synchronization and CFO recovery have been
completed, NSSS detection will be performed in the frequency domain. Different from legacy LTE,
the cell ID of NB-IoT is decided by NSSS entirely which has more diverse sequences compared
with LTE [8]. However, as both SSS detection and NSSS detection are determinate signal detection
problems, many SSS detection schemes can be used for reference. Furthermore, these solutions
can be mainly divided into two classes: coherent detection and non-coherent detection [16].
Considering the coherent SSS detection, the key operation is resorting to the known PSS to estimate
the channel frequency responses (CFR) of each subcarrier in the frequency domain, and using the
CFRs to improve the performance of correct SSS cross correlation results [17,18] . Unfortunately,
despite NB-IoT operating in slow fading wireless environments [19,20], which means that even
NPSS and NSSS are separated by no less than 4 subframes, the channels can still be regarded as
constant. However, the NB-IoT terminals will not assume that NPSS and NSSS are transmitted on
the same antenna port and the CFRs of NPSS may be different from NSSS [2]. The non-coherent
method can be subdivided into differential correlation-based and partial correlation-based
algorithms. Multifarious differential solutions have been proposed to accomplish the detection,
for example, Zheng Du and Jinkang Zhu [21] adopt this method to reduce the effect of the
dispersive channel. Nevertheless, the differential correlation would deteriorate SNR with the
autocorrelation of received signals. The idea of partial correlation can be found in [22,23].
However, since NPSS has no repeatability among signals, this method is invalid in NB-IoT
application. In addition to the above-mentioned methods, the authors of [24] search the correct
SSS sequence by minimizing the Euclidian distance which is the basic application of ML detection
and the performance will be reduced in the context of low SNR.

(3) A communication link would be set up as soon as the initial cell search has been completed.
However, because of the residual frequency offset after CFO recovery and the continuous
frequency drift caused by the oscillator, frequency offset tracking is essential for NB-IoT systems.
Besides, one uplink transmission feature of NB-IoT is that a 40 ms downlink gap must be inserted
between two 256 ms uplink transmission time units [2]. This is because the frequency drift
value may exceed the tolerance of the synchronization circuits in base stations [25]. Typically,
LTE frequency tracking algorithms mainly employ the references signal (RS) as auxiliary data.
In some OFDM systems, due to multiple crystals being used, residual carrier frequency offset and
sampling clock frequency offset need to be estimated separately [26]. This is impractical for NB-IoT
terminals with the consideration of cost constraints. The authors of [27] adopt the autocorrelation
of two identical symbols in the same subcarrier to calculate phase difference. The fatal drawback
is that the number of repetitive preamble pairs may be inadequate to achieve adequate frequency
tracking accuracy at low SNRs. By using the cross correlation process, the solution derived in [28]
can make use of different pilots. Two extra multiplications are needed in the calculation of each
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correlation pair. Considering the frequency estimation precision demanded by the NB-IoT system,
the ML frequency estimation solution proposed in [9] is unsuitable for frequency tracking. That is
because when the tracking accuracy is 40 Hz, the number of FFT points should be no less than
eight times of 1024.

3. NB-IoT Frame Structure

The downlink transmission of NB-IoT is similar to legacy LTE with 15 KHz subcarrier bandwidth.
However, only one physical resource block (PRB) [2] is occupied by NB-IoT. Since 12 subcarriers form
one PRB, the downlink bandwidth of NB-IoT is 200 KHz, including 20 KHz for the guard band. In the
time domain, the length of one radio frame is 10 ms, and a radio frame consists of 10 subframes.
Then, a subframe is subdivided into two slots and each slot contains seven OFDM symbols. Besides,
only normal cyclic profix (CP) is supported by NB-IoT. There are three deployment modes for NB-IoT,
namely in-band, guard-band and standalone. In-band operation means that the NB-IoT band locates
within legacy LTE, and the time and frequency resources reserved for LTE will not transmit NB-IoT
signals. The guard-band mode indicates that the NB-IoT carrier is deployed in the guard band of the
LTE carrier. As for standalone operation, it is realized by replacing GSM carriers with NB-IoT carriers.
There are three physical channels and three physical signals defined in [2]. They are listed as follows:

• Narrowband physical downlink shared channel (NPDSCH).
• Narrowband physical broadcast channel (NPBCH).
• Narrowband physical downlink control channel (NPDCCH).
• Narrowband reference signal (NRS).
• Narrowband synchronization signal: NPSS and NSSS.
• Narrowband positioning reference signal (NPRS).

Figure 1 illustrates the distribution of the physical channels and signals in NB-IoT radio frames.
It is worth mentioning that NSSS only appears on the 9th subframe of even radio frames.

NPBCH NPDSCH/
NPDCCH

NPDSCH/
NPDCCH

NPDSCH/
NPDCCH

NPDSCH/
NPDCCH NPSS NPDSCH/

NPDCCH
NPDSCH/
NPDCCH

NPDSCH/
NPDCCH

Subframe

Slot

Bandwidth
200KHz

#0

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17

#6

#19

#1 #2 #3 #4 #5 #8 #9

#18

#7

Even frame number : NSSS
Odd frame number : NPDSCH/NPDCCH

Figure 1. Diagram of the distribution of physical channels and physical signals in one NB-IoT
radio frame.

