
sensors

Article

Difficulties and Challenges of Anomaly Detection in
Smart Cities: A Laboratory Analysis

Victor Garcia-Font 1,2,* , Carles Garrigues 2,3 and Helena Rifà-Pous 2,3

1 Departament of d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili (URV),
43003 Tarragona, Spain

2 CYBERCAT-Center for Cybersecurity Research of Catalonia, 43003 Tarragona, Spain
3 Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain;

cgarrigueso@uoc.edu (C.G.); hrifa@uoc.edu (H.R.-P.)
* Correspondence: victor.garcia@urv.cat; Tel.: +34-933-263-809

Received: 19 July 2018; Accepted: 18 September 2018; Published: 21 September 2018
����������
�������

Abstract: Smart cities work with large volumes of data from sensor networks and other sources.
To prevent data from being compromised by attacks or errors, smart city IT administrators need
to apply attack detection techniques to evaluate possible incidents as quickly as possible. Machine
learning has proven to be effective in many fields and, in the context of wireless sensor networks
(WSNs), it has proven adequate to detect attacks. However, a smart city poses a much more complex
scenario than a WSN, and it has to be evaluated whether these techniques are equally valid and
effective. In this work, we evaluate two machine learning algorithms (support vector machines (SVM)
and isolation forests) to detect anomalies in a laboratory that reproduces a real smart city use case
with heterogeneous devices, algorithms, protocols, and network configurations. The experience has
allowed us to show that, although these techniques are of great value for smart cities, additional
considerations must be taken into account to effectively detect attacks. Thus, through this empiric
analysis, we point out broader challenges and difficulties of using machine learning in this context,
both for the technical complexity of the systems, and for the technical difficulty of configuring and
implementing them in such environments.

Keywords: anomaly detection; information security; outlier detection; smart cities; support vector
machines; isolation forest; wireless sensor networks; testbed

1. Introduction

In the last decade, major cities around the world have been installing technological elements in
the streets in order to capture a plethora of urban information to populate smart city information
systems that allow authorities to offer new and better services to citizens and to take a data driven city
management approach. The installed elements belong to what is called the Internet of Things (IoT),
wireless sensor networks (WSNs) being one of the most extended technologies in this area. In smart
cities, popular proposals use WSNs to improve parking systems [1] or public lighting [2].

In order to install these networks in the streets, many public administrations have outsourced the
installation and operation of these services to external providers. This has raised, however, concerns
related to the quality of data [3]. Outsourcing WSN operation usually results in the loss of control over
network devices and this, in turn, causes a lack of visibility over the potential data-quality problems
affecting these devices. Even when external providers implement proper security mechanisms to
ensure data integrity, in practice, smart city administrators cannot determine the extent to which
received data are precise and accurate. In fact, the Royal Academy of Engineering has identified data
quality as one of the six major barriers to effectively optimize smart infrastructures [4].

Sensors 2018, 18, 3198; doi:10.3390/s18103198 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3036-2240
https://orcid.org/0000-0002-7812-3401
https://orcid.org/0000-0003-0923-0235
http://www.mdpi.com/1424-8220/18/10/3198?type=check_update&version=1
http://dx.doi.org/10.3390/s18103198
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 3198 2 of 21

To counter this problem, smart city IT administrators need to apply anomaly detection measures,
so that they can detect when data stops following the expected patterns. The role of the data analyst,
or data scientist, is here of utmost importance. The huge amount of data generated by the smart city
WSNs have to be examined to determine the extent to which they are reliable and can be trusted.

An overly simplistic approach to this problem could lead to the definition of thresholds
on key system variables to detect abnormal behaviours. However, Ref. [5] has shown that
complex environments with large volumes of heterogeneous data require more powerful algorithms.
The anomaly detection mechanisms must support a multivariate analysis where data patterns are
dynamic and where no simple rules can be used to determine whether the behaviour is normal or
when it is deviating from the standard. By using these algorithms, the normal state of the system can
be learned periodically. This is performed through training mechanisms, which are used to create
mathematical models that represent the normal state. Then, these models can be used to determine
when a new value must be considered an outlier.

In these scenarios, machine learning-based techniques can undoubtedly give very good results,
considering the success that machine learning has seen in many other areas of computer science,
such as product recommendations systems [6,7], optical character recognition systems (e.g., [8,9]),
natural language translation [10], and also spam detection [11]. Certainly, a smart city is a complex
environment where we can find a huge volume of heterogeneous data. Additionally, most equipment
belonging to the smart city’s WSNs is especially vulnerable to attacks due to its easy access in public
spaces. Thus, the use of advanced anomaly detection techniques in smart cities is critical to contributing
to their data reliability and trustworthiness.

The main purpose of this article is to evaluate the use of machine learning techniques for
anomaly detection in this context. In the WSN research field, machine learning has already been
used successfully in the past to detect attacks against the networks and it is very often used to
implement intrusion detection systems (IDS) [12–14]. However, these IDS are designed for controlled
environments, where WSN administrators have full access to their nodes. In this article, we want to
analyze the use of machine learning in smart city environments, which are much more complex in
terms of heterogeneity, number of nodes, accessibility to providers’ infrastructure, etc.

To do so, firstly, we have used a simulation environment in a laboratory with real equipment.
This environment has allowed us to simulate attacks to the network without compromising the normal
operation of a real smart city. We have then used the data received from the sensors to compare
and evaluate two widely known machine learning techniques (one-class support vector machines
(OC-SVM) and isolation forests). This analysis has shown that it is possible indeed to use machine
learning to implement anomaly detection systems for complex environments such as smart cities.

Secondly, our work has shown that the use of these algorithms in this type of scenarios is
complicated, and several things must be taken into account to avoid drawing wrong conclusions.
Applying machine learning techniques is not as simple as calling a method of a specialised library.
The complexity lies not only in the need to understand how to use a certain machine learning algorithm,
but also in taking into account the difficulties associated with their application in a smart city context.

In this paper, we present the difficulties posed by the use of machine learning in these scenarios
and the challenges that lie ahead: the availability of anomaly-free data, the use of the right
machine learning technique for each situation, the aggregation of data in appropriate time windows,
among others.

The rest of the paper is structured as follows: Section 2 contains background and related work;
Section 3 describes our laboratory simulation environment; Section 4 shows the attacks performed
in the laboratory; Section 5 provides details of the proposed anomaly analysis to detect the attacks.
In Section 6, we evaluate the experiment results, discuss the testbed experience and we highlight main
challenges in this context. Finally, Section 7 concludes the paper.

Sensors 2018, 18, 3198 3 of 21

2. Background

Environmental sustainability, economic growth, technological progress and population growth
are, among many others, new challenges that contemporary cities need to face [15]. In order to address
these challenges, many projects propose to use technological elements to gather city data and interact
with citizens and urban institutions and, in this way, create new services and explore efficient ways
to improve existing ones. These projects are normally included in what is popularly known as smart
city. Some popular smart city proposals are: the PlanIT Urban Operating System [16], Rio Operation
Center [17], Ubiquitous city (u-city) [18] or SmartSantander [19,20].

In order to gather street data, it is common that WSNs and other IoT elements are deployed in the
urban landscape. These elements are generally installed and operated by city councils and several
external providers. Generally, different providers use different technologies, which have to not only
coexist in the same physical space, but also they have to share certain equipment (e.g., gateways,
electrical grid) in order to function properly and deliver collected data to the smart city data center.
From the data analyst perspective, this creates a scenario difficult to analyse: data are dynamic,
heterogeneous, and can easily be compromised.

