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Abstract: Self-localization is a crucial task for intelligent vehicles. Existing localization methods
usually require high-cost IMU (Inertial Measurement Unit) or expensive LiDAR sensors
(e.g., Velodyne HDL-64E). In this paper, we propose a low-cost yet accurate localization solution by
using a custom-level GPS receiver and a low-cost camera with the support of HD map. Unlike existing
HD map-based methods, which usually requires unique landmarks within the sensed range,
the proposed method utilizes common lane lines for vehicle localization by using Kalman filter
to fuse the GPS, monocular vision, and HD map for more accurate vehicle localization. In the Kalman
filter framework, the observations consist of two parts. One is the raw GPS coordinate. The other is
the lateral distance between the vehicle and the lane, which is computed from the monocular camera.
The HD map plays the role of providing reference position information and correlating the local
lateral distance from the vision and the GPS coordinates so as to formulate a linear Kalman filter.
In the prediction step, we propose using a data-driven motion model rather than a Kinematic model,
which is more adaptive and flexible. The proposed method has been tested with both simulation
data and real data collected in the field. The results demonstrate that the localization errors from the
proposed method are less than half or even one-third of the original GPS positioning errors by using
low cost sensors with HD map support. Experimental results also demonstrate that the integration of
the proposed method into existing ones can greatly enhance the localization results.

Keywords: vehicle localization; High Definition (HD) map; monocular vision; GPS; Kalman filter;
sensor fusion

1. Introduction

Intelligent vehicles are emerging technologies that have great potential to enhance driving safety
and improve transportation efficiency [1]. A typical intelligent vehicle consists of the modules of
perception, decision-making, path planning, and control. Vehicle localization, which is the process of
determining the positions and poses of the vehicle, is a step that is crucial for all these modules [2,3].

Generally, existing methods of vehicle localization can be classified into three categories.
(i) The first one is the Global Navigation Satellite System (GNSS) related methods, such as GPS,
Beidou, etc. As raw GPS receivers only provide low positioning accuracy (e.g., as low as 10-m
accuracy or less), it is not feasible for intelligent vehicle applications. Usually, GPS is integrated with
other sensors (i.e., Inertial Measurement Unit (IMU) [4], Real-time Kinematic (RTK), etc.) for more
accurate accuracy. For example, the integration of GPS and IMU can yield less than 10 cm positioning
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errors [5]. The Differential GPS (D-GPS) methods can also reach high position accuracy (i.e., 5 cm
or less) based on the base stations and one popular approach is the RTK methods [6,7]. However,
these methods are usually very costly in practice. Moreover, they all suffer from the GPS-blind
problems, especially in urban environments [8]. (ii) The second category is for the vision-based
methods, which are based on the low-cost visual sensors [9]. Visual sensors have the ability to
acquire large amounts of information with only one snapshot. They can perform as the main
sensor, where no GPS signals are used [10]. Gakne developed an image-based multipath mitigation
approach method when the GNSS signals are subject to severe multipath in urban canyons [11].
One popular method is to use a monocular camera for lane detection, therefore to compute the relative
position between the camera and the lanes [12]. However, only traverse position is computed for
vehicle self-localization. Visual Odometry (VO) or Simultaneous Localization and Mapping (SLAM)
methods are also investigated for vehicle self-localization [13,14]. However, Visual Odometry has
serious drift error problem, which is vital for open road scenarios. David et al. present a robust
visual localization technique based on an omnidirectional SLAM approach [15]. Raúl et al. present
a feature-based monocular simultaneous localization and mapping system [16]. It can run very fast
to achieve real-time effect. But vision SLAM methods suffer from the poor robustness in front-end
loop closure detection and the complicated after-end optimization [17]. Recently, the role of HD
Maps is becoming more and more important for intelligent vehicles [18]. It is believed that HD
map is an indispensable part in autonomous driving [19]. HD maps are already available in many
countries. Such as the navigation technology company TomTom announced the total coverage of
TomTom HD maps globally now is nearly 380,000 km (236,121 miles) [20]. So, the HD map can be as
a wide-open approach (just like the daily used map) in the field of intelligent vehicles. In the recent
research, these maps have extremely high precision at centimeter-level that are particularly built for
self-driving purposes [21]. Many researchers demonstrate that HD map can enhance vision-based
vehicle localization. The principle is to correlate image data to the information from the map to
improve localization results. For example, Markus et al. use a highly accurate map and a stereo camera
for vehicle localization [22]. In the map, all the lane lines and markings are accurately coordinated
to providing reference positions. Tao et al. [23] get the position information of landmark first. Then,
the resulting map allows for the exploitation of camera-detected features for autonomous real-time
localization. Most people do the work of map-matching; it has a high demand for the map and a certain
degree of difficulty in landmark detection. To create such a map is time-consuming to build and need
to be upgraded regularly. However, we should have a simpler requirement, as if we just only need
the line segment equation, not the coordinates of every point. Something should also be done after
matching for the localization. And some methods try to integrate the pavement marking and HD
map for vehicle positioning [24,25]. However, as pavement markings are sparely distributed and high
repetitive, these methods are not practical enough in the field. (iii) The last category is for the LiDAR
based localization methods [26,27]. One state-of-the-art method was proposed by Apollo team by
using a Velodyne HDL-64E. They used LiDAR data for map generation and localized the vehicle by
matching LiDAR data in cell-grid scale with 5–10 cm accuracy. However, such method relies on the
high-cost laser hardware (i.e., Velodyne HDL-64E). High-accuracy localization methods usually require
high-cost devices, such as sufficient number of RTK stations, IMU, and high definition LiDAR, etc.
It is important to develop low-cost solution to localization by fusing different sensor types. And laser
SLAM is also investigated for vehicle localization. Basically, high-accuracy vehicle localization usually
requires high-cost devices, such as IMU, high definition laser, and sufficient number of differential
work stations, etc.