3.1. NPSS Sequence

The signals of NPSS occupy 11 symbols in subframe 5 of every radio frame. To achieve excellent
correlation property, the Zadoff–Chu frequency domain is used to generate the NPSS sequence.
The sequence in each NPSS symbol is identical and the only difference is the code cover which gives
a steep rolloff timing metric to the NPSS detector. The complex exponential expression of the NPSS
sequence is shown as follows

a(k) = e−j π5k(k+1)
11 , k = 0, 1, 2 . . . 10. (1)

The code cover is a defined zero-one sequence, and Table 1 gives the exact values.
The NPSS subframe structure is illustrated in Figure 2. Each time domain symbol is obtained by

multiplexing the inverse fast Fourier transform (IFFT) of a(k) with code cover.
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Table 1. Code cover sequence.

c(0) c(1) c(2) c(3) c(4) c(5) c(6) c(7) c(8) c(9) c(10)

1 1 1 1 −1 −1 1 1 1 −1 1

a(0)

a(10)

a(0)

a(10)

         

Slot #10 Slot #11

Symbol number

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Code cover is 1 Code cover is -1

Subcarrier num
ber

0
1

2
3

4
5

6
7

8
9

10
11

Figure 2. Diagram of the mapping of NPSS resource elements in slots 10 and 11. The time region starts
from symbol 3 to 13, and the frequency region starts from subcarrier 1 to 11.

3.2. NSSS Sequence

The NSSS is constructed by multi-parameter frequency domain Zadoff–Chu sequences.
The parameters contain cell ID, radio frame number and their derived parameters. There are
2016 different NSSS sequences in all, which makes the computation complexity of NB-IoT cell ID
identification much higher than LTE. Equation (2) shows the formulation of NSSS,

b(n) = gq(m)e−j2πθ f ne−j πun′(n′+1)
131

n = 0, 1, . . . , 131.
(2)

Table 2 describes the derivation of the parameters in the above equation. r f represents the
frame number. Because NSSS can only be mapped on even frames, the frame number needs to fulfil
r f mod 2 = 0. Furthermore, NNcell

ID denotes the cell ID. As NB-IoT is a multi-cell communication
system, the total number of cell IDs can be as high as 504. Moreover, gq consists of four binary
sequences defined in [2].

Table 2. Derivation of the parameters in NSSS.

Parameters Formulation

n′ n mod 131

m n mod 128

u NNcell
ID mod 126 + 3

q
⌊

NNcell
ID

126

⌋
θ f

r f
8 mod 4

3.3. Narrowband Reference Signal

As defined in NB-IoT specification [2], NRS could be transmitted on one or two antenna ports.
The NRS sequence generation process is similar to that of LTE and the mapped NRS in the frequency
domain with different numbers of antenna is described in [7]. The distance between two NRS symbols
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on the same subcarrier is one slot. When two antenna ports are used, the resource elements of NRS in
another antenna port must be kept unused within the radio frames from the current antenna.

3.4. NPBCH

NPBCH is transmitted in the subframe 0 of every radio frame and the first three symbols are
unused. The data of NPBCH is identical in eight consecutive radio frames. In in-band mode operation,
the LTE cell-specific reference signal (CRS) can also be deployed in the NPBCH subframe. So, in addition
to NPBCH data, CRS, NRS and channel control signals can also be included in NPBCH subframes.

4. Signal Models

NB-IoT is designed to operate in half-duplex Frequency-Division Duplexing (FDD) mode with
normal CP. The frequency domain data S(m)

p,r f (k) carried by the kth subcarrier of NB-IoT is symmetrically
distributed on the 200 KHz bandwidth with a 10 KHz guard band in each side and the central frequency
point is unused to avoid any problems caused by direct current (DC). After conducting IFFT and
adding normal CP, the time domain NB-IoT radio frame samples s(m)

p,r f (n) are obtained. p ∈ [0, P] is the
subframe index within radio frame r f . m ∈ [0, M] represents the OFDM symbol index in one subframe,
and n ∈ [1, N + Ng] denotes the sample index in a OFDM symbol. Here, N is the IFFT size and Ng is
the length of normal CP. Besides, there are relationships of P = 9 and M = 13 in the NB-IoT system.

Then, the signals transmitted from the base station are propagated by the multi-path fading
channel of Extended Typical Urban (ETU) or Extended Pedestrian A (EPA), and the route mean square
delay spread (RMS-DS) and coherence bandwidth of ETU and EPA are 991 ns and 45 ns, and 1.01 MHz
and 22.2 MHz, respectively. The radio signals are received by the NB-IoT radio frequency receiver
which down converts the radio signals to the baseband. After that, the in-phase and quadrature vectors
of analog baseband signals are quantified by ADCs. Considering the additive white Gaussian noise
(AWGN), ETU or EPA multi-path channels and the CFO introduced by oscillators in the transmitter
and receiver, the samples of the received signals can be expressed as follows:

r(m)
p,r f (n) = ej2π

(n+m(N+Ng))(εF+ε I )
N

L−1

∑
l=0

h(l)s(m)
p,r f (l − n) + ω(n), (3)

where h(l) is the channel impulse response of the lth frequency selective fading channel, and L is the
taps of the fading channel. εF represents the FFO, and the IFO part is denoted by ε I . ω is the zero
mean AWGN introduced by the communication link with variance of σ2

ω . In the working scenarios of
NB-IoT, the maximum frequency offset range may achieve [−25.5 KHz, 25.5 KHz] [29]. The received
NPSS symbols are maintained identical by the following relationship:

c(0)r(3)5,r f
(n) = c(1)r(4)5,r f

(n) = · · · = c(M− 3)r(M)
5,r f

(n). (4)

Traditionally, the time domain symbol synchronization with identical preambles is accomplished
with an autocorrelation timing metric (TM) which consists of an autocorrelation part and a
normalization factor. The following equation indicates the basic implementation [10].