Regarding security, the plethora of different technological solutions deployed in a smart city
makes it impossible to install a reduced set of security countermeasures. Furthermore, security
problems are especially important in WSNs. These networks are made of low-power devices that rely,
in many cases, on multi-hop capabilities to build an extensive network and deliver packets from the
most remote nodes to a base station. In addition, nodes are frequently battery-powered and, therefore,
are designed also with restringed processing capacity to save power. The limited computational and
energetic constraints of nodes are an obstacle to applying conventional computer network security
countermeasures in WSNs. Additionally, in these networks, nodes become more vulnerable when they
are placed in unprotected environments like streets. In these circumstances, attackers can easily capture
nodes, access confidential information in their memory (e.g., cryptographic keys) and reprogram their
behavior. Attackers may also benefit from the wireless nature of the communications to intercept the
messages or to obstruct frequency bands to impede the proper reception of some packets. In [21,22],
the authors survey the most popular attacks on WSNs.

Given the above, the task of data analyst or IT administrator is to ensure that the data collected
in the server is trustworthy and reliable. This means, on the one hand, that external providers must
apply proper security mechanisms to their networks, but it also means that sound anomaly detection
mechanisms must be put in place. However, this anomaly analysis is far from simple and requires
sophisticated techniques, as we show below.

A lot of research has been carried out to tackle the anomaly detection problem in wireless sensor
networks. In [23], the authors survey the different techniques and propose a categorization based
on the model learned by each algorithm. On the one hand, statistical techniques use a density
distribution representing the behaviour of the data. Once the parameters of the distribution are
estimated, anomalies can be detected as data points with low likelihood.

On the other hand, non-parametric techniques do not rely on the availability of parameters
describing the data behaviour. Some of the best known non-parametric techniques are rule-based
approaches, data clustering or machine learning. Rule-based approaches use signatures (or attack
patterns) of previously known attacks to identify anomalies. In data clustering, data are grouped
into clusters according to some measurement. Data points encountered outside these clusters are
labeled as outliers. Finally, machine learning techniques generate a data model that can be used to
identify outliers. This model can be created from labeled data (data tagged as normal or abnormal)
when supervised learning is used. Conversely, when using unsupervised learning, the model can be
generated without prior knowledge of the analysed data.

The problem of statistical approaches is that data distributions are usually unknown because
sensors are mobile or the networks are dynamic. Rule-based approaches have a similar drawback:
predefined signatures are of no use against unknown attacks or network changes. By using clustering

Sensors 2018, 18, 3198 4 of 21

or machine learning techniques, on the other hand, data can be modelled even when its distribution or
behaviour is unknown, and models can be updated periodically to adapt to new data patterns. This is
the reason why these type of techniques are usually preferred in complex heterogeneous environments
that evolve over time.

The problem of data analysis from complex environments has also been studied taking into
account their big data nature. In [5], Suthaharan reviews different machine learning techniques
and their applicability in scenarios with high amounts of data. The author highlights the excellent
classification accuracy of support vector machines (SVM)-based approaches, but also warns about the
computational complexity of these algorithms in a big data context, since these techniques have a high
computational cost. In [24], Hayes et al. propose a system based on two detection levels that are used
to support maximum scalability for large amounts of data. The first level is based on using a historical
data model that provides very fast detection rates. The second level, which is more computationally
expensive, uses k-means clustering to sharpen previous detection results using contextual information
such as location, time of the day, etc.

Smart cities are, by definition, complex environments where one can find high volumes of data
with a dynamic and heterogeneous nature. The current state of the art reviewed above clearly shows
that data analysis and anomaly detection cannot be based on statistical or rule-based approaches alone.
These approaches should be combined with sophisticated techniques based on machine learning,
as suggested in [25,26].

As we previously introduced, the main goal of this paper is to demonstrate to what extent this is
really feasible in a smart city context, not theoretically but in practice. In order to do so, we have carried
out an anomaly analysis testing two well-known machine learning algorithms, SVM and isolation
forests, which are described in the next section.

In order to conduct our test, we might have used deep learning, a subset of machine learning
which uses a hierarchical level of artificial neural networks to carry out the data analysis. In this regard,
recent advances show that this is a very promising field. As an example, algorithms based on deep
belief networks [27] convolutional neural networks [28] or recursive neural networks [29] have been
used successfully in several scenarios to improve the performance obtained with previous machine
learning techniques. However, the use of deep learning for anomaly detection is a research field still in
its infancy. Deep learning techniques, in general, require costly training processes, which is something
easily attainable in fields such as computer vision, speech recognition, etc. However, in the case of
smart city WSNs, obtaining large training datasets is much more complex due to their heterogeneous
nature, which makes every smart city environment different from the rest. Therefore, the use of deep
learning techniques has been considered inappropriate for the purpose of our work.

2.1. One-Class Support Vector Machines (OC-SVM)

Basically, classification techniques based on machine learning require two steps. First, a dataset
is used to train a learning model. Then, the trained model is used to classify new data samples.
Several features define each sample of the datasets. Classification techniques based on support vector
machines (SVM) have proven to be effective in several contexts related to intrusion detection [12,30].
The SVM classification process represents the training dataset in a n-dimensional vector space, n being
the number of features of the training data. Then, it defines a hyperplane (i.e., a n-1 dimensional
plane) that separates (with a maximum margin) the samples from the different classes. The support
vectors are the subset of training samples that are near the hyperplane and that define it. Finally,
the hyperplane acts as a frontier to classify other samples.

In our work, we have used one-class support vector machines (OC-SVM), which are a special case
of semi-supervised SVM that do not require labeled data. OC-SVM build a frontier to classify new
samples as normal or outlier. In SVM, different types of kernel functions are available to build the most
adequate hyperplane for each application. In this work, we have used a radial basis function (RBF)
kernel, which can learn complex regions [31]. In order to build the frontier, RBF kernel OC-SVM use

Sensors 2018, 18, 3198 5 of 21

basically two parameters [32]: ν and γ. On the one hand, ν defines the maximum fraction of outliers
present in the training data. On the other hand, γ establishes the influence area of the support vectors
on the classification. Generally, increasing the value of γ implies adjusting the frontier closer to the
training samples. This reduces the number of misclassified outliers as normal samples. However,
increasing γ too much causes the training data to be overfitted. A usual approach to select optimum
parameters is grid search [33]. This method uses a grid with parameter values that is exhaustively
explored in order to select the values that give the best performance of the SVM over a set of samples.

2.2. Isolation Forest

Isolation forest [34] is an unsupervised outlier detection technique that, unlike OC-SVM, does not
construct a model based on the normal behaviour of a dataset. Instead, this technique builds a model
that explicitly isolates anomalies. This has the advantage that models are already optimized to find
anomalies. Moreover, compared to other popular anomaly detection techniques, such as ORCA, local
outlier factor (LOF) and random forest, a key advantage of isolation forest is not only that it performs
better, but also that requires a shorter processing time. In addition, unlike higher computationally
complex methods, an isolation forest is capable of handling high dimensional spaces and large data sets.

