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Abstract: Massive multiple-input multiple-output (MIMO) systems can be applied to support
numerous internet of things (IoT) devices using its excessive amount of transmitter (TX) antennas.
However, one of the big obstacles for the realization of the massive MIMO system is the overhead
of reference signal (RS), because the number of RS is proportional to the number of TX antennas
and/or related user equipments (UEs). It has been already reported that antenna group-based RS
overhead reduction can be very effective to the efficient operation of massive MIMO, but the method
of deciding the number of antennas needed in each group is at question. In this paper, we propose a
simplified determination scheme of the number of antennas needed in each group for RS overhead
reduced massive MIMO to support many IoT devices. Supporting many distributed IoT devices is a
framework to configure wireless sensor networks. Our contribution can be divided into two parts.
First, we derive simple closed-form approximations of the achievable spectral efficiency (SE) by using
zero-forcing (ZF) and matched filtering (MF) precoding for the RS overhead reduced massive MIMO
systems with channel estimation error. The closed-form approximations include a channel error
factor that can be adjusted according to the method of the channel estimation. Second, based on the
closed-form approximation, we present an efficient algorithm determining the number of antennas
needed in each group for the group-based RS overhead reduction scheme. The algorithm depends
on the exact inverse functions of the derived closed-form approximations of SE. It is verified with
theoretical analysis and simulation that the proposed algorithm works well, and thus can be used as
an important tool for massive MIMO systems to support many distributed IoT devices.

Keywords: antenna group; massive MIMO; reference signal (RS)

1. Introduction

Massive multiple-input multiple-output (MIMO) system is a powerful technology that can
increase both spectral efficiency (SE) and energy efficiency (EE), and it has been actively discussed
to be included in the 3rd generation partnership project (3GPP) standard as core technology for 5G
systems [1–3]. The massive MIMO system uses a large amount of transmitter (TX) antennas and serves
limited number of user equipments (UEs) and/or Internet of things (IoT) devices/sensors, so it is a
combination scheme of multi-user (MU) MIMO and beamforming, and its drastic performance gain
has already been proven in various literature [4–8]. Recently, it has also been proven that massive
MIMO is quite effective in supporting many Internet of things (IoT) and/or Industrial Internet of things
(IIoT) devices, and thus can be used for a core technology to configure wireless sensor networks [9–15].
The calibration of transceiver impairment is very important problem to support distributed IoT devices
using massive MIMO [9,10], because without getting accurate channel information, it is impossible
to support the distributed IoT devices. In [9], authors proposed very effective channel calibration
method to reduce the channel mismatch due to the radio frequency (RF) impairment. In their method,
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they used power headroom which is reported periodically and/or aperiodically from distributed IoT
devices to base station (BS), to deliver the RF impairment information of IoT devices. Based on the
RF impairment information which is embedded in power headroom, BS performs precoding with
the compensation of channel mismatch. This is very important scheme to support distributed IoT
devices using massive MIMO equipped data center. A more general work for transceiver impairment
calibration was also proposed in [10]. In [10], authors investigated massive MIMO-based distributed
detection with general transceiver impairments at both a massive-antenna data center and multiple
single-antenna sensors. They first derived closed-form expressions to show the dependence of both the
probability of detection and the probability of false alarm on the transceiver impairments, then they
showed that hardware impairments create finite ceilings on the detection performance. In addition,
they formulated an optimization problem to maximize the probability of detection, while maintaining
a constant false alarm probability and a sum sensor reporting power budget. By exploiting the
inherent structures in the problem formulation, they developed an iterative algorithm to solve the
problem via invoking the alternating direction method of multipliers. In addition with the results,
there has been a high interest to equip the sensor fusion center with massive MIMO framework [11–15].
In [11], authors considered a decentralized multi-sensor estimation problem where sensor nodes
observe noisy versions of a correlated random source vector. The sensors amplify and forward their
observations over a fading coherent multiple access channel to a fusion center. The fusion center
is equipped with a massive MIMO and adopts a minimum mean-square error (MMSE) approach
for estimating the source. They optimized the transmission power at each sensor node to increase
energy efficiency in various scenarios. In [12,13], authors studied channel-aware decision fusion over
MIMO channels, in the presence of a massive MIMO at the fusion center. They tried to develop linear
fusion rules, and presented a wide choice of low-complexity sub-optimal rules which efficiently exploit
massive MIMO benefits and are able to achieve near-optimal performance. In [14], authors considered
the uplink detection and estimation of a zero mean Gaussian signal in a wireless sensor network
when the fusion center is configured with a massive MIMO. For the detection problem, they studied
the Neyman-Pearson (NP) detector and energy detector (ED), and found optimal values for the
sensor transmission gains. According to the results, while bounds derived for NP detection shows
performance gains for a fusion center with massive MIMO in low sensor transmit power scenarios,
the benefit is shown to disappear when the transmit power is high. However, for the ED, having
massive MIMO at the fusion center provides a significant advantage even when the sensors have high
power. In [15], authors considered distributed detection in wireless sensor networks with a massive
MIMO fusion center. Using the large deviation principle and random matrix theory, they analyzed the
asymptotic detection performance of optimal hypothesis testing in terms of error exponents for the
false alarm and miss detection probabilities which enable us to predict how difficult it will be to attain
a certain level of detection reliability.