γ(τ) =
α(τ)

β(τ)
. (5)

with

α(τ) =

∣∣∣∣∣ N

∑
n=1

M−1

∑
m=3

c(m− 3)r(m)
p,r f (n)c(m− 2)r(m+1)∗

p,r f (n)

∣∣∣∣∣
2

. (6)

β(τ) =
N

∑
n=1

M

∑
m=3

∣∣∣∣r(m)
p,r f (n)

∣∣∣∣2. (7)
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where τ represents the start time of the detection window, and (·)∗ is complex conjugation. However,
when in the context of low SNR, the conventional normalization factor (NF) in Equation (7) will be
invalid. So, an effective NF is urgently needed to improve the performance of the NPSS detector. In the
process of cell ID identification, the detection of NSSS from numerous sequences runs counter to the
concept of low complexity design of NB-IoT terminals. Furthermore, for the reason that the coherent
algorithms for SSS detection are inapplicable for NSSS, a suitable correlation detection method is
urgently needed. Another significant feature of NB-IoT is that a 40 ms UTG should be inserted into the
uplink transmission once the frequency offset exceeds the predefined threshold [2], and the specific
implementation is shown in Figure 3.

msect0 t0 +256 t0 +296

NPRACH NPBCH NPRACH

40ms UTG

NB-IoT 
device

Cellular 
station

* NPRACH: Narrow physical random access channel. One of
uplink physical channels

Figure 3. Illustration of the UTG inserted during the uplink transmission of NPRACH.

During UTG, the system converts to downlink transmission to estimate and compensate the
residual frequency offset (RFO) [30,31], and the initial cell search and coarse synchronization are
considered to have been accomplished. Then, the frequency domain signals from FFT can be defined
as Rm

p,r f
(k), and have the formulation of

R(m)
p,r f (k) = η(εRFO)H(m)

p,r f (k)S
(m)
p,r f (k)e

j2π
m(N+Ng)εRFO

N + Ω(k), (8)

where H(m)
p,r f (k) and Ω(k) denote the CFR and the noise of the kth subcarrier separately. εRFO is the

normalized RFO. The constant amplitude and phase deviation caused by RFO are represented by
η(εRFO) which is illustrated in [32]. Considering that the low precise digital controlled crystal oscillators
are used by NB-IoT terminals, the challenging problem is how to reduce the RFO to a tolerable scope
of uplink transmission within the UTG.

5. NB-IoT Cell Search

In this section, the proposed cell search method is presented, which is accomplished in both the
time domain and frequency domain. The time domain process includes NPSS detection and time
domain synchronization, and the cell ID identification is completed in the frequency domain.

5.1. NPSS Detection and Time Domain Synchronization

Constructing a proper TM is the most efficient way to detect NPSS. However, because the
traditional NF in TM will be invalid in the context of low SNR [30] and the SNR of extended coverage
NB-IoT can be −15 dB, solutions in [7,8] abandon the use of NF. Nevertheless, this compromise
reduces the consumption of some hardware resources, and the lengthened synchronization time
consumes much power which is vital for NB-IoT terminals. Here, a noise-eliminated NF with an FFO
pre-estimator is proposed to deal with low SNR conditions. As the NB-IoT samples are preceded by
noise samples and NB-IoT terminals work with low mobility, the noise power σ2

ω can be estimated by
these noise-only samples. The calculation process of autocorrelation summation can apply the sliding
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method in [10]. The application of code cover in [11] avoids the plateau in the presence of NPSS, and a
steep roll-off trajectory will present. As for the IFO and fine timing error, the cross-correlation between
coarse detected NPSS and ideal NPSS is used as an estimator.

In the following, the detailed procedures are discussed. As shown in Equation (5), the correct
time of NPSS is given by

τ0 = arg max
τ

|γ(τ)|, (9)

and the TM proposed in this paper is defined as γprop(τ). The symbol-wise autocorrelation part and
the noise-eliminated NF are represented by αSW and βNE, respectively. To reduce detection complexity,
the authors of [7] accomplish the NPSS detection process at quite low frequency. However, not only do
more radio frames have to be used, but also the synchronization precision is decreased. To accelerate
this procedure, the authors of [8] adopt the octuple working frequency of [7]. The autocorrelation
distance in this method is only one OFDM symbol. Our scheme is implemented with a simplified
symbol-wise method compared with [7] in order to adapt to the higher working frequency. Thus,
αSW has the following form.

αSW(τ) =

∣∣∣∣∣∣∣
R
′
f

∑
r′f =1

V

∑
v=1

M
′−v

∑
m′=3

N+Ng

∑
n=1

c(m
′ − 3)r(m

′
)∗

p,r′f
(n)c(m

′ − 3 + v)r(m
′
+v)

p,r′f
(n)

∣∣∣∣∣∣∣
2

, (10)

where τ denotes the start sample of the subframe p in radio frame r
′
f , and (·)′ is the hypothetical value

of each parameter. v represents the number of OFDM symbols between the two parts of one correlation
pair. Furthermore, the calculation of αSW(τ + 1) can be conducted in a convenient way,

αSW(τ + 1) =

∣∣∣∣∣
R
′
f

∑
r′f =1

V

∑
v=1

M
′−v

∑
m′=3

( N+Ng

∑
n=1

c(m
′ − 3)r(m

′
)∗

p,r′f
(n)c(m

′ − 3 + v)r(m
′
+v)

p,r′f
(n)

− c(m
′ − 3)r(m

′
)∗

p,r′f
(1)c(m

′ − 3 + v)r(m
′
+v)

p,r′f
(1)

+ c(m
′ − 3)r(m

′
)∗

p,r′f
(N + Ng + 1)c(m

′ − 3 + v)r(m
′
+1)

p,r′f
(N + Ng + v)

)∣∣∣∣∣
2

.