Isolation forest finds anomalies building an ensemble of iTrees for a data set. Building an iTree
consists of recursively building a tree structure, where in each step a feature is randomly chosen and
also a splitting value between the maximum and the minimum of that feature is randomly selected.
In this way, for each iTree in the ensemble, it is possible to compute the path length from the root to
a leaf that is required to isolate each sample of a data set. A short average path length in the ensemble
means that it is easy to isolate that sample and, therefore, it points out an anomaly. This technique
requires two parameters: the number of trees in the ensemble and sub-sampling size to build each tree.
In our work, we have set the parameter values to the values recommended by the authors proposing
isolation forest in [34] (i.e., ensemble size of 100 trees and minimum sub-sampling size of 256 samples).

2.3. Smart City Testbeds

The growing awareness that data reliability and security are of utmost importance has motivated
the development of several initiatives focussed on testing new protocols, devices, security measures,
etc. in smart city contexts. Basically, these initiatives can be divided into three types: simulations (1),
urban testbeds (2) and laboratory testbeds (3). Each environment has some advantages if used at the
right time of project maturity [35,36].

Initiatives based on simulations (1) usually have the main advantage of flexibility. Teams in charge
of simulations can easily change test settings and also change the configuration of the protocols or
the devices included in the test scenario, add or remove nodes, change their geographic location, etc.
There are powerful simulators for the IoT, such as NS-2 [37], Cooja [38], OMNET++ [39] or Castalia [40].
However, the lack of realism is the main drawback of this type of initiatives. This type of simulation
is appropriate to test algorithm and protocols; nonetheless, they are not enough to fully validate
proposed solutions in complex environments.

On the other hand, urban testbeds (2) aim at deploying a large amount of IoT devices in one or
several cities. For instance, City of Things [41] in Antwerpen, Belgium, and SmartSantander [20] in
Santander, Spain, are two projects where a broad range of technologies have been deployed to create
large smart cities for research purposes. Contrary to what happened with (1), this type of testbed has
the advantage of realism. Nonetheless, these initiatives generally lack flexibility to adapt the tests to
other configurations or equipment beyond those deployed since the beginning. Moreover, setting up
and running the experiments tend to be more expensive and requires more time in real environments
than in simulators.

Halfway between (1) and (2) lay the initiatives deploying testbeds in laboratories (3). Although
this type of testbed is limited in terms of scalability and interaction with the citizens, it has the
advantage of using real hardware in a controlled environment. In addition, laboratory testbeds

Sensors 2018, 18, 3198 6 of 21

are more flexible than urban testbed, since it is much easier to add/remove devices, deploy new
protocols, etc. In addition, testing in a laboratory allows experimenting with extreme conditions
that may affect other services beyond those directly involved in the testbed. For example, jamming
attacks not only interfere with the communication of testbed nodes, but also with other smart city
devices communicating in the same frequency band, and it could even disrupt the neighbors’ Wi-Fi
connections.

Regarding laboratory testbeds, it can be seen that in many cases, the test scenarios are designed to
test a single smart city use case, such as the experiment in power systems in the SmartGridLab [42]
project. Testbeds of this type provide valuable data for improving a particular service, device or
protocol, but they take a silo approach.

On the other hand, other laboratory testbeds take a more holistic approach. These initiatives
consider the heterogeneity of the smart city and seek to test technological elements taking into
account their interaction and integration with other devices. An outstanding initiative of this type
is I3ASensorBed [43]. This is a testbed focused on testing body area networks (BANs) and WSN
communications. Another initiative with a stronger focus in cybersecurity is the Smart City Testbed
Laboratory [44] deployed by the Center for Cyber Security at New York University Abu Dhabi
(CCS-AD). With the aim of improving the safety of cyber-physical systems from a multidisciplinary
approach, this laboratory incorporates typical hardware from different domains of a smart city,
interconnecting the devices and exchanging data. In order to gather data and to monitor the devices,
the laboratory includes an IoT element control platform.

In order to test the feasibility of the aforementioned machine learning algorithms, in this article,
we take a laboratory testbed approach very similar to the Smart City Testbed Laboratory. In addition,
as shown later on, in order to mitigate the lack of interaction with the city dynamics, our tests
have been carried out using values captured from real smart city services, thus replicating real
transmission patterns.

3. Simulation Environment

To design the simulation environment created to perform our tests, we have replicated in the
lab a standard area of a smart city. To this end, we have emulated certain characteristics that make
the smart city a very complex scenario, especially regarding WSN security. The main features of this
simulation environment are:

• It is highly heterogeneous, which means it includes:

– Different protocols (i.e., ZigBee, 6LoWPAN, WiFi).
– Different hardware (i.e., Z1, Waspmotes).
– Different sensor configurations (i.e., battery or grid powered, nodes with different

computational limits, low/high transmit power).
– Different network topologies (i.e., star, mesh).
– Different routing path to the smart city servers (i.e., direct routing to the city servers, indirect

routing through a third party server).
– Different types of sensors (i.e., electrical measurements, environmental).

• It has different components physically sharing an area. Regarding security, this is relevant because
an attack affecting an area can affect several nodes from different networks.

• It has different WSNs sharing the radioelectric space. Here, an attack affecting a particular
frequency band can disrupt communication in several networks.

• It has different WSNs sharing a single gateway. An attack aiming at the gateway can cause packet
loss of distant nodes from different networks.

Figure 1 shows a technical representation of the simulation environment and Table 1 describes in
more detail the most relevant characteristics of the included networks. As the figure shows, the WSNs

Sensors 2018, 18, 3198 7 of 21

send data (i.e., sensor readings and network status data) from the sensors to the gateway. The gateway,
in turn, re-sends the data through the Internet to a server in the lab, where the data are stored in
a data warehouse. On a large scale, this server would be the equivalent to the central servers of the
smart city. It is worth noting that the sensor networks are configured either in a star topology or in
a mesh topology, which are the most common topologies in smart cities. The networks configured
in a star topology use, on the one hand, a point-to-point TCP socket connection over WiFi between
each sensor node and the gateway in the RPI network. On the other hand, in the Libelium network,
the ZigBee protocol coordinates an adequate transmission between all the nodes and the gateway [45].
In both cases, the gateway network address has been manually configured in the sensor nodes.
The network configured in a mesh topology, i.e., the Zolertia network, uses 6LoWPAN to enable
multihop capabilities, implementing UDP in the transport layer and IPv6 in the network layer with
RPL (Routing Protocol for Low power and Lossy Networks) [46]. In order to force sensors nodes
to communicate using multiple hops in a reduced scenario, such as the laboratory, the transmission
power of the nodes in this network has been set particularly low.

Table 1. Details of the testbed.

Zolertia Network

• Device models: Z1 [47]
• Network topology: mesh
• Transmit power: Z1-0 and Z1-7 at 0 dBm; Z1-1 to Z1-6 at −15 dBm
• Communication protocol: 6LoWPAN
• Frequency and channel: 2.4 GHz, channel 15

Libelium network

• Device models: Waspmote [45]
• Network topology: star
• Transmit power: 17 dBm
• Communication protocol: ZigBee
• Frequency and channel: 2.4 GHz, channel 14

RPI network

• Device models: Raspberry Pi 3 [48]
• Network topology: star
• Transmit power: 15 dBm
• Communication protocol: WiFi
• Frequency and channel: 2.4 GHz, channel 1

Smart citizen kit (SCK)

• Device models: SCK 1.1 [49]
• Network topology: star
• Transmit power: 15 dBm
• Communication protocol: WiFi
• Frequency and channel: 2.4 GHz, channel 1

Data warehouse

• Splunk 6.5.1

In order to add more realism to the executed simulations, the sending patterns of the nodes and
the content of the sensor readings have been set up cloning the behavior of real sensors from the smart
city of Barcelona (excluding the SCK, which reads actual environmental data from the lab). Nodes
have also been configured to send network status data gathered by the sensors. Moreover, in order to
collect a larger volume of data, simulation speed has been triplicated. This means that one week of
simulation data corresponds to three weeks of actual city data.