In this paper, we proposed a new localization method for intelligent vehicles by integrating GPS,
monocular vision, and HD map; with a low-cost monocular camera, a common GPS, and lane-level
HD map. The proposed method requires no high-cost devices, such as IMU or high definition Laser,
and suggests a low-cost yet accurate solution to intelligent vehicle localization. In our method, the raw
GPS and vision data are fused within a Kalman framework with lane-level HD map support. In our
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former works, we proposed a pre-built map-based vision localization method in [28]. It doesn’t use
any road landmarks. We tried to code pavement lanes in different colors such that we can derive
unique lane marking within sensed range for vehicle localization in [29]. Hence, coding is the main
contribution in [29]. However, in this paper, we don’t need unique landmarks. Instead, we can utilize
common lane lines for vehicle localization. In addition, the proposed method can be integrated into
existing localization methods to enhance localization accuracy. The main contributions of this paper,
in contrast to the previous work, are summarized as follows:

(1) We propose using linear Kalman filter to fuse GPS, monocular vision, and HD map and developed
a low-cost and accurate solution to vehicle localization;

(2) We propose using HD map to provide reference positions so as to correlate the GPS coordinates
and lateral distance from monocular vision, which finally formulates two types of observations
or measurements for the developed linear Kalman filter. The HD maps allow the integration of
local measurements (i.e., lateral distances from camera) and global measurements into a linear
Kalman framework. As a result, we can utilize common lane lines for localization, compared to
the unique landmark requirements in existing HD map-based methods;

(3) We develop a data-driven motion model rather than Kinematics one for state prediction
and transition for the Kalman filter. The data-driven model is trained from vehicle’s historic
trajectories and requires no acceleration or velocity inputs, which therefore requires no high-cost
IMU. In addition, it is more flexible and adaptive than the existing Kinematic model used in
the literature.