Various studies already have shown that massive MIMO is quite effective to support distributed
IoT devices. However, one of big obstacles to the realization of massive MIMO systems is reference
signal (RS) overhead, which increases as the number of transmitter (TX) antennas and/or user
entities (UEs) increases. The RS overhead reduction is a classical issue in research field of wireless
communication, and numerous related technologies have been introduced [16–20]. In general, for
massive MIMO, it is very difficult to apply orthogonal RS to each antenna due to the excessive amount
of TX antennas, thus antenna group-based RS overhead reduction scheme is generally applied [20,21].
In this kind of scheme, in each antenna group, the same RS is shared. In the case, there is enough
correlation among antennas, antenna group can be decided based on beam groups and locations of
distributed UEs. If there is not enough correlation in each antenna, several RS superposition schemes
can be applied. A blind channel estimation scheme using the specific statistical property of the signal
and the channel were introduced in [22,23]. A training based super-imposed signal, which locates
the RS stream and data stream in the same resources, and can also be applied to super-imposed RS
streams, were introduced in [24,25]. It is already proven that the antenna group-based RS overhead
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reduction scheme is quite effective. One of important factors in designing the antenna group-based RS
overhead reduction scheme is how many antennas will be grouped in each group. Several techniques
that can effectively be applied to antenna group-based RS overhead reduction scheme have been
proposed [20,21], while little work has been done for the selection criterion of the number of antennas
needed in each group, and related system design [16–19,22–25]. All of the work described above
focuses solely on the methodology of how to reduce RS overhead. In real situation, if we assume we
have the RS overhead reduction scheme at hand based on any kind of existing methodology, before
applying the scheme, it is necessary to decide the target amount of RS overhead reduction in given
situations. In addition, it is also necessary to design the systematic operational step and apparatus for
real implementation. As far as we know, these have not been actively discussed in the literature yet.

In this paper, we propose a simplified determination scheme of the number of antennas needed
in each group for massive MIMO to support wireless sensor networks, and present related system
structure for the operation. Basically, our contribution in this paper can be divided into two parts.
First, we analyze the performance of RS overhead reduced massive MIMO systems with antenna
grouping and related channel estimation error. Even though antenna grouping-based RS overhead
reduction scheme is quite effective for the operation of massive MIMO and related IoT device
support, channel estimation error is inevitable. The closed-form approximations of achievable SE,
which includes related channel estimation error factor, are derived. Based on the channel estimation
error factor, both RS overhead performance and the seriousness of channel estimation error can be
adjusted. The seriousness of channel estimation error which is used in this paper will be shown in
Section 5. We also show that the derived closed-form approximations are quite simple and effective,
and in good agreement with the simulation results. Second, based on the derived closed-form
approximation of SE, and using the exact inverse of the SE closed-form approximation, we propose
a simplified determination scheme of the number of antennas needed in each group. Without this
scheme, it is very difficult to apply antenna grouping-based RS overhead reduction scheme in a real
system. The change of parameters must be reflected in real time to effectively determine the number of
antennas in each group. The presented system block diagram and flow chart can be greatly helpful to
real implementation of the proposed scheme. In a word, based on closed-form approximation of SE,
to support distributed IoT devices, we propose a simplified determination scheme of the number of
antennas needed in each group. More specifically, our main contributions are summarized as follows:

• We present the closed-form approximations of achievable SE with channel estimation error for
two representative linear precodings. We used the error factor which reflects the degree of
channel estimation error and the error matrix which has the same statistical characteristic but
independent of the channel matrix. The range of error factor is between 0 and 1, and it is a
function of the number of antennas in each antenna group, and the adjustable factor which reflects
the seriousness of the channel estimation error depending on the applied reference signal (RS)
overhead reduction technique. We prove the derived SEs are quite simple and effective using
extensive simulation results.

• Based on the closed-form approximations of achievable SEs, we derive the determination criteria
of the number of antennas needed in each antenna group. The determination criteria are derived
from the inverse functions of achievable SEs.

• We provide the system block diagram and algorithmic steps to apply the proposed determination
scheme. The system block diagram is consisted of 5 main blocks, The central management unit,
operation parameters unit, minimum data rate unit, decision unit, and UE. There are 3 thresholds
we should consider for the systematic operation, i.e., power consumption, data rate, and the
number of iterations.

• We provide the extensive simulation results of the proposed scheme with various parameters,
and show that the derived approximations are very effective and well-matched with the
simulation results.



Sensors 2018, 18, 84 4 of 21

The paper is organised as follows: the system description is presented in Section 2. Massive MIMO
model, related precoding techniques, and RS overhead model are given in Section 2. In Section 3,
the performance analysis and closed-forms approximation of achievable SE are presented. In Section 4,
the determination scheme of the number of antennas in each group is shown. In Section 5, the proposed
model is numerically analyzed. With monte-carlo (MC) simulations, we show that the analysis is
well-matched with simulation results. Finally, concluding remarks are given in Section 6.

Notation: In the rest of the paper, boldface lower-case and upper-case characters denote vectors
and matrices, respectively. The operators (·)H and E[·] denote conjugate transpose and expectation,
respectively. The N × N identity matrix is denoted IN , and the N × N zero matrix is denoted 0N .
X ∼ N(0N , VN) is the complex Gaussian distributed vector with mean zero and covariance VN .
log2(·) denotes the common logarithm and ‖ · ‖F represents the Frobenius norm operator. We use ◦
to denote the componentwise product of the matrices. we use diag [d1, · · · , dN ] for N × N diagonal
matrix with di as the ith diagonal element.

2. System Description

2.1. Massive MIMO Model

We consider a downlink massive MIMO system with Nt TX antennas, and K single antenna UEs
and/or IoT devices/sensors. The received signal vector at UEs can be represented as follows:

y =
√

ρtGs + n, (1)

where y is the K × 1 received signal vector for K UEs, ρt is the total TX power for forward link,
G is the K × Nt channel matrix between the transmitter with Nt TX antennas and K UEs, s is the
Nt × 1 TX signal vector, and n is the K× 1 additive white Gaussian noise (AWGN) vector at the UEs
(i.e., n ∼ CN(0K, σ2

d IK)) where σ2
d is the variance of AWGN. G consists of both a small scale fading

channel matrix, H and large scale fading channel matrix, B, i.e., G = H ◦ B where ◦ indicates the
componentwise product. H is the independent and identically distributed (i.i.d) Rayleigh fading
channel matrix with zero mean and unit variance which can be represented as:

H =


h1,1 h1,2 · · · h1,Nt

h2,1 h2,2 · · · h2,Nt
...

...
...

...
hK,1 hK,2 · · · hK,Nt

 , (2)

B is the large scale fading channel matrix which can be represented as:

B =


√

β1,1
√

β1,2 · · ·
√

β1,Nt√
β2,1

√
β2,2 · · ·

√
β2,Nt

...
...