Sensors 2018, 18, 3198 8 of 21

Figure 1. Technical schema of the testbed.

4. Attack Description

Once the simulation environment has been set up, we have implemented some attacks so that
we can later apply anomaly detection techniques and analyse their results. Specifically, we have
implemented three denial of service (DoS) attacks against the aforementioned networks. The execution
of these attacks has been divided in different stages that are depicted in Figure 2. The first stage was
an attack-free execution and the attacks were executed from the second to the fourth stage.

Figure 2. Attack execution cronogram.

The following sections provide more details about the implemented attacks.

4.1. Stage 2: Jamming

In a random jamming attack, attackers broadcast a high-power signal in a random manner in
order to create interference with current transmissions. In our case, we have implemented the jamming
attack using a Boscam-TS321 [50] (Figure 3). This device is a video transmitter with a 500 mW power
output. The transmitter uses radio frequencies ranging from 2414 MHz to 2510 MHz divided into eight
different channels. From this moment on, we will refer to this transmitter as jammer.

Sensors 2018, 18, 3198 9 of 21

Figure 3. Boscam-TS321 2.4 GHz video transmitter.

As Figures 4 and 5 show, the jammer transmits a high-power signal that is able to disrupt and
cover up any other signal from the nodes in the simulation. In order to achieve this, the same radio
frequency must be set up in the jammer and in the sensor nodes. However, some WSNs implement
frequency hopping spread spectrum [51], a security protocol that allows nodes to agree on changing the
transmission channel to avoid certain types of jamming attacks. In any case, using three Boscam-TS321
transmitters would be enough to block the entire spectrum and avoid the sensor motes in the 2.4 GHz
band to find a non occupied channel. In our simulation, to avoid blocking our campus WiFi, we have
used only one jammer, and we have disabled the frequency hopping feature of our nodes. Since all the
nodes in the simulation are configured to work in the 2.4 GHz band, this attack affects all the networks
of our scenario.

Figure 4. Radio spectrum between 2.3 GHz and 2.5 GHz at the transmission time of a Waspmote.

Figure 5. Radio spectrum between 2.3 GHz and 2.5 GHz with the jammer on.

Sensors 2018, 18, 3198 10 of 21

4.2. Stages 2 and 3: Selective Forwarding

In a selective forwarding attack, a compromised gateway is used to discard part of the packets
that it should forward to the next hop. To do so, attackers must have had access previously to one
or more nodes with forwarding capabilities. It should be noted that this is possible in the context of
a smart city, where nodes are often placed unprotected in the streets. Then, once attackers have taken
control of a gateway, they can reprogram it to discard some received packets instead of forwarding
them. In our case, as shown in Figure 2, we have implemented two different selective forwarding
attacks in the third and fourth stage. The attacks have targeted the Z1 network compromising its
gateway. In the first attack, the gateway randomly discards 50% of the received packets coming from
any other Z1 node. In the second stage, the gateway randomly discards 75% of the packets.

In order to implement this attack in the Z1 gateway interface, we have modified the packet_input
function in the Contiki (Contiki is the Z1 nodes’ operating system) file “/core/net/ip/tcpip.c” (tcpip.c
file contains the implementation of the TCP/IP protocol), as it can be seen in Listing 1.

Listing 1: Modification of the packet_input function in the tcpip.c Contiki file to perform a 50% selective
forwarding attack.

s t a t i c void
packet_input (void)
{
//Modified s e c t i o n to perform a s e l e c t i v e forwarding a t t a c k
unsigned shor t threshold_rand_max ;
unsigned shor t random_number ;
random_number = random_rand () ;
//Next l i n e c o n t r o l s the percentage of discarded packets (50% in t h i s case)
threshold_rand_max = RANDOM_RAND_MAX∗ 0 . 5 ;
i f (random_number<threshold_rand_max) {
//The node performs the a t t a c k and does not forward a packet
uip_len =0;
}
//End of the modified s e c t i o n to perform a s e l e c t i v e forwarding a t t a c k

i f UIP_CONF_IP_FORWARD
i f (uip_len > 0) {
[. . .]
endi f /∗ UIP_CONF_IP_FORWARD ∗/
}

5. Anomaly Detection

In this section, we will explain how the data generated in the four previously mentioned
stages have been processed. Firstly, we have carried out a visual analysis, as shown in Section 5.1.
Then, Section 5.2 describes how we have used two different machine learning techniques to compare
their results and draw conclusions on the feasibility of their use in a smart city scenario.

5.1. Visual Analysis

As a first anomaly detection technique, before proceeding to the machine learning analysis,
we have aggregated data in different time intervals in order to perform a preliminary visual analysis.

Figure 6 plots the number of packets received by the SCK node every two hours. Below, Figure 7
plots the average time between consecutive packets in the RPI network. In this second case, data have
been aggregated in 4 h intervals. These figures show the effects that the attacks have had on two

Sensors 2018, 18, 3198 11 of 21

WSNs. For example, in the first plot, we can easily identify three moments in which the SCK node has
stopped transmitting. The first two times, the data warehouse has stopped receiving SCK data due to
the unavailability of the third party internet service from which data are collected. The third time has
been due to the saturation of the SCK device.

A bit more subtle analysis of the plots shows the effect of the jamming attack. In Figure 7, around
10 to 13 June, the time between packets increases. Around the same time, in Figure 6, the number of
received packets is greatly reduced.

Figure 6. Number of packets received from the SCK node aggregated every two hours.

Figure 7. Average time between consecutive packets in the RPI network. These data have been
aggregated every 4 h.

This type of visual analysis is useful for smart city IT administrators or data analysts to quickly
review the state of their systems. Furthermore, analysts should define certain rules to automatically get
alerted in case of a single or a correlation of variables exceeding certain thresholds. However, network
data can be very dynamic and their behaviour can evolve over time. Thus, defining thresholds is
often too complex or unfeasible in scenarios such as the smart city. Moreover, security attacks can
have unexpected effects without a clear detrimental impact on a single variable, creating instead
an anomalous situation that can only be detected if several variables are analyzed at the same time.
Therefore, as we previously mentioned, the use of more advanced techniques is very important. In the
next section, we use machine learning techniques to perform an anomaly detection analysis in the
simulation environment we have presented above.

5.2. Attack Detection with Machine Learning

In this section, we describe how we have used OC-SVM and isolation forest algorithms to conduct
our anomaly analysis. Moreover, as shown later on, we will see how different approaches have been
used to divide the WSN data at the time of computing the models. The utility of these models regarding
the anomaly analysis will be discussed in Section 6.

The scripts implemented to run the algorithms have been written in Python 3.6, and the main
library used for the machine learning computations is scikit-learn 0.19.0 [32]. The code and data
obtained from the tests are accessible at [52].

In the following sections, we will describe the analysed datasets and a summary of the three steps
taken to prepare and evaluate the machine learning models: training, validation and testing.