(11)

As the NB-IoT terminals are considered to be working with low mobility, the number of used
radio frames R

′
f and the maximum symbol spacing V can be adjusted according to the SNR.

All the NPSS detection methods implemented with TM no longer use NF. That is because
NF is almost ineffective in low SNR conditions, as shown in Figure 4, where we use the
Magnitude-of-Difference (MoD) NF proposed in [12] which has good performance in the AWGN
channel. The result shows that although the NF still contributes a valley to add to the resolution of
TM at the correct time, the valley decreases fast with the SNR. One feasible solution is to weaken the
influence of noise on NF. To achieve this aim, we created a noise-eliminated differential NF which is
composed of a differential part and a noise elimination part. The noise power σ2

ω can be estimated
with a moving average filter (MAF) before the arrival of the NB-IoT frame. The average window is set
as T0, and the estimation is as follows,

σ2
ω(n0) =

1
T

n0+T

∑
n=n0

|rω(n)|2, (12)

where n0 denotes the window start time of MAF. Furthermore, in order to promote the accuracy of
estimation, Λ consecutive windows are coherently averaged until the NB-IoT radio frame presents,
and an infinite impulse response filter is applied.
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σ2
ω(nλ) = ησ2

ω(nλ−1) + (1− η)σ2
ω(nλ), (13)

with
σ2

ω(n0) = σ2
ω(n0), (14)

here, η is set as a constant 0.8 (This value is obtained by software simulation with proper NB-IoT
working environment). Conventional MoD NF has the original form of

βMOD(τ) =
τ+N+Ng

∑
n=τ+1

∣∣r(n)− r(n + N + Ng)
∣∣2 . (15)

Figure 4. Comparison of MOD normalization factors at different SNRs.

The above equation is the two identical parts version in [11]. However, to adapt to the structure
of NPSS, we modify it into a symbol-wise form similar to αSW(τ) as the following equation.

β
′
MOD(τ) =

R
′
f

∑
r′f =1

V

∑
v=1

M
′−v

∑
m′=3

N+Ng

∑
n=1

∣∣∣∣c(m′ − 3)r(m
′
)

p,r′f
(n)− c(m

′ − 3 + v)r(m
′
+v)

p,r′f
(n)
∣∣∣∣2 . (16)

Since the NB-IoT terminals work with a slow fading channel, the multi-path signals in one
detection window can be assumed as independent zero mean Gaussian random signals with the
variance of δ2

s . By using the approximation similar to [11] and considering the presence of NPSS,
the below expression can be obtained.

β
′
MOD(τp) ≈

V

∑
v=1

R
′
f (N + Ng)

(
M
′ − v− 2

)(
δ2

s

∣∣∣∣1− ej2π
v(N+Ng)εF

N

∣∣∣∣2 + 2δ2
ω

)
= κ(v)δ2

s

∣∣∣∣1− ej2π
v(N+Ng)εF

N

∣∣∣∣2 + 2κ(v)δ2
ω,

(17)

with

κ(v) =
V

∑
v=1

R
′
f (N + Ng)

(
M
′ − v− 2

)
. (18)

Similarly, when the NPSS is absent, the approximation is

β
′
MOD(τa) ≈ 2κ(v)

(
δ2

s + δ2
ω

)
, (19)
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where τp and τa represent the present and absent time of the NPSS signal, respectively. The ratio
between β(τp) and β(τa) dictates the performance of NF. Considering the following relationship

< =
β
′
MOD(τp)

β
′
MOD(τa)

=

κ(v)
∣∣∣∣1− ej2π

v(N+Ng)εF
N

∣∣∣∣2 + 2κ(v) 1
SNR

2κ(v)
(
1 + 1

SNR
) , (20)

when an NF is effective, the parameter < > 0 is required. The precise range of εF to fulfil < > 0 is too
complex to be decided, as it is determined jointly by V and M′. So, we investigate a reduced range by
the following equation, ∣∣∣∣1− ej2π

V(N+Ng)εF
N

∣∣∣∣2 < 2, (21)

with
− N

4V(N + Ng)
< εF <

N
4V(N + Ng)

. (22)

Unfortunately, the εF of NB-IoT can be any value in [− N
2(N+Ng)

, N
2(N+Ng)

]. To lessen the εF into the
target range, a FFO pre-estimator is introduced. In the following, we will illustrate the implementation
of the pre-estimator; then, its application will also be discussed.

Considering Equations (3) and (4), and using the intermediate calculation results of Equation (10),
the FFO estimation at v can be expressed as

ε̂F(v) =
N

2π(N + Ng)
arg


R
′
f

∑
r′f =1

M
′−v

∑
m′=3

N+Ng

∑
n=1

c(m
′ − 3)r(m

′
)∗

p,r′f
(n)c(m

′ − 3 + v)r(m
′
+v)

p,r′f
(n)


− π < arg {·} < π,

(23)

ε̂F = w1 ε̂F(1) +
V

∑
v=2

wv∆ε̂F(v), (24)

with

∆ε̂F(v) =


ε̂F(v)− ε̂F(v− 1) + N

(N+Ng)
, if ε̂F(v)− ε̂F(v− 1) < − N

2(N+Ng)

ε̂F(v)− ε̂F(v− 1)− N
(N+Ng)

, if ε̂F(v)− ε̂F(v− 1) > N
2(N+Ng)

ε̂F(v)− ε̂F(v− 1), otherwise,

(25)

where the values of weight parameters wv can be set as follows.

wv =

{
1
2v , if v = 1, 2, . . . , V − 1

1
2(v−1) , if v = V.