...
...√

βK,1
√

βK,2 · · ·
√

βK,Nt

 , (3)

where βi,j is the path loss component from jth antennas in BS to ith UE. Then, the combined channel
matrix G = H ◦ B can be represented as:

G =


h1,1
√

β1,1 h1,2
√

β1,2 · · · h1,Nt

√
β1,Nt

h2,1
√

β2,1 h2,2
√

β2,2 · · · h2,Nt

√
β2,Nt

...
...

...
...

hK,1
√

βK,1 hK,2
√

βK,2 · · · hK,Nt

√
βK,Nt

 . (4)
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Since the path loss components from 1th, 2nd, · · · , Ntth antenna in BS to antenna in ith UE are
almost the same, for the path loss component from BS to ith UE, βi, we can represent as follows:

βi = βi,1 = βi,2, · · · , βi,Nt . (5)

where i = 1, 2, · · · , K.
Note that, to get the benefit of channel hardening effect, usually the massive MIMO antenna

systems should satisfy the condition of Nt > 10K [26,27]. There is no strict criterion to get the channel
hardening effect, but we can asymptotically observe the effect when Nt is larger than 10K.

Figure 1 presents the simulation to show the channel hardening effect. The x-axis of the figure
represents the ordered eigenvalue of HHH , and y-axis represents the cumulative distribution function
(CDF). The figure shows the case in which the number of UEs is fix to K = 4, and the number of TX
antennas increases as Nt = 4, 40, and 400. As Nt increases, the randomness of the channel significantly
reduces. Likewise, due to the law of large numbers, as Nt increases, the level of interference also
converges to a certain constant. Figure 2 presents the normalized interference power versus number
of trials. Figure 2 is the result when we use the matched filtering (MF) precoding which will be
introduced in the next subsection. As observed, as Nt increases, the variation of interference reduces.
It is very close to a constant when Nt = 10K. From Figures 1 and 2, we can observe that asymptotically
the channel hardening effect is reliable enough when Nt > 10K, but as we mentioned, this is just
asymptotic approach and there is not strict rule for the criterion of channel hardening effect.
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Figure 1. Example of channel hardening effect, when Nt = 4, 40, 400 and K = 4, CDF: cumulative
distribution function.



Sensors 2018, 18, 84 6 of 21

0 20 40 60 80 100

Number of Trials

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o
rm

a
li
z
e
d
 I
n
te

rf
e
re

n
c
e
 P

o
w

e
r

 N
t
 = 400,  K = 40

 N
t
 = 4,  K = 4

 N
t
 = 40,  K = 40

Figure 2. Normalized Interference Power versus Number of Trials: As Nt increases, the interference
level converges to a certain point that can be easily estimated.

2.2. Precoding

Since Nt is much larger than K, we should map K message signal to each antenna. In general,
we call it precoding, and it is applied to the transmitter part to reduce inter-user interference (IUI).
Since Nt is very large, the linear precoding should be used for real systems [28–30]. For regular MIMO
systems, both nonlinear and linear precoding scheme could be considered. Nonlinear precoding
techniques, such as dirty paper coding (DPC) [31] , vector perturbation (VP) [32], and lattice-aided
methods [33] are important techniques when Nt is not much larger than K. However, with an increase
in the number of antennas at the BS, linear precoders are shown to be near-optimal [28,29]. When Nt

is, say, two times K, this gap is only 3 dB [29]. It is shown that with linear precoding, a sum rate as
high as 98% of that of the DPC scheme can be achieved for two single antenna users served by 20 BS
antennas [30]. Thus, it is more practical to use low-complexity linear precoding techniques in massive
MIMO systems. Therefore, we mainly focus on linear precoding techniques.

It is well-known in the literature that zero-forcing (ZF) and regularized zero-forcing (RZF) are
effective linear precoding techniques [34]. Also, in [4], T. Marzetta suggested even a simpler precoding
technique, matched filtering (MF) precoding. The TX signal vector s and the message signal vector x
are related as follows:

s = ζFx, (6)

where ζ is the normalization factor of TX power and F is a precoding matrix. Then, (1) can be
represented as follows:

y =
√

ρtGζFx + n, (7)

where F is the Nt × K precoding matrix. The three representative precoding matrices are denoted in
Table 1.
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Table 1. The precoding matrices of MF (matched filtering), ZF (zero-forcing), and RZF.

Precoder MF ZF RZF

F HH HH(HHH)−1 HH(HHH + νIK)
−1

Where superscript “H” denotes conjugate transpose, (·)−1 is the inverse operator, and IK is the K × K
identity matrix.

MF precoding matrix is simply the conjugate transpose of the channel matrix. This is conceptually
simplest approach to reduce the IUI. In MF precoding, it is seen that the signal-to-interference and noise
ratio (SINR) can be made as high as desired by increasing the number of antennas. However, the MF
precoding exhibits an error floor in the practical number of TX antennas. The main advantage of MF
precoding is its low computational complexity. Another advantage is that it is effective for distributed
antenna systems, because the Massive MIMO signal processing can be performed locally at each
antenna [5]. Another approach for precoding is to invert the channel by means of the pseudo-inverse.
This is referred to as ZF precoding. When Nt > K, ZF precoding completely removes the IUI. Moreover,
when SNR is high and/or Nt � K, ZF precoding can achieve nearly optimum performance [29].
However, a disadvantage of ZF is that processing cannot be done distributedly at each antenna
separately. With ZF precoding, all data must instead be collected at a central node that handles the
processing [29]. MF precoding can outperform ZF precoding when SNR is very low, while ZF precoding
outperform MF precoding when SNR is relatively high. When SNR is not so high, ZF precoding cannot
give any meaningful performance. RZF precoding can combat this problem. When SNR is high, both
ZF precoding and RZF precoding shows very similar performance, while when SNR is low, RZF
precoding outperforms ZF precoding. When SNR is very low, RZF prcoding show similar performance
with MF precoding. A brief summary of the advantages and disadvantages of the MF, ZF, and RZF is
shown in Table II of [30].

The normalization factor should be determined such that the total transmit power becomes ρt.
It can be expressed as follows:

‖ζFx‖2
F = 1, (8)

where ‖‖F stands for Frobenius norm.

ζ for kth UE, ζk is approximated as ζk,m f ≈ 1√
NtK

for MF precoding and ζk,ZF ≈
√

Nt−K
K for ZF

precoding [35].
Both ZF and RZF precodings show very similar performance, even in the relatively practical

number of massive TX antennas (i.e., Nt ≈ 10K ).