Sensors 2018, 18, 3198 12 of 21

5.2.1. Dataset Description

Before training the machine learning models, the data gathered from the WSNs have been
aggregated by network in 30 min intervals. Other time intervals are also possible, but we have
considered 30 min is a reasonable trade-off between setting shorter intervals, which overly reduce the
variability of the resulting data, and longer time intervals that reduce the sampling set. Table 2 shows
a summary of the new variables extracted from each network. As shown in the table, the values of the
sensor readings have been ignored, since the implemented attacks have a denial-of-service effect and,
therefore, the values recorded by the sensors have not been altered.

Table 2. Summary of the variables resulting from our aggregation. These variables are the result of
aggregating data from all nodes in each network in 30 min intervals.

Zolertia Network

• Amount of lost packets
• Amount of received packets
• Average time between consecutive packets
• Number of times that the channel was occupied before transmitting

Libelium network

• Amount of lost packets
• Amount of received packets
• Average time between consecutive packets
• Average percentage of battery consumption

RPI network

• Amount of lost packets
• Amount of received packets
• Average time between consecutive packets
• Signal level

Smart citizen kit (SCK)

• Amount of lost packets
• Amount of received packets
• Average time between consecutive packets

Afterwards, the data obtained from the previous aggregation process have been divided into
several dataset partitions, as Figure 8 shows. These partitions have been used to analyse our data using
two different approaches: (1) all variables from all the networks together are used to generate a single
model; (2) the variables from the different networks are used separately to generate different models.

For the first approach, we have created five datasets: a training dataset (tr_all), a validation
dataset (va_all) and a test dataset for each type of attack (te_all_jam, te_all_sf50, te_all_sf75). On the
other hand, for the second approach, we have created 20 datasets. A training dataset for each of the
four networks (tr_z1, tr_wp, tr_rpi, tr_sck), a validation dataset for each of the four networks too (va_z1,
va_wp, va_rpi, va_sck) and a test dataset for each of the three attacks and each network (te_z1_jam,
te_wp_jam, te_rpi_jam, te_sck_jam, te_z1_sf50, te_wp_sf50, te_rpi_sf50, te_sck_sf50, te_z1_sf75, te_wp_sf75,
te_rpi_sf75, te_sck_sf75).

Sensors 2018, 18, 3198 13 of 21

Figure 8. Dataset partition.

5.2.2. Training Phase

The two techniques, OC-SVM and isolation forest are machine learning algorithms that can
be trained with labeled data from just a single class: the attack-free period in our case (Figure 2).
This is necessary in our scenario because labelling data from every possible attack or network
malfunction is not possible, especially in the case of unknown attacks or abnormal network behaviours.
Thus, with these techniques, we have generated models that are able to predict whether new data
belong to the same class as the training data. As the training data are attack-free, any data that does
not belong to this class can be considered an anomaly. Obviously, these models must be retrained
periodically, since smart city WSNs evolve over time.

5.2.3. Validation Phase

The validation datasets have been used basically to find appropriate values for the OC-SVM
parameters (i.e., ν, γ). In order to tune these parameters, we have executed a grid search. Firstly,
we have built a grid with many possible values for the parameters. Then, we have exhaustively
explored the grid, creating new OC-SVM models to find the best combination of parameters. In each
iteration of this algorithm, we have evaluated a pair of values using cross validation: one for the
parameter ν and one for the γ.

For the cross validation, we have divided the attack-free samples of the validation dataset in
10 parts. Then, we have built a new training dataset with nine of these parts, and the remaining
part has been combined with random attack samples from the validation dataset. With the resulting
data, we have trained a new model, evaluating its performance with the f1-score metric (next section
contains more details about metrics). This process has been iterated 10 times, thus obtaining different
models trained with the same parameter values using different parts of the validation dataset. Finally,
the f1-score results of the 10 models have been averaged.

As we can see, this grid search with cross validation has allowed us to select a good combination
of ν and γ parameters (the one with the best f1-score average), and these are the parameters that have
been used in the next test phase.

5.2.4. Test Phase

In this section, we will show the final results of our study, which have been obtained using
the test datasets. As we can see, different samples have been used for the training (i.e., training
datasets), different samples to select the parameters of the algorithms (i.e., validation datasets),
and different samples to evaluate the models (i.e., test datasets). This reduces the probability of
overfitting. Additionally, as Figure 8 shows, the test datasets contain the same proportion of attack
and attack-free samples. In this way, we have avoided having skewed datasets that could lead to
biased conclusions.

Sensors 2018, 18, 3198 14 of 21

To evaluate the predictive capabilities of the models, we have used the metrics summarized in
Table 3, which have been widely used to assess anomaly detection techniques [53]. Each prediction of
the model has been classified as a false positive (FP), if the prediction is ‘anomalous’ and the sample
comes from the attack-free period; a true positive (TP), if the prediction is ‘anomalous’ and the sample
comes from an attack period; a false negative (FN), if the prediction is ‘normal’ and the sample comes
from an attack period; and a true negative (TN), if the prediction is ‘normal’ and the sample comes
from the attack-free period.

Below, we present the prediction results obtained in our experiments. The next section discusses
these results. Figure 9a–c plot the prediction results for the three attacks comparing the two techniques
using together all the variables from all the WSNs.

Table 3. Metrics summary.

True Positive Rate (TPR) Also called detection rate or sensitivity,
measures the percentage of properly detected attacks TP/(TP + FN)

False Positive Rate (FPR) Also called fall-out, measures the percentage
of misclassified normal samples FP/(FP + TN)

F1-score Measures the number of true positives over the average
of predicted and real positives 2TP/(2TP + FP + FN)

(a) (b) (c)

Figure 9. (a) prediction results for the jamming attack period using the variables from all the wireless
sensor networks (WSNs) (training with dataset tr_all and test with dataset te_all_jam); (b) prediction
results for the 50% selective forwarding attack period using the variables from all the WSNs (training
with dataset tr_all and test with dataset te_all_sf50); (c) prediction results for the 75% selective
forwarding attack period using the variables from all the WSNs (training with dataset tr_all and
test with dataset te_all_sf75).

The Figures 10–13 plot the prediction results for the three attacks comparing the two techniques
creating a different model for each network.

Sensors 2018, 18, 3198 15 of 21

(a) (b) (c)

Figure 10. (a) prediction results for the jamming attack period using the variables from Z1 network
(training with dataset tr_z1 and test with dataset te_z1_jam); (b) prediction results for the 50% selective
forwarding attack period using the variables from Z1 network (training with dataset tr_z1 and test
with dataset te_z1_sf50); (c) prediction results for the 75% selective forwarding attack period using the
variables from Z1 network (training with dataset tr_z1 and test with dataset te_z1_sf75).

(a) (b) (c)

Figure 11. (a) prediction results for the jamming attack period using the variables from WiFi network
(training with dataset tr_rpi and test with dataset te_rpi_jam); (b) prediction results for the 50% selective
forwarding attack period using the variables from WiFi network (training with dataset tr_rpi and test
with dataset te_rpi_sf50); (c) prediction results for the 75% selective forwarding attack period using the
variables from WiFi network (training with dataset tr_rpi and test with dataset te_rpi_sf75).

(a) (b) (c)

Figure 12. (a) prediction results for the jamming attack period using the variables from the SCK
network (training with dataset tr_sck and test with dataset te_sck_jam); (b) prediction results for the
50% selective forwarding attack period using the variables from the SCK network (training with
dataset tr_sck and test with dataset te_sck_sf50); (c) prediction results for the 75% selective forwarding
attack period using the variables from the SCK network (training with dataset tr_sck and test with
dataset te_sck_sf75).