2. The Proposed Methods

The flowchart of the proposed method is illustrated in Figure 1. Three types of sensors,
i.e., GPS receiver, monocular camera and HD map (HD map is also regarded as map sensor in the
field of intelligent vehicles), generate the image, GPS, position reference data, respectively. An input
image, captured by the vehicle-borne monocular camera, is first processed to compute the lateral
distance between the vehicle and the nearby lanes from camera calibration results. In the meanwhile,
we also collect the GPS coordinates from a custom-level GPS receiver. By referring to the HD map,
we can correlate the lateral distance from monocular vision and GPS coordinates, and feed them as the
measurements into a Kalman filter. As a result, an improved vehicle localization result is derived from
the Kalman filter output. Note that the monocular camera and the GPS receiver should be precisely
synchronized and calibrated in order for fusion.
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2.1. GPS and HD Map

In this proposal, we use a custom-level GPS receiver to collect raw GPS data. For geometry
computation purpose, we transform all the original GPS coordinates into a Cartesian coordinate
system. In this paper, all the GPS coordinates are transformed into the Universal Transverse Mercator
(UTM) coordinate system.

Although the importance of HD map is widely recognized for intelligent vehicles, the definitions
of HD map are different from countries to countries. Actually, many map providers, such as Google,
Uber, Zenrin, TomTom, NDS, etc.; have their own definitions for HD map. In this paper, we used
a simplified lane-level HD map for vehicle localization. In this map, all the lanes and pavement
markings are well coordinated with high-precision GPS coordinates (e.g., 3 cm accuracy). Figure 2
demonstrate a HD map produced by Kotei Technology Company (a map company located in Wuhan
City), and the representation of lane lines with high-precision GPS coordinates.
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As shown in Figure 2, lane lines are represented with line segments in the HD map. And each
line segment consists of two points including the starting and the ending points. As a result, we can
quickly compute the corresponding line equation in the UTM system from it.

The line can also be expressed by using a unit direction and a distance to the origin from
Equation (1) as follow.

nxixx + nyixy + di = 0 (1)

Note that we also need to transform all the GPS coordinates in HD map into the UTM system
before we compute line equations with Equations (2) and (3) as follows [23].

x = K ln[tg(
π

4
+

B
2
) ∗ (1− ` sin B

1 + ` sin B
)

`
2
] (2)

y = K(L− Lo) (3)

where B and L are the latitude and longitude accepted by GPS, L0 is the Origin Latitude. x and y are
the result in the UTM coordinate system. K can be computed by the information of B and L, and more
details for such transformation is referred to [30].

2.2. Lateral Distance Computation from Monocular Vision

In this part, we focus on real-time computation of the distances of the vehicle to lane lines.
The calculation of lateral distance is divided into 2 steps: lane detection and camera calibration.
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The lane detection algorithm is very mature and has been applied in industry. In this paper, we used
the method in [31].

From the detected lane lines, we can use algorithms to automatically localize a vehicle from
camera calibration results. The calibration of an in-vehicle monocular camera consists of intrinsic
calibration, as well as extrinsic calibration, a step to compute the pavement geometry in the camera
coordinate system.

The intrinsic parameters of the camera can be calibrated by using the well-known chessboard
plane-based method. We propose a novel method to pavement-camera geometry. Unlike the method
used in the literature, the proposed method uses vanishing line instead of vanishing point for accurate
camera pavement geometry calibration. Most previous studies assume that the x-axis of the camera
(the camera coordinate system) is parallel to the traverse direction of the pavement so that the
vanishing line of the pavement plane is parallel to x-axis of the image coordinate system. However,
this assumption is not true in reality since there may be angles between the x-axis of the camera and the
pavement traverse direction. Therefore, a vanishing line based model should be applied. The vanishing
line can be determined from at least two vanishing points of different directions on the pavement plane.
Note that the camera has fixed relative position with the pavement. Hence, the vanishing points can be
computed from multiple video log images. As a result, the vanishing line can be fitted by using Least
Mean Square Error (LMSE) method. The camera is calibrated in advance with Zhang’s method [32].
With a calibrated camera and the vanishing line, the pavement plane normal is computed as:

npav = KT lpav (4)

From the computed pavement normal direction, we can compute the homography between the
pavement plane and its image by

H = [Kn1 Kn2 λg] (5)

where g is the image of the origin of the pavement coordinate system and λ is a scale, which can be
determined from a reference length (e.g., lane width). The two directions of n1 and n2 satisfy the
following condition: 

nT
1 npav = 0

nT
2 npav = 0
nT

2 n1 = 0
‖n1‖ = ‖n2‖ = 1

(6)