2.3. RS Overhead Model

As a reference model, the current 3GPP LTE systems use following types of RSs; common
reference signal (CRS), channel state information reference signal (CSI-RS), demodulation reference
signal (DM-RS), multicast-broadcast single-frequency network (MBSFN) reference signal, positioning
reference signal (PRS). In this paper, we only consider CRS, CSI-RS, and DM-RS, because the three
signals take most of resources for RS [36,37]. PRS are only transmitted in resource blocks over
downlink subframes that are configured for PRS transmission, and The MBSFN reference signals are
only transmitted in the MBSFN region of MBSFN subframes [36,37], thus PRS and MBSFN are not
included in general operation mode and we disregard both cases for simplicity.

CRS is called as a cell specific reference signal, and has been in the LTE system from Release 8.
The role of CRS can be defined as the cell search and initial acquisition, the downlink channel estimation
for coherent demodulation/detection at the UE, and the downlink channel quality measurements.
CSI-RS has been introduced from Release 10, and used by UE to estimate the channel and report
channel quality information (CQI) to BS. DM-RS is usually called as an UE specific reference signal,
and the role of it is for the demodulation of the signal.
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In this paper, assuming frequency division multiplexing (FDD) mode, we use the following RS
overhead factor for analysis [20]:

χ(%) = (ηCRS + Nt + K · ψDM−RS)/ηRBtot × 100, (9)

where χ(%) is expressed as a percentage of RS overhead in a given total resources, ηCRS is the number
of CRS in a given resource, ψDM−RS is the DM-RS proportional factor of K which we use 10, and
ηRBtot is the total resource elements for a given resource block for a coherence time. In the current
3GPP LTE-A systems, the number of resource elements available in two resource blocks (1 ms ) is
168 (12 (frequency tones) × 14 (time symbols)). Then, ηRBtot = 840 resource elements assuming 5 ms
coherence time. The CRS takes 14.8% of available resource elements, which is not a small portion.
We do not know how technology will be evolved from an RS perspective. However it is quite obvious
that RS overhead increases as the number of TX antennas increases. In this respect, (9) is reliable
enough to use. The expected RS overhead reduction factor can be written as follows [20]:

χr(%) = (ηCRS + (Nt + K · ψDM−RS)/Ng)/ηRBtot × 100, (10)

where Ng is the RS overhead reduction factor to represent the number of antennas in each group, and
the performance of RS overhead reduction scheme. Here we assume that the CRS is irreducible for cell
search and initial acquisition, downlink channel estimation for coherent demodulation/detection at
the UE, and downlink channel quality measurements, while all of the other RSs are ideally reducible
by the RS overhead reduction scheme. Since resources of the CSI-RS and DM-RS are shared in the same
group of antenna elements, it is divided by Ng. In other word, Ng number of antenna elements share
the same CSI-RS and DM-RS resources, and they are not orthogonal in each group, thus in each group,
CSI-RS and DM-RS resources are reduced by factor of Ng, but CRS is irreducible and not divided by
Ng, because it requires high accuracy. Reducing RS resources causes channel estimation error.

3. Closed-Form Approximation of Achievable Spectral Efficiency with Channel Estimation Error

In this Section, we present the closed-form approximation of achievable SE with channel
estimation error. We should keep in mind that antenna grouping-based RS overhead reduction scheme
causes channel estimation error. As Ng increases, channel estimation error increases. The estimated
channel, Ĥ, is modeled as follows:

Ĥ = ξH +
√

1− ξ2E, (11)

where ξ ∈ [0 , 1] is the error factor, which reflects the degree of channel estimation error, and E ∈ CK×Nt

is the error matrix with the same statistical characteristic but independent of the channel, H. ξ can also
be modeled as follows:

ξ =

√
ξ̂

(
1−

Ng

ε

)
, (12)

where ξ̂ is the channel estimation error regardless of antenna group, and ε is the adjustable factor to
reflect the seriousness of the channel estimation error depending on the applied technique.

For the performance analysis, the maximum achievable SE can be derived by using i.i.d. Rayleigh
channel with zero mean and unit variance. From (1), and (7), the symbol received by k-th user is
given by

yk =
√

ρtζk (hk ◦ bk) fkxk + nk +
√

ρtζl ∑
l 6=k

(hk ◦ bk) fl xl , (13)

where hk and bk are the 1× Nt channel vectors for k-th user, and fk is the Nt × 1 precoding vector for
k-th UE. The last term of (13) is the IUI. ζk is a normalized factor for the precoding process of k-th UE,

and it is approximated as ζk,m f ≈ 1√
NtK

for MF precoding and ζk,ZF ≈
√

Nt−K
K for ZF precoding [35]

as we mentioned in the previous section. Assuming all the path loss component to UE k is the same,
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which is true in a real system, the effective SINR at the receiver (RX) for user k, γk, can be expressed
as follows:

γk =
ρr|ζkhkfk|2

ρr|∑l 6=k ζlhkfl |2 + 1
, (14)

where ρr = ρt ·βk
N0B is the received signal-to-noise ratio at RX, βk is the large scale fading or path loss

component between TX and kth UE, and N0B is the noise power in the given bandwidth, B. As was
shown in the previous section, path loss components from 1st, 2nd, 3rd, · · · , Ntth antenna in BS to
antenna in kth UE are the same (βi = βi,1 = βi,2, · · · , βi,Nt ). This is because the distances among
antennas in BS are much shorter than the distances between antennas in BS and antennas in UEs.

The data rate, R of single isolated cell can be represented as follows:

R = α · B ·
K

∑
k=1

E [log2 (1 + γk)] , (15)

where α is the scaling factor for RS overhead [4], and E[·] is the expectation operation. In the ideal case,
i.e., perfect blind channel estimation with no channel estimation error, α is equal to 1. In a real situation,
however, by using (10), we can say that α =

(
1− χr

100
)
, when a RS overhead reduction scheme is

applied. Since the scaling factor should be more than 0.5 in the system design perspective, the spectral
efficiency (SE) based on capacity analysis can be represented as follows:

SE ≈


α ·

K
∑

k=1
E [log2 (1 + γk)], α > 0.5.