Sensors 2018, 18, 3198 16 of 21

(a) (b) (c)

Figure 13. (a) prediction results for the jamming attack period using the variables from the WP network
(training with dataset tr_wp and test with dataset te_wp_jam); (b) prediction results for the 50% selective
forwarding attack period using the variables from the WP network (training with dataset tr_wp and
test with dataset te_wp_sf50); (c) prediction results for the 75% selective forwarding attack period using
the variables from the WP network (training with dataset tr_wp and test with dataset te_wp_sf75).

6. Discussion

In this section, we discuss several issues related to the simulation and results presented above,
presenting the difficulties encountered in the application of two different machine learning techniques
in our simulated smart city environment.

Using a single model versus several ones. On the one hand, it can be seen that using a single
model including variables from all the networks (i.e., models trained with dataset tr_all) usually results
in good detection rates (Figure 9a,c). Moreover, dealing with a single model instead of dealing with
multiple ones from different networks simplifies administrators’ task. In this way, administrators only
have to review the prediction capabilities of a single model, retrain it if its performance decreases,
and monitor the attack predictions of only one model that can be viewed as a summary of the anomalies
occurring on a group of networks.

On the other hand, generating several models including different variables selected according
to predefined meaningful reasons can help administrators to identify the causes of the anomalies or
the affected equipment. For example, in the case of our jamming attack, conclusions derived from
using all variables from all networks (Figure 9a) are limited to state that there is some malfunction
affecting some element in the whole simulation environment. Nevertheless, studying the jamming
attack predictions using a different model for each network (Figures 10a, 11a, 12a and 13a) shows that
conclusions drawn can be wider. For instance, the data analyst could doubtlessly see that there is
an anomaly affecting the RPI and the SCK networks (Figures 11a and 12a). Thus, administrators could
easily identify the affected equipment.

Therefore, the difficulty here lies in deciding which approach is more appropriate for each smart
city context, since there is a trade-off between simplifying the anomaly detection tasks and being able
to derive more information from the results. Smart city administrators must be aware that there is no
black box technique that can detect any kind of attack and the affected equipment in a scenario such as
the smart city. In fact, a complex procedure and a framework are proposed in [25] in order to assist
smart city administrators to select the most probable attack, and delimit corrupted data and affected
devices in case of incident.

Choosing the right machine learning technique. If we performed a literature review on machine
learning techniques for anomaly detection, we would probably come to the conclusion that SVM-based
techniques are the ones that perform best. In our work, we have seen that both OC-SVM and isolation
forest are suitable to detect the random jamming attack (Figure 9a) and OC-SVM models perform
slightly better at detecting attacks in most of the situations (higher TPR). Moreover, in general, OC-SVM
performs better at not misclassifying attack-free samples (lower FPR). This fact is important in smart
cities so as to prevent overwhelming data analysts with too many false positives. However, in certain

Sensors 2018, 18, 3198 17 of 21

cases (Figures 10a and 12a,b), the isolation forest models are capable of detecting more anomalies
without producing more false positives. Moreover, the initialization of the isolation forest was simple
and, unlike OC-SVM models, it did not require a grid search to find the best parameters.

Therefore, choosing one machine learning technique or another depends on the specific goals and
characteristics of the environment. Data analysts should have tools to allow them to deploy different
machine learning techniques in a simplified manner, so that different results can be compared and
they can take advantage of several techniques simultaneously, each with its particular strengths.

Attacks or malfunctions that sometimes go unnoticed. None of the anomaly detection
techniques is able to properly detect the selective forwarding attacks in the Z1 interface at the gateway.
The study of the selective forwarding periods with the models including only variables from the Z1
network (Figure 10b,c) show poor detection results (i.e., low TPR or high FPR). It is worth noting that,
although the model trained with dataset tr_all shows good detection results during the 75% selective
forwarding attack period (Figure 9c), the malfunction raising signals of anomaly is the collapse of the
SCK network and not the selective forwarding. This can also be seen examining the SCK network
alone (Figure 12c). This enhances our previous conclusion that it is necessary not only to consider large
models including all the possible variables, but also smaller ones including only meaningful variables.

Furthermore, after analyzing in depth the results and reviewing the normal operation of the Z1
network, we can conclude that the lack of good results detecting the selective forwarding attacks is
due to the unreliable communication between the Z1 nodes. Figure 10a shows that even the jamming
attack, which has been clearly detected in other networks, cannot be detected in the Z1 network.
The most plausible cause for this is a large packet loss during the attack-free period. Additionally,
it should be noted that, in this scenario, smart city administrators cannot notice the original packet loss,
since the Z1 nodes have mechanisms to resend lost packets and, eventually, most of the information
arrives at the gateway. From this fact, we can draw some conclusions. Firstly, city administrators
should not trust that WSN providers properly configure their networks, even though sensor readings
are apparently being received correctly at the city datacenters. Malfunctions, such as the one in the Z1
network, are detrimental for the nodes’ battery life and also for their already restringed processing
power. In addition, these malfunctions fill the electromagnetic spectrum with useless packets, causing
interference to other networks. Secondly, analysts should take into account that the response to the
same attack can be different depending on the affected network. For instance, in these experiments,
all the models should have detected the jamming attacks in all the networks, since the attacks aim at
the 2.4 GHz band. However, the anomaly was clearly detected in just two of the networks.

Availability of anomaly-free data. Machine learning techniques use training processes to learn
the mathematical models that are later used to classify data (normal samples or anomalies in our case).
This training process, as previously shown, is based on the availability of a sufficiently large set of
anomaly-free data. However, many anomaly detection strategies are designed and implemented once
the networks have already been deployed. At this point, logically, it is difficult to guarantee that any
set of real data is free of anomalies. Therefore, IT administrators and WSN providers should establish
initial periods where networks are monitored carefully until they work as expected and networks
generate anomaly-free data. Afterwards, given the fact that the behaviour of these networks evolves,
models must be re-trained. At this moment, data analysts should bear in mind that networks can
go through long periods of malfunctioning, so this also must be taken into account when re-training
the models.

Additionally, because of the infeasibility of gathering a complete dataset of anomaly-free samples
even in the most favorable circumstances, it is important that the detection techniques chosen to
discover anomalies are capable to build the models from datasets which may include a certain amount
of outliers (or abnormal samples), as is the case of the techniques used in this paper.

The challenge here lies in being able to obtain data that can be considered anomaly-free with
a high degree of certainty when the smart city’s WSNs are already operating. New techniques or

Sensors 2018, 18, 3198 18 of 21

methodologies should be devised to solve this because otherwise there is no way that one can use any
anomaly detection technique based on machine learning in this context.

Aggregation and definition of time windows. As we have seen in Figure 7, attacks have obvious
effects when aggregating some variables in 4-h window intervals. Nonetheless, although this is
practical to visually detect the attacks, it becomes a problem when training models. Using large time
periods to aggregate data implies reducing the amount of samples that can be included in the datasets.
Hence, this might become a problem due to a lack of samples to train, validate and test the models.
In order to mitigate this problem, in addition to reducing the aggregation time intervals, analysts must
consider using sliding windows (instead of fixed-interval windows as we did in our work), and also
using mechanisms such as cross validation, as explained in Section 5.2.3, instead of creating different
datasets for training and validation as it is being done in other scenarios with more available data.