Obviously, the choice of n1 and n2 is not unique from Equation (6). n1 and n2 can be set from
the pavement configuration. For example, the driving direction (lane direction) is set as n1 and the
traverse direction as n2. Note that the image g, also the image of the origin of the pavement coordinate
system, is not in the camera coordinate system. From Equation (7), we can derive the rotation R and
the translation t as [

R t
]
= [ n1 n2 npav λK−1g ] (7)

With the computation rotation and translation, we can derive the lane equation and the camera
focal point coordinates in the world coordinate system by

l ∼= HLw → Lw ∼= H−1l (8)

Oc ∼= ROw + t→ Ow ∼= R−1Oc − R−1t (9)

where l is the lane in the image coordinate system, Lw is the lane in the world coordinate system, Oc is
the camera optical center with the correspondence Ow in the world coordinate system. Hence, we can
compute the lateral distance from the orthogonal projection of the camera (with OZ

W = 0) to the lanes
as follows

d = Lw
T
[

ox
W oy

W 1
]

(10)
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2.3. Kalman Filter for GPS, Vision and HD Map Fusion

In this paper, we utilized Kalman filter to fuse GPS, monocular vision, and HD map to enhance
vehicle localization. Kalman filtering, also known as linear quadratic estimation (LQE), is an optimal
recursive data processing algorithm [33,34]. A typical Kalman filter consists of two steps, the prediction
step and the update step. The predict phase is also called priori state estimate. It uses the previous
state to compute the current one. The update phase is a posteriori state estimate by fusing the
observations and the predicted state from the prediction step. In this paper, we developed a data-driven
motion model, compared to Kinematic ones in existing localization methods, for Kalman filter.
Furthermore, we proposed using HD map that allows the integration of local measurements and global
measurements into a linear Kalman filter framework.

In the following, we will show how to formulate a linear Kalman filter, i.e., specifying the
above parameters, to fuse the three types of inputs of GPS, monocular vision, and HD map,
for vehicle localization.

2.3.1. Data-Driven Motion Model for State Transition

Unlike existing Kinematic model for vehicle localization, we proposed using a data-driven motion
model for vehicle position prediction. The idea is to predict current vehicle position from its historic
positions. In this model, the state of the vehicle is not represented with speed and acceleration. Instead,
we use the current position xk and the N historic positions to formulate a trajectory consisting of N + 1
position as the current state as follows

Xk =
[

xk xk−1 . . . xk−N

]T
(11)

The position xk is a two-dimensional vector and takes the forms as

xk =
[

xx
k xy

k

]T
(12)

By using the state transition matrix F, we can get the prediction of current state from its previous
one as follows

xk = Fkxk−1 + Buk + wk, wk ∼ N(0, Qk), B = 0 (13)

where Fk is the state transition model which is applied to the previous state xk−1; B is the control-input
model which is applied to the control vector uk; wk is the process noise which is assumed to be drawn
from a zero mean multivariate normal distribution N, Qk is the covariance.

The Equation (13) is the basic prediction model that assumes the true state at time k is evolved
from the state (speed, acceleration, etc.) at (k− 1). But in this paper, we use a data-driven motion model
for vehicle position prediction. The parameters in the transition matrix F is computed from the training
data. In this paper, the position of the vehicle is represented with N historic positions. The trajectory
consists of a sequence of vehicle’s positions (two-dimensional vector) with the synchronized timestamp
information. So, the position of the vehicle at state k can be expressed as follows

xk = a1xk−1+ a2xk−2 · · · +aN x k−N =
N

∑
i=1

aixk−i (14)

where xk − N is the position of vehicle at the state (k − N), aN is the weighting coefficient in xk − N .
Hence, we can generate linear constraint on the unknown a = [a1 a2 · · · aN ]