0.5 ·
K′

∑
k=1

E [log2 (1 + γ′k)], α ≤ 0.5.
(16)

where K′ and γ′k represent corresponding constant when overhead is 0.5.
We show the reference SINR based on MF precoding. By using channel hardening effect of the

massive MIMO systems [4], the reference SINR based on MF precoding, γ
re f
k,m f , can be simplified as

follows [38]:

γ
re f
k,m f =

ρr|ζk,m f hkhH
k |

2

ρr ∑l 6=k |ζl,m f hkhH
l |2 + 1

→ Nt

K

(
ρr

Im f + 1

)
=

Nt

K

(
ρr

ρr + 1

)
, (17)

where Im f is the IUI term after MF precoding. For massive MIMO region, Im f can be simplified to
ρr [4]. Here we can say that Nt

K is the channel gain of the massive MIMO system.
It is obvious that if we increase the number of TX antennas or reduce the number of UEs, we can

get a more effective SINR. However, it should be noted that MF precoding does not completely remove
the IUI in practical number of TX antennas. It is known that ZF precoding can completely remove IUI
with the perfect channel information, but channel gain is reduced to Nt − K as compared with MF
precoding, Nt.

When there is a channel estimation error, the effective SINR based on MF precoding can be
represented as follows:

γ̂k,m f =
ρr

∣∣∣ζk,m f hkĥH
k

∣∣∣2
ρr ∑

l 6=k

∣∣∣ζl,m f hkĥH
l

∣∣∣2 + 1
, (18)
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where ĥk is the 1× Nt estimated channel vector for k-th UE. Using (11) and statistical approximation,
(18) can be simplified as follows:

γ̂k,m f =
ρr

∣∣∣ζk,m f ξhkhH
k + ζk,m f

√
1− ξ2hkeH

k

∣∣∣2
ρr ∑

l 6=k

∣∣∣ζl,m f ξhkhH
l + ζl,m f

√
1− ξ2hkeH

l

∣∣∣2 + 1
,

→ Nt

K

(
ξ2ρr

ρr + 1

)
, (19)

where el is the 1×Nt channel estimation error vector. For Equation (19), we use the following approximations:∣∣∣∣ζk,mf ξhkhH
k + ζk,mf

√
1− ξ2hkeH

k

∣∣∣∣2 ≈ ξ2
∣∣∣ζk,mf hkhH

k

∣∣∣2 , (20)

∑
l 6=k

∣∣∣∣ζk,mf ξhkhH
l + ζk,mf

√
1− ξ2hkeH

l

∣∣∣∣2 ≈ ∑
l 6=k

∣∣∣ζk,mf hkhH
l

∣∣∣2 . (21)

The approximation of (20) and (21) comes from the following equations:

∣∣∣ζk,mf ξhkhH
k

∣∣∣2 � ∣∣∣∣ζk,mf

√
1− ξ2hkeH

k

∣∣∣∣2 , (22)

∑
l 6=k

∣∣∣∣ζk,mf ξhkhH
l + ζk,mf

√
1− ξ2hkeH

l

∣∣∣∣2 ≈ ∑
l 6=k

∣∣∣∣ζk,mf ξhkhH
l + ζk,mf

√
1− ξ2hkhH

l

∣∣∣∣2 . (23)

By comparing (17) and (19), it can be seen that the SINR based on MF precoding with channel
estimation error has the same characteristics, but the signal power is scaled down by the square of the
error factor, ξ.

Using (11) and statistical approximation, The effective SINR based on ZF precoding with channel
estimation error can be written as follows [39]:

γ̂k,ZF =

∣∣∣ζk,ZFhk(ĤĤH)−1ĥH
k

∣∣∣2
hk(ĤĤH)−1Ĥ[k]ĤH

[k](ĤĤH)−1hH
k ∑l 6=k ζl,ZF + 1

,

→ Nt−K
K

(
ξ2ρr

(1− ξ2)ρr + 1

)
, (24)

where ĤH
[k] = [ĥH

1 , ĥH
2 , · · · , ĥH

k−1, ĥH
k+1, · · · , ĥH

K ] ∈ CNt×(K−1).
For (24), the following approximations are used:∣∣∣∣ζk,ZFhk((ξHk +

√
1− ξ2Ek)(ξHk +

√
1− ξ2Ek)

H)−1ĥH
k

∣∣∣∣2
≈ ξ2

∣∣∣ζk,ZFhkhH
k

∣∣∣2 , (25)
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hk((ξHk +
√

1− ξ2Ek)(ξHk +
√

1− ξ2Ek)
H)−1 ·

((ξH[k] +
√

1− ξ2E[k])(ξH[k] +
√

1− ξ2E[k])
H) ·

((ξHk +
√

1− ξ2Ek)(ξHk +
√

1− ξ2Ek)
H)−1 · hk ∑

l 6=k
ζl,ZF

≈ (1− ξ2)∑
l 6=k

∣∣∣ζl,ZFhkĥH
l

∣∣∣2 . (26)

From (17) and (24), we can see that the SINR based on ZF precoding with channel estimation error
is scaled down by ξ2 and (1− ξ2) for the signal and the interference power from reference SINR based
on MF precoding, respectively. Obviously, the residual IUI term for ZF precoding is due to channel
estimation error.

The SINRs for the cases of reference MF precoding, reference ZF precoding, MF precoding with
channel estimation error, and ZF precoding with channel estimation error are summarized in Table 2.

Table 2. Summary of approximated SINRs.

γ
re f
k,MF γ

re f
k,ZF γ̂k,MF γ̂k,ZF

Nt
K

(
ρr

ρr+1

)
Nt−K

K (ρr)
Nt
K

(
ξ2ρ

ρr+1

)
Nt−K

K

(
ξ2ρr

(1−ξ2)ρr+1

)
If we put the SINR in the Table 2 into the Equation (16), we can get the theoretical achievable

SE of RS overhead reduction scheme with channel estimation error. In a real situation, the channel
estimation error due to any kind of interference can be reflected in error factor ξ. The RS overhead
reduction performance can be also reflected in RS overhead reduction factor and/or the number of
antenna in each group, Ng. Ng increment guarantees Nt increment. However, increasing Ng is not
always beneficial. As we can see from Equation (12), Ng increment also causes ξ increment. Obviously,
ξ increment can cause performance reduction.