7. Conclusions

Anomaly analysis in highly heterogeneous and dynamic environments, such as the smart
city, requires sophisticated mechanisms. Research carried out to date has shown that machine
learning-based techniques perform very well in these type of scenarios. However, in this paper,
we have shown that putting this into practice is not easy at all.

There exists no black-box solution based on a multipurpose detection algorithm that is capable
of performing a good anomaly detection regardless of the specific smart city environment. Quite the
opposite, data analysts will face many difficulties and challenges, among which we have highlighted
the following in this paper: choosing the right machine learning technique, analysing all variables
through a single model or several of them, tackling with attacks or malfunctions that go unnoticed,
obtaining anomaly-free data and defining the right aggregation time window.

In general, our work brings to light that analysts must be highly skilled both in data analysis
and network administration and security because they must know how networks are supposed to
behave. Therefore, multidisciplinary teams are necessary. Dealing with this from the very beginning,
additionally, is of utmost importance (even though this is rarely the case) because otherwise it is difficult
to obtain anomaly-free data and, without it, modelling the normal data behaviour is not possible.

Additionally, our work also reveals that there is still much work to do in the area of developing
tools that promote and simplify the use of different types of anomaly detection techniques in
real scenarios.

Finally, in our work, we have used two specific well-known machine learning algorithms, but it
is worth noting that the encountered difficulties mentioned in our discussion would have been the
same using other techniques. The stated difficulties or challenges are not motivated by any particular
algorithm feature but instead to the fundamental way machine learning algorithms work.

Author Contributions: Conceptualization, V.G.-F., C.G. and H.R.-P.; Investigation, V.G.-F., C.G. and H.R.-P.;
Software, V.G.-F.; Writing—Original Draft, V.G.-F. and C.G.; Writing—Review & Editing, H.R.-P.

Funding: This work is partially funded by the Ministry of Economy and Competitiveness through the project
SMARTGLACIS (TIN2014-57364-C2-2-R).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Tang, V.; Zheng, Y.; Cao, J. An intelligent car park management system based on wireless sensor networks.
In Proceedings of the 1st International Symposium on Pervasive Computing and Applications, Urumchi,
China, 3–5 August 2006; pp. 65–70.

2. Leccese, F.; Cagnetti, M.; Trinca, D. A smart city application: A fully controlled street lighting isle based
on Raspberry-Pi card, a ZigBee sensor network and WiMAX. Sensors 2014, 14, 24408–24424. [CrossRef]
[PubMed]

http://dx.doi.org/10.3390/s141224408
http://www.ncbi.nlm.nih.gov/pubmed/25529206

Sensors 2018, 18, 3198 19 of 21

3. Mutiangpili, J. Government Sector Outsourcing; THOLONS: New York, NY, USA, 2010.
4. The Royal Academy of Engineering. Smart Infrastructure: The Future; The Royal Academy of Engineering:

London, UK, 2012; pp. 16–17.
5. Suthaharan, S. Big data classification: Problems and challenges in network intrusion prediction with machine

learning. ACM SIGMETRICS Perform. Eval. Rev. 2014, 41, 70–73. [CrossRef]
6. Linden, G.; Smith, B.; York, J. Amazon.com recommendations: Item-to-item collaborative filtering.

IEEE Internet Comput. 2003, 1, 76–80. [CrossRef]
7. Bennett, J.; Lanning, S. The Netflix prize. In Proceedings of the KDD Cup and Workshop, San Jose, CA, USA,

12 August 2007; p. 35.
8. Vincent, L. Google book search: Document understanding on a massive scale. In Proceedings of the 9th

International Conference on Document Analysis and Recognition, Curitiba, Brazil, 23–26 September 2007;
pp. 819–823.

9. Smith, R. An overview of the Tesseract OCR engine. In Proceedings of the 9th International Conference on
Document Analysis and Recognition, Curitiba, Brazil, 23–26 September 2007; pp. 629–633.

10. Och, F.J.; Ney, H. The alignment template approach to statistical machine translation. Comput. Linguist.
2004, 30, 417–449. [CrossRef]

11. Graham, P. A Plan for Spam. 2002. Available online: http://www.paulgraham.com/spam.html (accessed on
5 June 2018).

12. Kaplantzis, S.; Shilton, A.; Mani, N.; Sekercioglu, Y. A. Detecting selective forwarding attacks in wireless
sensor networks using support vector machines. In Proceedings of the 3rd IEEE International Conference on
Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, 3–6 December 2007;
pp. 335–340.

13. Shahid, N.; Naqvi, I.H.; Qaisar, S.B. One-class support vector machines: Analysis of outlier detection for
wireless sensor networks in harsh environments. Artif. Intell. Rev. 2015, 43, 515–563. [CrossRef]

14. El Mourabit, Y.; Bouirden, A.; Toumanari, A.; Moussaid, N.E. Intrusion detection techniques in wireless
sensor network using data mining algorithms: Comparative evaluation based on attacks detection.
Int. J. Adv. Comput. Sci. Appl. 2015, 6, 164–172.

15. Naphade, M.; Banavar, G.; Harrison, C.; Paraszczak, J.; Morris, R. Smarter cities and their innovation
challenges. Computer 2011, 44, 32–39. [CrossRef]

16. PlanIT. Living PlanIT OS. Available online: http://living-planit.com (accessed on 4 October 2017).
17. IBM. Rio Operation Center. Available online: http://www-03.ibm.com/press/us/en/pressrelease/33303.

wss (accessed on 4 October 2017).
18. Lee, Y.W.; Rho, S. U-city portal for smart ubiquitous middleware. In Proceedings of the 12th Advanced

Communication Technology (ICACT), Gangwon-Do, Korea, 7–10 February 2010; pp. 609–613.
19. Smart Santander. Smart Santander. Available online: http://www.smartsantander.eu (accessed on

4 October 2017).
20. Sanchez, L.; Muñoz, L.; Galache, J.A.; Sotres, P.; Santana, J.R.; Gutierrez, V.; Ramdhany, R.; Gluhak, A.;

Krco, S.; Theodoridis, E.; et al. SmartSantander: IoT experimentation over a smart city testbed. Comput. Netw.
2014, 61, 217–238. [CrossRef]

21. Kavitha, T.; Sridharan, D. Security vulnerabilities in wireless sensor networks: A survey. J. Inf. Assur. Secur.
2010, 5, 31–44.

22. Modares, H.; Salleh, R.; Moravejosharieh, A. Identifying sources of interference in RSSI traces of a single
IEEE 802.15.4 channel. In Proceedings of the 3rd International Conference Computational Intelligence,
Modelling and Simulation, Langkawi, Malaysia, 20–22 September 2011; pp. 308–311.

23. Rajasegarar, S.; Leckie, C.; Palaniswami, M. Anomaly detection in wireless sensor networks. IEEE Wirel. Commun.
2008, 15, 34–40. [CrossRef]

24. Hayes, M.A.; Capretz, M.A. Contextual anomaly detection in big sensor data. In Proceedings of the 9th IEEE
International Conference on Big Data (BigData Congress), Washington, DC, USA, 27–30 October 2014; pp. 64–71.