T as follow[
xk−1 xk−2 · · · xk−N

][
a1 a2 · · · aN

]T
=

[
xk−1 xk−2 · · · xk−N

]
a (15)
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By stacking a number of states from the trajectory data, we can generate sufficient constraints to
solve the efficiency a = [a1 a2 · · · aN ]

T .
Note that the number N is the order of the model. Higher N leads to better motion modeling

capability yet with more computation complexity. For example, with N = 2, the model can incorporate
dynamic velocities. With N = 3, the different accelerations can also be modeled. Compared to the
complicated Kinematic model in the literature, the proposed model is data driven model. Hence,
it requires no high-cost IMU to provide the acceleration and velocity data and is more flexible.
Moreover, the model has the ability to cope with the constant speed, constant acceleration models, etc.
For example, if N = 2, the model can cope with both the position and the speed. And the prediction
matrix and the transition are taking the following form

F =

 a1 a2 0
1 0 0
0 1 0

 (16)

Xk = FXk−1 =

 a1 a2 0
1 0 0
0 1 0


 xk−1

xk−2
xk−3

 (17)

Another issue for the prediction model in Kalman filter is the process noise problem. In this paper,
the process noises are estimated from the model fitting errors. All the states from the training data are
fitted with the computed efficiency and the fitting errors are computed to estimate the process errors.

2.3.2. Observations from GPS, Vision, and HD Map

In this paper, we have two types of observations or measurements of the states as it shown in
Figure 3. Through the two types of observations or measurements, we can compute the lateral distance
via HD map. The first observation is directly from the raw coordinates from the GPS receiver. Thus,
the observation matrix takes the forms as

zg = HgXk =

[
1 0 · · · 0
0 1 · · · 0

]
xx

k
xy

k
· · ·

xx
k−n

xy
k−n

 (18)

where Zg is the observation or measurement by GPS and Hg is the observation model which maps the
true state space into the observed space. By Equations (11) and (12) above, we can expand Xk shown

in Equation (18). We observe the values of GPS at the state k, so the Hg =

[
1 0 · · · 0
0 1 · · · 0

]
.

The second observation is the lateral distance between the vehicle and the nearby lane. Particularly,
the lateral distance is computed from the monocular vision. From HD map, we can also derive the

geometric representation of the nearby lane denoted as l =
[

nx ny d
]T

with n2
x + n2

y = 1 from its
high-accuracy GPS coordinates. As a result, we can compute the distance between the GPS coordinates
from the GPS receiver and the lane by using the point-to-line formula from Equation (19) as follow.

dv = lT
[

xx
k xy

k 1
]
= nxxx

k + nyxy
k + d (19)
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As a result, we can derive another observation as follow

zv = dv − d (20)

Hence, we can combine these two types of observations to formulate an integrated observation
as follows

zk =

[
Zg

Zv

]
= HkXk = Hk


xx

k
xy

k
· · ·

xx
k−n

xy
k−n

 (21)

And the corresponding observation matrix takes the forms as

Hk =

[
Hg

Hv

]
=

 1 0 · · · 0
0 1 · · · 0

nx ny · · · 0

 (22)

Note that, if we can detect both the left and the right lane lines from the camera, we can derive
two observations from monocular vision, which are the lateral distances to the left and right lanes,
respectively. In such a case, the observation matrix would have four columns rather than three in
Equation (22). And the two-lane observation matrix takes the forms as

Hk =

[
Hg

Hv

]
=


1 0 · · · 0
0 1 · · · 0

nxl nyl · · · 0
nxr nyr · · · 0

 (23)

In our method, we proposed using point-to-line distances rather than point-to-point distances as
the observation, which is crucial to develop linear observation function for Kalman filter. Otherwise,
we would need to deal with the non-linear observations (e.g., the point-to-point distances). Hence,
more complicated non-linear Kalman filter, such as Extended Kalman filter (EKF) or Unscented Kalman
filter (UKF) should be applied to cope with such non-linear observations.

3. Experimental Results and Discussions

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can
be drawn.
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In this paper, we used different test data (simulation data and real data) to validate the proposed
algorithm. A driving simulator was built to collect simulation data, where different driving conditions
can be configures. In addition, a real experiment was performed on the route along Youyi road in
Wuhan City, China covering both urban roads and roads on campus.