(26)

Another problem that needs to be considered is that the FFO should be compensated before
the calculation of β

′
MOD(τ). ε̂F can only be reliably estimated at the end of the detection window.

A compromise solution is to modify Equation (16) into the following formulation.

β
′
MMOD(τ) =

V

∑
v=1

∣∣∣∣∣∣∣
R
′
f

∑
r′f =1

M
′−v

∑
m′=3

N+Ng

∑
n=1

c(m
′ − 3)r(m

′
)

p,r′f
(n)−

R
′
f

∑
r′f =1

M
′−v

∑
m′=3

N+Ng

∑
n=1

c(m
′ − 3 + v)r(m

′
+v)

p,r′f
(n)

∣∣∣∣∣∣∣
2

=
V

∑
v=1
|A(v)− B(v)|2 .

(27)
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Both A(v) and B(v) can be calculated separately during the detection window. After that,
the estimated FFO is applied.

β
′′
MMOD(τ) =

V

∑
v=1

∣∣∣∣A(v)− B(v)e−j2π
v(N+Ng) ˆεF

N

∣∣∣∣2 . (28)

It is obvious that when the NPSS is absent, the ε̂F is just a random phase rotation to the NF.
When the FFO estimation error fulfils the following relationship

|εF − ε̂F| <
N

4V(N + Ng)
, (29)

the < of β
′′
MMOD(τ) can be written as

< =
β
′′
MMOD(τp)

β
′′
MMOD(τa)

=

κ(v)
∣∣∣∣1− ej2π

v(N+Ng)(εF−ε̂F)
N

∣∣∣∣2 + 2κ(v) 1
SNR

2κ(v)
(
1 + 1

SNR
)

>

κ(v)
∣∣∣∣1− ej2π

v(N+Ng)(εF−ε̂F)
N

∣∣∣∣2
2κ(v)

.

(30)

The above equation shows that the SNR is larger, and the NF performance is better. Based on this
analysis, the estimated noise power in Equation (13) can be applied to improve the proposed NF.

βNE(τ) =
V

∑
v=1

∣∣∣∣A(v)− B(v)e−j2π
v(N+Ng)ε̂F

N

∣∣∣∣2 − κ(v)σ2
ω(nΛ). (31)

After the calculation of αSW(τ) and βNE(τ), the proposed timing metric λprop(τ) can be obtained
with the ratio of the former two parameters. The implementation structure is shown in Figure 5.

RF 
front-
end

PGA ADC Frame Detection 
& AGC

NPSS detector
Symbol Wise 

Autocorrelation

 Normalization 
Factor

+
-

Proposed 
Timing 
Metric

Peak 
Detection

Fine Sync. 
& CFO 
Estim.FFO pre-

estimator

Figure 5. Block diagram of the proposed NPSS detector structure.

When the coarse timing synchronization is completed and the location of NPSS is decided,
the FFO obtained by the FFO pre-estimator can be used as the estimated value to compensate FFO.
Besides, as we have mentioned in Section 4, the NB-IoT multi-path channels have considerable RMS-DS,
particularly in ETU channel. In addition, such a large RMS-DS may not only bring the uncertainty of
ToA estimation, but also introduce inter-symbol interference (ISI). To counteract these two problems,
the fine timing should be completed in time domain joint with IFO estimation. Based on the above
considerations, a joint ML fine timing and IFO estimation method following [8] is applied. The cost
function of the joint fine timing and IFO estimation can be expressed as

Ψ(τf , ε I) =
NNPSS+τc+υ−1

∑
n=τc−υ

M

∑
m=3

r(m)
5,r f

(n)s∗(m)
5,r f

(n− τc + υ)e
j2πε I (n−τc+υ)

N , (32)
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where τf and τc represent the fine timing offset and coarse timing offset respectively, and NNPSS
denotes the number of samples within one NPSS duration. To counteract the RMS-DS introduced by
multi-path channel, whose typical value is 991 ns of ETU, the fine timing gird search range [−υ, υ]
must be two times greater than it. Besides, since the NB-IoT frequency offset range is [−25.5 KHz,
25.5 KHz] in theory, the gird search range of IFO should be [−1,1]. Finally, the correct fine timing and
IFO can be obtained by finding the maximum value of absolute value of the two-dimensional grid
search of the above cost function.

5.2. NSSS Detection and Cell ID Identification

According to the discussion in Section 1, the non-coherent partial correlation may be a preferable
solution for NB-IoT NSSS detection. However, the 504 cell IDs are differentiated by four complementary
sequences, and this means that any partial correlation applied to the NSSS will increase the probability
of error detection. What is worse is that NB-IoT actually needs to deal with 2016 different candidate
sequences because NSSS is constructed by both cell IDs and frame numbers. To identify the transmitted
NSSS sequence, the number of matched filters (MF) should theoretically be equal to the candidate
sequences. By using the complementary property, Abdelmohsen Ali and Walaa Hamouda reduce the
scale of the MF bank to one-quarter of direct implementation [8]. However, the power and hardware
resources occupied by a massive amount of complex multipliers are still intolerable for an NB-IoT
terminal. In our design, we combine the four complementary sequences and frame number terms of
Equation (2) into reconstructed complementary sequences, and then the frame number and cell ID are
obtained by maximum likelihood estimation.