In the case of RZF precoding, the SINR is shown in Equation (19) of [39] and Equation (17) of [40].
Substituting the SINR of RZF, γk,RZF into Equation (16), one can obtain the achievable SE of RZF
precoding. Since the expressions in [39,40] are too complex to use in real system analysis, we show the
simplified expression using the SINRs of MF and ZF precoding. Basically in low power regime, the
SINR of RZF precoding is similar to MF precoding. In high power regime, the SINR of RZF is similar
to ZF precoding. Based on these facts, we can approximate the SINR of RZF with channel estimation
error as follows:

γ̂k,RZF ≈


(Nt−K)ξ̂

(
1− Ng

ε

)
ρr

K
((

1−ξ̂
(

1− Ng
ε

))
ρr+1

) , Ntρr � K,

Nt ξ̂
(

1− Ng
ε

)
ρr

K(ρr+1) , Ntρr � K.

(27)

Since we assume the system with Nt > 10K, due to the distinct channel gain, the SINR of RZF
precoding is similar to the SINR of ZF precoding. We will show this in Section 5. Readers can refer
to [39,40] for more details of RZF precoding.

4. Ng Determination and Related System Structure

In this Section, we propose how to determine Ng in an antenna group-based RS overhead reduced
massive MIMO. Based on analysis in Section 3, ZF and MF precoded SE, SEZF and SEMF can be
approximated as follows:
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SEZF ≈



(
1− ηCRS+(Nt+K·ψ)

ηRBtot Ng

)
· K ·

[
log2

(
1 +

(Nt−K)ξ̂
(

1− Ng
ε

)
ρr

K
((

1−ξ̂
(

1− Ng
ε

))
ρr+1

)
)]

,
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
> 0.5

0.5 · K′ ·

log2

1 +
(N′t−K′)ξ̂

(
1−

N′g
ε

)
ρr

K
((

1−ξ̂

(
1−

N′g
ε

))
ρr+1

)
 ,

(
1− ηCRS+(Nt+K·ψ)

ηRBtot Ng

)
≤ 0.5

(28)

SEMF ≈



(
1− ηCRS+(Nt+K·ψ)

ηRBtot Ng

)
· K ·

[
log2

(
1 +

Nt ξ̂
(

1− Ng
ε

)
ρr

K(ρr+1)

)]
,
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
> 0.5

0.5 · K′ ·

log2

1 +
N′t ξ̂

(
1−

N′g
ε

)
ρr

K′(ρr+1)

 ,
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
≤ 0.5

(29)

where K′, N′t , and N′g are corresponding K, Nt, and Ng when
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
= 0.5.

A few observations are in order.

Observation 1: As Ng increases, bandwidth increases due to RS overhead reduction.
Observation 2: As Ng increases, SINR decreases due to channel estimation error.

Increasing Ng is beneficial to the system when system is working in bandwidth limited regime,
but if system is working in power limited regime and/or interference limited regime, increasing Ng

worsens system performance.
Two strategies can be considered to choose Ng. First, Ng can be determined to maximize SE which

can be represented as follows for ZF precoding and MF precoding respectively.

max
Ng

Θ ·
K

∑
k=1

E

log2

1 +
(Nt − K)ξ̂

(
1− Ng

ε

)
ρr

K
((

1− ξ̂
(

1− Ng
ε

))
ρr + 1

)
 (30)

s.t. Θ ≥ 0.5

ρr ≤ ρr,max,

max
Ng

Θ ·
K

∑
k=1

E

log2

1 +
Nt ξ̂

(
1− Ng

ε

)
ρr

K(ρr + 1)

 (31)

s.t. Θ ≥ 0.5

ρr ≤ ρr,max,

where Θ =
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
and ρr,max is the maximum SNR which reflect the maximum allowable

TX power. This is a typical setting for wireless communication systems up to now. However, to
support distributed sensors and/or sensor networks, energy efficiency can be more important than
SE depending on applications. In a certain application, sensor devices do not require high data rate,
but maintaining moderate data rate can be enough. In this situation, Ng can be determined based
on the minimum required SE in a given circumstances. In particular, for the energy efficient sensor
networks, if the minimum required SE is satisfied, the system can operates efficiently with high energy
efficiency and a moderate data rate. Also, if determination of Ng causes lower SE than the requirement,
it could be problematic to the proper operation of sensor networks. It is particularly important to
maintain the required data rate for industrial IoT and/or sensor networks. If Ng can be derived as
a closed-form equation, it can be very useful to reduce the computational complexity and delay of
the system. The inverses of Equations (28) and(29) can provide Ng with given required SE, however
the exact closed-form inverse equations of Equations (28) and(29) are impossible, because Ng terms

exist both inside and outside of log term. Instead, by keeping the ηCRS+(Nt+K·ψ)
ηRBtot Ng

as 0.5, the minimum
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value of data portion, we can get Ng with satisfying the minimum required value of SE. The proposed
scheme is can be established based on following Proposition.

Proposition 1.
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
· K ·

[
log2

(
1 +

(Nt−K)ξ̂
(

1− Ng
ε

)
ρr

K
((

1−ξ̂
(

1− Ng
ε

))
ρr+1

)
)]

≥ ∆ · K ·[
log2

(
1 +

(Nt−K)ξ̂
(

1− Ng
ε

)
ρr

K
((

1−ξ̂
(

1− Ng
ε

))
ρr+1

)
)]

iff ∆ ≤ 0.5 and
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
≥ 0.5.

Proof. Since
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
≥ 0.5, if ∆ ≤ 0.5, then

(
1− ηCRS+(Nt+K·ψ)

ηRBtot Ng

)
· K ·

[
log2

(
1 +

(Nt−K)ξ̂
(

1− Ng
ε

)
ρr

K
((

1−ξ̂
(

1− Ng
ε

))
ρr+1

)
)]

∆ · K ·
[

log2

(
1 +

(Nt−K)ξ̂
(

1− Ng
ε

)
ρr

K
((

1−ξ̂
(

1− Ng
ε

))
ρr+1

)
)] =

(
1− ηCRS+(Nt+K·ψ)

ηRBtot Ng

)
∆

≥ 1,

thus Proposition 1 is satisfied.