3.1. Test Results with Simulation Data

As shown in Figure 4. The driving simulation is composed of audio system, simulator module,
backdrop and image generation system. Simulator module is a Citroen vehicle. Audio system is
composed of four audios. Visual system is mainly used to generate and display in the virtual traffic
scene, its components include the display system, projection system and graphical simulation systems.
With these equipment, the driving simulator can simulate real driving experiment very well. We can get
the data of camera and GPS like a real vehicle. It can provide a front—view picture with 800 × 600 pixel
and the coordinates of vehicle.
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With the driving simulator, we can set different driving environment and different data error
we need. We can get all the environment data in the different environment, like the coordinates of
lane lines etc. As it shown in the Table 1, we set the error of GPS from 3 to 5 m and the error of lateral
distance from lane line to the vehicle by monocular vision to 0.1 m. As it shown in Figure 5, if two
lanes were used for reference, the localization errors can drop by 10%–30%.

Table 1. Setting of data errors in the simulator.

Data Type Mean (m) SD (m)

Ground truth data 0 0
Raw GPS coordinates 3–5 3

Lateral distance from lane line 0.1 0.05
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Figure 5. The errors of vehicle localization.

3.2. Test Results with Real Data

In the real test, we used a prototype intelligent vehicle developed by WUT for real data collection.
As shown in Figure 6, the data collection system was composed of the RTK (Real-time kinematic)
base station, the lane coordinate collect system, the experiment vehicle which could receive GPS and
RTK signals, and the vision system. Based on the RTK station built by ourselves, we can get the
coordinate information in a precision of 1 cm. So we used it to collect the coordinates of lanes and
vehicle. The data collected by the GPS and monocular vision were used as the observation and those
collected by RTK as the ground truth.
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(d) vision system.
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As it shown in Figure 6c, it is the BYD electric car modified by us. In the Figure 6d, the cars’
interior front height is about one meter from the ground. The vision system could provide the front
image include lane lines, the image is 800 × 600 pixel.

The experimental route is shown in Figure 7, it has two kinds of driving environment,
include urban road and school road. The city roads section is along Youyi road in Wuhan City, China
and the school road is in the Wuhan University of Technology in Wuhan City, China. They include
different environments to test the method proposed in this paper.
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Figure 7. Test route around Youyi road.

After choosing the experimental route, we collect the coordinates of lane lines around the road
as shown in Figure 7. In order to obtain accurate linear expression of lane line, we choose these
points (starting point and ending point on the lane) on each lane line. Then the points in latitude
and longitude coordinates would transform into geodetic coordinates by UTM as shown in Figure 8,
through the several points we would compute the linear expression of lanes.
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Table 2 shows the extracted lines from the 12 test images, according to the proposed approach.
Based on the info above, calibrated camera parameters and vanishing points are used to calculate Dl,
Dr. Dl is the distance to the left lane and Dr is the distance to the right lane.

As shown in Figure 9, we can observe that the most errors are below 15 cm and its average error
is 9.55 cm. The results showed that the methods mentioned had a positive effect. The data could be
used for Kalman filter below.
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Table 2. Result of self-localization.

Trial Number Dr (mm) Dl (mm)

1-1 1800 1800
1-2 1877.2 1784.5
1-3 1829.4 1797.7
1-4 2199.2 1486.2
1-5 2531.8 1140.2
1-6 2788.4 893.32
1-7 2789.5 891.1
1-8 3285.1 485.28
1-9 2763.9 868.87

1-10 2153.5 1494.7
1-11 1802.9 1876.8
1-12 1780.8 1881.7
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Figure 9. The lateral error of vehicle to the lanes.

When we driving in the test route, the latitude and longitude coordinates wound be collected by
the GPS and RTK. The blue and red curves in Figure 10 show the route of vehicle driving in different
environment by different sensors. The blue curve shows the route acquisition through GPS and the
red curve is the route acquisition by RTK. The red curve is the ground truth in this paper and the blue
curve is the observation value in Kalman filter.
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Figure 10. Coordinate of lanes on GIS (Geo-Information System) map.