We define the frame number term e−j2πθ f k as Tr f . By inspecting Table 2, it can be observed that
Tr f is a cyclic variable of r f and k. Figure 6 gives the detailed illustration.

mod4 0
2

fr
= mod4 1

2

fr
= mod4 2

2

fr
= mod4 3

2

fr
=

1

k

1

j

mod4 0k =

mod4 1k =

mod4 2k =

mod4 3k =

mod2 0k =mod2 1k =

j

mod4 0k =

mod4 1k =

mod4 2k =

mod4 3k =

(a) (b) (c) (d)

-1 -1 -1

-j

j

-j -j

11

Figure 6. Diagram of generation of the four complementary sequences based on frame number.

Because the four cyclic sequences represented by Figure 6a–d contain only real units and
imaginary units, we combine the four cyclic sequences and complementary sequences to form 16 new
complementary sequences which only contain±1 and±i. In this way, three-quarters of multiplications
used by [8] are saved. On the other hand, as NSSS only locates in even radio frames and the frame
number is still unknown, two detection statistics should be calculated simultaneously. The detection
window of each statistic is (2W − 1) radio frames, so the entire detection window is 2W.

B(1)(u) =
W

∑
w=1

M

∑
m=3

12

∑
k=1

R̃(m)
9,r f +2(w−1)(k)b̃(m, k, u), (33)

B(2)(u) =
W

∑
w=1

M

∑
m=3

12

∑
k=1

R̃(m)
9,r f +2w−1(k)b̃(m, k, u), (34)

where R̃ is the results after applying the 16 complementary sequences as code cover of the received
signal R. It is important to note that during the cross correlation process, different complementary
sequences are used with the variation of radio frame number. b̃(m, k, u) represents the part of b(n)
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without reconstructed complementary sequences, and n′ = k + 12(m− 3)− 1. Then, the cell ID and
frame number can be jointly estimated by{

N̂Ncell
ID , r̂ f

}
= arg max

u

{∣∣∣B(1)(u)
∣∣∣ ,
∣∣∣B(2)(u)

∣∣∣} . (35)

The number of multiplications of this method is 16.6K, which is one-quarter of [8] and
one-sixteenth of [33].

5.3. Brief Summary of Cell Search

The whole cell search procedure has been discussed adequately in the two subsections above,
and we will briefly summarize it here. We have proposed a noise power estimator and a FFO
pre-estimator to improve the performance of the NPSS detector with low SNR and large frequency
offset. IFO and fine timing joint estimation is conducted in the time domain with an existing ML
cross-correlation solution. Then, we promote a divide-and-conquer cell ID identification method.
To make the whole process clearer, a cell search algorithm flowchart is given in Figure 7.

Noise power       estimationNB-IoT radio frames 
arrive

2
ws

Baseband signal

No

Yes

Calculation of SWa FFO      pre-estimation ˆ
Fe Calculation of NF NEb

Generation  of TM         with proposed        and    propg
SWa NEb

128 points FFT

Joint ML estimation  IFO and fine timing offset 

Calculation of odd results       and even results

Searching correct NB-IoT cell ID by traversal method

Conduct peak detection of         and obtain the     of current momentpropg ˆ
Fe

(1)B (2)B

Figure 7. Algorithm flowchart of the proposed cell search scheme.



Sensors 2018, 18, 3274 15 of 22

6. Frequency Tracking

As mentioned before, frequency tracking of LTE is conducted with the assistance of RS as auxiliary
data. However, because of the narrow bandwidth, more pilot signals should be used by NB-IoT for
tracking frequency. The 40 ms UTG demands that NPSS, NSSS and NPBCH be regenerated and
applied for residual frequency offset estimation [31]. The received frequency domain signal is defined
in Equation (8) as R(m)

p, f f
(k) and the stored local data is S(m)

p, f f
(k). Firstly, we investigate two existing

methods. Then, our solution is presented in detail and the advantages are also discussed.

6.1. Least Square Method

To make use of the subcarrier without identical signals to estimate the frequency offset,
one efficient way is to calculate the CFRs to eliminate the effect of multi-path channels. A two-step
scheme is presented in [31]. Firstly, the CFR of each pilot symbol is obtained by least square estimation,
which is carried out by

Ĥ(m)
p, f f

(k) = R(m)
p, f f

(k)
(

S(m)
p, f f

(k)
)−1

. (36)

Then, under the assumption that the CFRs are constant within the correlation distance D,
we divide the CFRs into two vectors. They are H1 = [Ĥ(m1)

p, f f
(k) · · · Ĥ(mi)

p, f f
(k) · · · Ĥ(mI)

p, f f
(k)]T and

H2 = [Ĥ(m1+D)
p, f f

(k) · · · Ĥ(mi+D)
p, f f

(k) · · · Ĥ(mI+D)
p, f f

(k)]T . The RFO is estimated by

ε̂RFO =
N

2πD(N + Ng)
6 (HH

1 H2), (37)

where I represents the number of pilot correlation pairs and (·)H is Hermitian transposition.