From Proposition 1, the maximum value of ∆ is 0.5. This means, if we fix Θ = 0.5 and derive
the Ng, the minimum required SE can be satisfied. Proposition 1 also can be applied to the MF
precoding case.

Corollary 1.
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
· K ·

[
log2

(
1 +

Nt ξ̂
(

1− Ng
ε

)
ρr

K(ρr+1)

)]
≥ ∆ · K ·

[
log2

(
1 +

Nt ξ̂
(

1− Ng
ε

)
ρr

K(ρr+1)

)]
iff ∆ ≤ 0.5 and

(
1− ηCRS+(Nt+K·ψ)

ηRBtot Ng

)
≥ 0.5.

Proof. Proof of Corollary 1 can follow the same way of that of Proposition 1.

Let
(

1− ηCRS+(Nt+K·ψ)
ηRBtot Ng

)
= δ, then the closed-form equation for Ng for ZF precoding and MF

precoding with the minimum required SEreq can be represented as follows:

Ng,ZF →

ε

K + Kρr − 2Kρr ξ̂ + Ntρr ξ̂ − K2

(
S̃EZF

δK

)
− Kρr2

(
S̃EZF

δK

)
+ Kρr ξ̂2

(
S̃EZF

δK

)
ρr ξ̂

−2K + Nt + K2

(
S̃EZF

δK

) . (32)

Ng,MF →
εK + εKρr + εNtρr ξ̂ − εK2

(
S̃EMF

δK

)
− εKρr2

(
S̃EMF

δK

)
Ntρr ξ̂

. (33)

where S̃EZF and S̃EMF are required minimum SE for ZF and MF precoded systems. By fixing δ = 0.5,
the lowest bound, we can get Ng that satisfy to S̃EZF and S̃EMF with some margin.

The proposed scheme can be used in various ways. In particular, it would be very effective to
reduce the power consumption of massive MIMO-based wireless sensor networks. Figure 3 shows
example of a system block diagram for the proposed scheme. It consists of several system blocks.
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Central
Management Unit

UE

Minimum Data Rate Management Unit

Operation Parameters Management Unit

Power Efficiency Management Unit

Decision Unit

Figure 3. Example of system block diagram for proposed scheme.

First, the central management unit can decide the power consumption and/or power efficiency of
the system. Then, BS measures current power efficiency. BS also has various operation parameters,
such as Nt, K, B, and ρt and so on. Based on the power efficiency and operation parameters,
the minimum data rate that must be satisfied for the system can be derived. If the system is designed
for for Industrial internet, there would be a threshold for data rate, and the system should set the
minimum data rate higher than the threshold. Then, from the minimum data rate and other parameters
that are necessary, Ng can be determined. The BS can receive feedback from UEs to check if they need
a higher data rate depending on the situation. Wireless channel is not stable, so there could be several
situations that can arise. Then, the procedures we mentioned can be repeated for a given number of
iterations. There could be an interval for the determination of Ng. If the interval is small, then the
performance would be better, but complexity could be a problem or vice versa.

Example of operation flow chart is presented in Figure 4. First, BS can get system parameters,
then it gets required power efficiency. Based on system parameters and power efficiency, the required
minimum data rate can be derived. The Ng can be derived using the proposed closed-form equation.
The RS can be designed and used based on Ng. Then, communications between massive MIMO and
distributed IoT devices would be conducted. If power consumption is higher than the threshold, we can
reduce power consumption by any kind of parameter adjustment. Typically, TX power consumes
a lot of power, thus it can be reduced to increase power efficiency. However, TX power reduction
accompanies data rate reduction. If the data rate is higher than threshold even though TX power is
reduced, then system is in good shape and the procedure can be finished, but if data rate is lower
than the threshold due to the TX power reduction, then in a given number of iterations, we should
reduce required minimum data rate to satisfy power efficiency. The determination of thresholds for
the number of iterations, power consumptions, data rate are the system designer’s choice. For the
better understand and implementation, we provide the detailed algorithm as pseudo-code type in
Algorithm 1.

The required number of iterations for the system can be changed based on system parameters.
There are several parameters including the threshold for the number of iterations, thus system designer
can decide it between performance and delay/complexity trade-off.
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Start

Get the Set of System Parameters,

Get Required Power Efficiency,

Get Required Minimum Data Rate,

Decide       

End

?thΓ>Γ

Yes

Reduce power consumption with given step size

?thΛ>Λ

No
Reduce Minimum Data Rate with given step size

No

gN

?thΙ>Ι

Yes

Yes

req
th∆

thΓ

thΛ

Get maximum number of iteration, thΙ

No

1+Ι=Ι

Figure 4. Example of operation flow chart.

Algorithm 1: Operation of proposed scheme

1 Start;
2 Get the Set of System Parameters, ∆req

SP ;
3 Get Required Power Efficiency, Γth;
4 Get Required Minimum Data Rate, Λth = B · SE;
5 Get Maximum Number of Iterations, Ith;
6 Decide Ng based on Equations (32) and (33);
7 if Γ > Γth;
8 then
9 Reduce Γ to Γth;

10 if Λ > Λth;
11 then
12 Go to the End;
13 else
14 Check the number of iterations, Ith;
15 if I > Ith;
16 then
17 Go to the End;
18 else
19 I = I + 1;
20 Reduce Λth;
21 Go to 6;

22 else
23 Go to 10;

24 End;
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5. Numerical Results and Discussion

In this Section, we verify the proposed scheme using monte-carlo (MC) simulations with 104

iterations, and present the related discussions. The simulation parameter for this section is shown in
Table 3.

Table 3. Simulation Parameters.