From the localization results shown in Figure 11, the red curve is for GPS coordinates, while the
black curve is for RTK coordinates, which is the ground truth in the experiment. The blue curve is for
the results by using our method proposed in this paper. We can see that the curve from the proposed
method not only become closer to the ground truth, but also become smoother.
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Figure 11. The results of localization. (a) urban road; (b) school road.

As shown in Figure 12, it is a numerical comparison on displacement errors, among noised GPS
measurements (red), vehicle position after the proposed method (blue). The X axis represents trial
number and the Y axis represents the error (mm) close to the ground truth. And the blue curve is
closer to ground truth than the red curve, which implies that Kalman filter based localization improves
GPS based localization.
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Figure 12. Localization errors from the proposed method.

The lateral error can be got from the monocular vision in an accuracy way, so the longitudinal
error could response the result of vehicle localization to a certain degree. As it shown in Table 3 and
Figure 13, we have counted the errors of positioning error and longitudinal error in several times
experiment. In our method, we can reduce the error to less than half or even one-third of the original
GPS positioning errors by using low cost sensors with HD map support, which numerically proves
that Kalman filter based localization helps to improve the performance of vehicle localization.
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Table 3. Localization errors from different values of GPS errors.

Positioning
Error of GPS (m)

Positioning
Error Mean (m)

Positioning
Error SD (m)

Longitudinal
Error Mean (m)

Longitudinal
Error SD (m)

4.33 2.79 2.55 1.83 1.79
3.75 1.27 1.18 0.91 0.67
4.04 1.88 1.94 1.43 1.18
3.12 1.51 1.39 0.98 1.03

The proposed method can be easily integrated into existing localization methods to further
enhance vehicle localization results, because it utilizes novel constraints on the vehicle’s locations.
In this part, we chose three typical localization methods in Refs. [15,16,28] on the same test route.
Among them, the ORB-SLAM in [28] is a well-acknowledged method. And the methods in [30,31]
are two state-of-the-art ones. For each localization method, we compute the mean positioning
errors. For comparison, we also integrated the proposed method into existing one and computed the
localization results. The mean positioning errors were also computed. As a result, we can evidently
compare the localization results with and without integrating the proposed method. The results are
illustrated in Table 4. It can be observed in Table 4, although the localization errors are different for the
three different methods, the integration of the proposed method can reduce the positioning errors by
23.4%–33.3% for all these three different methods.

Table 4. Comparison of localization results with/without integration of the proposed method.

Methods Mean Localization Errors (m) Error Reduction after Integration (%)

Method in [16] 11.12
33.3%Method in [16] + Proposed method 7.42

Method in [28] 0.54
31.5%Method in [28] + Proposed method 0.37

Method in [15] 2.91
23.4%Method in [15] + Proposed method 2.23

4. Conclusions

Vehicle localization is an important issue for intelligent vehicles. In this paper, we proposed
a low-cost and accurate solution to vehicle localization. In this solution, we proposed using Kalman
filter to fuse GPS, monocular vision and HD map to enhance localization precision. In the Kalman filter,
both raw GPS and lateral distance from monocular vision were used as the observations. In particular,
the HD map was used to correlate GPS coordinates and lateral distance to generate point-to-line
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distance as linear constraints on the states. Moreover, we proposed using a data-driven motion model,
compared to Kinematic model in existing methods, for more adaptive and flexible state prediction
and transition. The data-driven model is trained from vehicle’s historic trajectories and requires
no acceleration or velocity inputs, which therefore requires no high-cost equipment. The proposed
method was tested with both simulation and real data, collected by a simulator and a prototype
intelligent vehicle along the Youyi road in Wuhan, China, respectively. Experiment results show
that the localization errors from the proposed method are about 30%–50% of the raw GPS errors.
Compared to one lane, the localization errors can drop by 10%–30% if two lanes were used for
reference. Experimental results also demonstrate that the proposed method can be easily integrated
into existing methods to further enhance localization results. The proposed method suggests a novel
solution to intelligent vehicle localization.
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