6.2. Cross Correlation Assistant Method

The authors of [28] use the cross-correlation between received signals and located signals to
eliminate the phase difference of pilots. They adopt the RS of LTE as pilots, and the RS symbols from
the same antenna port are spaced by D symbols. Additionally, the CFR of symbols in one subcarrier is
considered constant during D symbols. Then, this estimator can be accomplished by

ε̂RFO =
N

2πD(N + Ng)
6

(
I

∑
i=1

(
R(mi)

p, f f
(k)S∗(mi)

p, f f
(k)R∗(mi+D)

p, f f
(k)S(mi+D)

p, f f
(k)
))

. (38)

6.3. Proposed Adaptive RFO Tracking Method

The above methods have a common drawback, which is that too many multiplications cause an
excessive burden on the NB-IoT terminals. As the frequency tracking process is a continuous process
during the whole communication transmission, we propose an adaptive RFO tracking solution which
can effectively reduce the number of multiplications. Considering the features of NB-IoT, our tracking
algorithm can be implemented with the following two steps:

(1) Under the condition that initial synchronization and cell search have been accomplished,
and NPSS, NSSS and NPBCH have been regenerated. Then, we define the symbol space vector
as D = [d1, d2 · · · dJ ], where J denotes the number of available correlation pairs. Then, all the
possible correlation pairs are computed beforehand.

U j
i = S∗(mi)

p, f f
(k)S

(mi+dj
)

p, f f
(k). (39)

These precalculated signals can be represented by U j
i , and Ij denotes the number of correlation

pairs when the correlation space is j symbols.
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(2) Once RFO tracking needs to be conducted, the following estimator is applied.

ε̂RFO =
N

2πD(N + Ng)
6

 j0

∑
j=1

Ij

∑
i=1

(
R(mi)

p, f f
(k)R

∗(mi+dj
)

p, f f
(k)U j

i

) . (40)

The adaptive factor is 1 ≤ j0 ≤ J, which can be adjusted according to the current SNR.

By means of preprocessing, the proposed method can save nearly one-third multiplications
compared with [28]. Besides, the adjustable number of correlation pairs can maintain a balance
between performance and power consumption.

7. Simulation Results

In this section, all the schemes proposed in this paper are simulated, and we also analyze the results.

7.1. Simulation Environment

To evaluate the effectiveness of the considered cell search and frequency tracking methods,
we carry out the in-band downlink NB-IoT system. There are two antenna ports at the transmitter and
one antenna port at the receiver in in-band mode. As for the communication scenarios, the AWGN,
ETU and EPA channels are investigated. Because NB-IoT terminals usually have low mobility,
the Doppler drift is set as 1 Hz, which means that the coherence time is far greater than one radio
frame. The crystal oscillator error is ±20 ppm, so the frequency offset should be ±25.5 KHz under
the assumption of 900 MHz carry frequency and ±7.5 KHz raster channel offset. The effective
bandwidth and subcarrier spacing are 180 KHz and 15 KHz, respectively. At the receiver, the processing
frequency is 1.92 MHz and a 128-point FFT converts the time domain signals to frequency domain
signals. Under this condition, N = 128 and Ng = 10 when the symbol index is 0 or 7, and Ng = 9
when the symbol index is another value. Moreover, since the NB-IoT terminals should achieve
different coverage, we investigate the normal coverage for SNR ≤ −6 dB and enhanced coverage for
−15 dB ≤ SNR ≤ −6 dB. When we verify the method of frequency tracking, the time window is set
as UTG. Additionally, the proposed solution can also achieve continuous frequency tracking with
slight modification.

7.2. Performance Assessment

Figure 8 illustrates the performance of normalization factors under the condition of the AWGN
channel and −10 dB SNR. All the curves are normalized to the maximum of each. β

′
MMOD and

β
′′
MMOD are compared in Figure 8a, and the latter gives a deeper notch. As shown in Equations (23)

and (28), β
′′
MMOD is the FFO elimination version of β

′
MMOD. For this reason, when the correct timing is

absent, the attached FFO compensation makes no contribution. When the correct timing is present,
the pre-estimated FFO helps eliminate primary phase error between the two differential components.
Figure 8b indicates the promotion of noise elimination. The relative notch after noise elimination factor
βNE is more obvious than β

′′
MMOD. It is easy to deduce that this promotion will be more significant

with lower SNR.
The normalized mean square error (NMSE) of pre-estimated FFO is shown in Figure 9.

This simulation is conducted with different channels and SNRs. The initial FFO is set as 7.5 KHz, so εF is
0.5. According to Equation (22) and considering the worst condition of V = 10, the residual FFO should
be less than 5× 10−2. The result shows that even under extended coverage SNR, this condition can be
fulfilled within 18 radio frames. Even the theory of this FFO pre-estimator is similar to [7], and increases
computation to some extent. The pre-estimated FFO can make the differential normalization effective,
which is proved invalid under large-frequency offset in [12]. Additionally, a typical residual FFO is
50 Hz, which means that 6.7× 10−3 should be accomplished. We can see that this target is achieved
within 40 radio frames, which outperforms [7].
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Figure 8. Performance of the proposed normalization factors: (a) Comparison of modified
MOD vs. frequency offset-compensated MOD normalization factors; (b) Comparison of
frequency offset-compensated MOD vs. frequency offset-compensated and noise-eliminated MOD
normalization factors.

Figure 9. Performance of the FFO pre-estimator with different channel and SNR conditions.