25. Garcia-Font, V.; Garrigues, C.; Rifà-Pous, H. Attack classification schema for smart city WSNs. Sensors
2017, 17, 771. [CrossRef] [PubMed]

26. Bass, T. Intrusion detection systems and multisensor data fusion. Commun. ACM 2000, 43, 99–105. [CrossRef]
27. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput.

2006, 18, 1527–1554. [CrossRef] [PubMed]

http://dx.doi.org/10.1145/2627534.2627557
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1162/0891201042544884
http://www.paulgraham.com/spam.html
http://dx.doi.org/10.1007/s10462-013-9395-x
http://dx.doi.org/10.1109/MC.2011.187
http://living-planit.com
http://www-03.ibm.com/press/us/en/pressrelease/33303.wss
http://www-03.ibm.com/press/us/en/pressrelease/33303.wss
http://www.smartsantander.eu
http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://dx.doi.org/10.1109/MWC.2008.4599219
http://dx.doi.org/10.3390/s17040771
http://www.ncbi.nlm.nih.gov/pubmed/28379192
http://dx.doi.org/10.1145/332051.332079
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513

Sensors 2018, 18, 3198 20 of 21

28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [CrossRef]

29. Socher, R.; Lin, C.; Manning, C.; Ng, A.Y. Parsing natural scenes and natural language with recursive
neural networks. In Proceedings of the 28th IEEE International Conference on machine learning (ICML-11),
Bellevue, WA, USA, 27 June–2 July 2011; pp. 129–136.

30. Este, A.; Gringoli, F.; Salgarelli, L. Support vector machines for TCP traffic classification. Comput. Netw.
2009, 53, 2476–2490. [CrossRef]

31. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15:1–15:58.
[CrossRef]

32. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

33. Zhuang, L.; Dai, H. Parameter optimization of kernel-based one-class classifier on imbalance learning.
J. Comput. 2006, 1, 32–40. [CrossRef]

34. Liu, F.T.; Ting, K.M.; Zhou, Z. Isolation forest. In Proceedings of the 8th IEEE International Conference on
Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

35. Imran, M.; Said, A.M.D.; Hasbullah, H. A survey of simulators, emulators and testbeds for wireless
sensor networks. In Proceedings of the International Symposium in Information Technology (ITSim),
Kuala Lumpur, Malaysia, 15–17 June 2010; pp. 897–902.

36. Horneber, J.; Hergenröder, A. A survey on testbeds and experimentation environments for wireless sensor
networks. IEEE Commun. Surv. Tutor. 2014, 16, 1820–1838. [CrossRef]

37. Breslau, L.; Estrin, D.; Fall, K.; Floyd, S.; Heidemann, J.; Helmy, A.; Huang, P.; McCanne, S.; Varadhan, K.;
Xu, Y.; et al. Advances in network simulation. Computer 2000, 33, 59–67. [CrossRef]

38. Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-level sensor network simulation with
Cooja. In Proceedings of the 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA,
14–16 November 2006; p. 53.

39. Varga, A. Discrete event simulation system. In Proceedings of the 15th European Simulation Multiconference,
Prague, Czech Republic, 6–9 June 2001.

40. Pediaditakis, D.; Tselishchev, Y.; Boulis, A. Performance and scalability evaluation of the Castalia wireless
sensor network simulator. In Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, Malaga, Spain, 16–18 March 2010; p. 53.

41. Latre, S.; Leroux, P.; Coenen, T.; Braem, B.; Ballon, P.; Demeester, P. Smart City Applications TestBed. City of
things: An integrated and multi-technology testbed for IoT smart city experiments. In Proceedings of the
2nd International Smart Cities Conference, Trento, Italy, 12–15 September 2016; pp. 1–8.

42. Lu, G.; De, D.; Song, W.Z. Smartgridlab: A laboratory-based smart grid testbed. In Proceedings of
the 1st International Conference on Sensor Applications, Experimentation and Logistics, Athens, Greece,
25 September 2009; pp. 115–118.

43. Olivares, T.; Royo, F.; Ortiz, A.M. An experimental testbed for smart cities applications. In Proceedings of
the 11th ACM International Symposium on Mobility Management and Wireless Access, Barcelona, Spain,
3–8 November 2013; pp. 115–118.

44. NYUAD. Smart City Testbed NYUAD. Available online: http://sites.nyuad.nyu.edu/ccs-ad/about/
research-areas-2/research-labs-groups/smart-city-testbed/ (accessed on 4 June 2018).

45. Libelium. Waspmote Datasheet; Libelium: Zaragoza, Spain, 2015.
46. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R.

RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. Available online: https://tools.ietf.org/
html/rfc6550 (accessed on 4 June 2018).

47. Zolertia. Z1 Datasheet; Zolertia: Barcelona, Spain, 2010.
48. Raspberry Pi. Datasheet Raspberry Pi Compute Module; Raspberry Pi: Cambridge, UK, 2016.
49. Smart citizen. SCK Detailed Specifications. Available online: https://docs.smartcitizen.me/#/start/detailed-

specifications (accessed on 4 October 2017).
50. BOSCAM TS321 2.4g 500mw wireless AV Transmitter TX. Available online: https://www.fpvmodel.com/

ts321-2-4g-500mw-wireless-av-transmitter_g88.html (accessed on 20 September 2018).

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.comnet.2009.05.003
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.4304/jcp.1.7.32-40
http://dx.doi.org/10.1109/COMST.2014.2320051
http://dx.doi.org/10.1109/2.841785
http://sites.nyuad.nyu.edu/ccs-ad/about/research-areas-2/research-labs-groups/smart-city-testbed/
http://sites.nyuad.nyu.edu/ccs-ad/about/research-areas-2/research-labs-groups/smart-city-testbed/
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc6550
https://docs.smartcitizen.me/#/start/detailed-specifications
https://docs.smartcitizen.me/#/start/detailed-specifications
https://www.fpvmodel.com/ts321-2-4g-500mw-wireless-av-transmitter_g88.html
https://www.fpvmodel.com/ts321-2-4g-500mw-wireless-av-transmitter_g88.html

Sensors 2018, 18, 3198 21 of 21

51. Mpitziopoulos, A.; Gavalas, D.; Pantziou, G.; Konstantopoulos, C. Defending wireless sensor networks from
jamming attacks. In Proceedings of the 18th IEEE International Symposium Personal, Indoor and Mobile
Radio Communications, Athens, Greece, 3–7 September 2007; pp. 1–5.

52. Garcia-Font, V.; Garrigues, C. Rifà-Pous, H. Anomaly Analysis in Smart City Contexts: Difficulties
and Challenges Ahead (Source Code). Available online: http://einfmark.uoc.edu/technology/get/id/3
(accessed on 16 July 2018).

53. Lazarevic, A.; Ertöz, L.; Kumar, V.; Ozgur, A.; Srivastava, J. A Comparative Study of Anomaly Detection
Schemes in Network Intrusion Detection. In Proceedings of the 2003 SIAM International Conference on Data
Mining, San Francisco, CA, USA, 1–3 May 2003; pp. 25–36.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://einfmark.uoc.edu/technology/get/id/3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	One-Class Support Vector Machines (OC-SVM)
	Isolation Forest
	Smart City Testbeds

	Simulation Environment
	Attack Description
	Stage 2: Jamming
	Stages 2 and 3: Selective Forwarding

	Anomaly Detection
	Visual Analysis
	Attack Detection with Machine Learning
	Dataset Description
	Training Phase
	Validation Phase
	Test Phase

	Discussion
	Conclusions
	References