Figure 10 presents the NPSS cumulative probability distribution (CDF) vs. the number of
processed frames. The simulation SNR is −5 dB and −15 dB. The simulation channel of Figure 10a–c
is AWGN, ETU-1Hz and EPA-1Hz, respectively. The operation frequency of the proposed method
and [8] is 1.92 MHz, and the solution in [7] uses 240 KHz frequency to reduce power consumption.
From the simulation results, the proposed method outperforms the others. In particular, when the
NB-IoT terminals work with extended coverage SNR = −15 dB, our method can achieve a target CDF
of 0.9 with ten more radio frames less than [7,8]. When SNR = −5 dB, the proposed method can
also provide considerable performance gain. That is because the proposed NF uses the pre-estimated
FFO and noise power to accelerate the detection process. However, as nothing can be complete in
both respects, we have declared that in order to achieve rapid NPSS detection, acceptable hardware
resources and computation complexity are sacrificed in Section 1. In particular, when compared with
the solution in [7], the working frequency of our method is eight times its size, and the noise power
estimator, FFO pre-estimator, and normalization factor almost quadruple the computation complexity.
Nevertheless, there are two aspects that support that such a compromise can save more power than
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is consumed. One is that the initial NPSS detection only needs to be conducted at the start of each
transmission. Then, we can see from Figure 10 that in order to achieve 0.9 CDF, our method can save
more than 15 NB-IoT frames (150 ms), and during such a long time, the RF transceiver will consume
much more power than baseband digital circuits.

7

8

7

8

7

8

7

8

7

8

7

8

Figure 10. Comparison of cumulative distribution function (CDF) for NPSS detection vs. the number
of processed frames under normal coverage and extended coverage: (a) AWGN; (b) ETU-1Hz;
(c) EPA-1Hz.

To investigate the capability of cell ID detection, the CDF under different numbers of processed
frames and SNRs is illustrated in Figure 11. The results are obtained by using the AWGN, ETU-1Hz
and EPA-1Hz channel models. Figure 11a–c indicate that a target CDF of 0.9 can be achieved within
36 radio frames under −15 dB SNR. The solution proposed in [8] can also achieve similar performance.
However, since we convert the frame number part into four complex complementary sequences,
the number of base NSSS vectors is reduced from 2016 to 126. Moreover, as the frame number is
unknown, two identical detectors work simultaneously to generate B(1) and B(2). By applying the
aforementioned operations, much lower computation complexity and latency is obtained compared
with [8].

To give a more direct reflection of our contribution on reducing the initial processing time,
Figure 12 displays the probability of correct cell-acquiring vs. the number of processed frames.
The simulation SNR is −5 dB and −15 dB. The simulation channel of Figure 12a–c is AWGN, ETU-1Hz
and EPA-1Hz separately. Compared with the latest work [8], our method significantly reduces the
number of processed frames under different channel conditions, and the performance gets better with
lower SNR. It means that the power which is originally consumed within these frames can be saved by
applying our method.
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Figure 11. Comparison of the cumulative distribution function (CDF) for cell ID detection vs. the
number of processed frames under normal coverage and extended coverage. (a) AWGN, (b) ETU-1Hz,
(c) EPA-1Hz.

Figure 12. Comparison of probability of correct cell-acquiring vs. the number of processed frames
under normal coverage and extended coverage. (a) AWGN, (b) ETU-1Hz, (c) EPA-1Hz.
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In the frequency tracking process, our method is the low complexity version of the
cross-correlation assistant method. Figure 13 compares the performance of the proposed method
and least square method. The SNR condition is −5 dB and −15 dB and we investigate the AWGN
channel model. The tracking time window is set as 40 ms which is defined in [7] for UTG and the
initial residual frequency error is 200 Hz. The NMSE of residual frequency error vs. j0 is shown in
Figure 11. We see that under the same conditions, the two methods have almost the same performance,
and the target recovery accuracy of 40 Hz can be achieved by using 56 correlation pairs under extended
coverage. However, the proposed method uses one multiplier which replaces the two dividers used by
the cross-correlation assistant method to save hardware resources. Furthermore, as the SNR may be
different in different transmission processes, we can adjust the number of correlation pairs j0 to make
a trade-off between computation complexity and performance.2x10-1 29 56[31][31]

Figure 13. Comparison of frequency tracking performance vs. different numbers of correlation pairs
under normal coverage and extended coverage.

8. Conclusions and Future Work

In this paper, we investigated the novel cell search and frequency tracking approaches for NB-IoT
to make economic and green IoT networks. Because of the narrow bandwidth, too much time is taken
to conduct the initial cell search. We propose an NPSS detector with FFO pre-estimation and noise
elimination. Thanks to the application of the proposed NF, the NPSS detector outperforms previous
works. As for cell ID detection in the frequency domain, we adopt a divide-and-conquer method to
minimize the number of correlation sequences, which reduces the amount of computation by nearly
three-quarters compared with the latest scheme. To make the frequency tracking process more efficient,
some preprocessing is done before the residual frequency offset estimation. Furthermore, the adjustable
number of correlation pairs helps to make a trade-off between the performance and computation
complexity. All of the above proposed schemes can contribute to construct a low complexity and
robust green NB-IoT network.

In the future, we will continuously explore both rapid and low complexity solutions to improve
existing methods. The ultra-extended coverage scenario, such as SNR = −20 dB, will also be
investigated. Under such a condition, many existing cell search schemes will be invalid, and if
not, the execution time will be seriously lengthened, which implies a burden on power consumption.
What is worse is that if frequency tracking cannot be completed within the UTG, the uplink will
be unable to work properly. In addition to the above, we will investigate the problem of NB-IoT
positioning with the assistance of NPRS. Furthermore, we will also focus on constructing a complete
NB-IoT downlink communication link. The transmission of all the downlink physical channels will
be supported.
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