Parameter Value

Coherence Time, τc 5 ms
Coherence Bandwidth, BWc 180 kHz

max RS time, τp 2.5 ms
Total symbols in coherence interval, Stot 840

TX power, ρt 80 W
Signal Bandwidth, B 20 MHz
Carrier Frequency, fc 2 GHz

Path Loss Model ETSI
Number of TX antennas, Nt 100∼1000

Max. number of serviced UEs for downlink, 100
Error factor without RS overhead reduction, ξ̂ 1

Precoding ZF, MF

We used K = 0.1Nt to meet the minimum requirement of channel hardening effect. The noise
power N0B is normalized to unity with ρt = 80 W and B = 20 MHz bandwidth. Assuming
we use a macro-cell type setup with 2GHz carrier frequency, the path loss in dB is modeled as
128.1 + 37.6 log(d) with distance d in kilometers [41]. Then, the setup is equivalent to average user
distance of 1.194 km. We set ξ̂ = 1 and ε = 300 in Equation (12). Obviously, the parameter can be
changed depending on the applied technique and circumstances.

Before showing the numerical results, we present the seriousness of channel estimation error in
Figure 5.

0 5 10 15 20 25 30 35 40

Number of Antennas in Each Group, N
g

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

N
M

S
E

Figure 5. Seriousness of channel estimation error: normalized mean square error (NMSE) versus Ng.
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We show the seriousness of channel estimation error using normalized mean square error (NMSE)
which is defined as:

NMSE =

∥∥H− Ĥ
∥∥2

2

‖H‖2
2

. (34)

Ĥ is the estimated channel and it is a function of Ng as we shown in the previous section. NMSE is
linearly increased as Ng increases. When Ng is 40, NMSE has reached around 14%, while we can get
bandwidth benefit thanks to the RS overhead reduction.

Figure 6 shows the numerical results of SE versus Nt. Red ‘*’s and black ‘x’ indicate the simulation
results, and lines are plotted based on theoretical analysis. Our theoretical analysis is well-matched
with the simulation result. When Ng is small which is less than 4, due to the excessive RS overhead
which reaches the maximum allowable RS overhead, SE is not increased, even though Nt is increased.
However, when Ng is larger than 8, the SE increases, as Nt increases up to 1000. RS overhead
reduction technique is definitely necessary to increase Nt and SE, and fully enjoy the benefit of massive
MIMO. However, increasing Ng causes channel estimation error as we have seen from previous
Section. Increasing Ng gives a bandwidth advantage by giving more room for data, but due to channel
estimation error, SINR becomes worse.

100 200 300 400 500 600 700 800 900 1000

Number of TX Antennas,  N
t
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 = 1
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 = 4
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MF,  N
g
 = 8

ZF,  N
g
 = 16

MF,  N
g
 = 16

ZF,  N
g
 = 40

MF,  N
g
 = 40

Figure 6. SE versus number of TX antennas, Nt. Red ‘*’s and black ‘x’ indicate the simulation results.

To show the relationship between SE and Ng, we present Figure 7, SE versus Ng. As observed,
if Ng is larger than 16, the SE is reduced due to worsened SINR. It is noticeable in ZF precoding
because as Ng grows, IUI terms grows. The IUI term in ZF precoding is almost negligible when there
is little channel estimation error. In the case of MF precoding, there is no SE reduction, but SE is fixed
to a certain point even though Ng increases. This is because IUI is already a dominant term in MF
precoding even when there is little channel estimation error. When we use MF precoding, if Ng is
larger than 16, the system is already working in a power limited regime, thus increasing Ng gives little
help in increasing SE. This phenomenon is maintained even if we increase Nt.

Now, we show the effectiveness of the closed-form equation for Ng determination. Figures 8 and 9
show the determined Ng versus SE. ’*’ marks indicate results of closed-form SE equation, and ‘x’ marks
indicate results of MC simulations. Lines are plotted based on theoretical derivations. As observed, all
3 kinds of results are well-matched, and the derived closed-form equations for Ng can be used with
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high accuracy. In the case of ZF precoding, the lower bound of SE is sensitive to the variation of Ng,
while in the case of MF precoding, the lower bound of SE is not so sensitive to the variation of Ng.

Maintaining SE lower bounds is quite important to the energy efficient sensor network.
The important metric of wireless sensor network is moving from SE to energy efficiency. However,
keeping a stable SE lower bound is also very important for some kinds of sensor network, such as
Industrial internet network. The proposed scheme provides the logic of keeping high energy efficiency
maintaining SE lower bound, thus it can be a core technology for the massive MIMO-based energy
efficient sensor network.

5 10 15 20 25 30 35 40

Number of Antennas in Each Group,  N
g

0

100

200

300

400

500

600

S
E

 (
b
p
s
/H

z
)

ZF,  N
t
 = 400

MF,  N
t
 = 400

ZF,  N
t
 = 600

MF,  N
t
 = 600

ZF,  N
t
 = 800

MF,  N
t
 = 800

ZF,  N
t
 = 1000

MF,  N
t
 = 1000

Figure 7. SE versus number of antennas in each group, Ng. Red ‘*’s and black ‘x’ indicate the simulation results.
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Figure 8. Determined Ng versus guaranteed SE (bps/Hz) when ZF precoding is applied. ‘*’ marks
indicate the results of closed-form SE equation, and ‘O’ marks indicate results of MC simulations.
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Figure 9. Determined Ng versus guaranteed SE (bps/Hz) when MF precoding is applied. ‘*’ marks
indicate results of closed-form SE equation, and ‘O’ marks indicate results of MC simulations.

As we mentioned in the previous section, for the case of RZF precoding, we can use the case of
ZF precoding. Figure 10 presents the SE comparison of ZF precoding and RZF precoding. We use
ν , diag

[
1
ρr

, · · · , 1
ρr

]
which is the downlink RX inverse SNR matrix [28,30,40]. As observed, the SE of

RZF precoding also exactly matches with the analytical SE of ZF precoding. Thus, all the analysis for
ZF precoding in this paper is also applicable to RZF.
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Figure 10. SE comparison of ZF and RZF precoding. ‘*’ marks indicate results of closed-form SE
equation for ZF precoding.

To completely validate the proposed system, it is important to perform real measurement. Since
we show the feasibility of the proposed system in this paper, the real measurement for the system can
be performed in future work.
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6. Conclusions

In this paper, we have proposed a design logic of RS overhead reduced massive MIMO for energy
efficient wireless sensor networks. The contribution of this paper can be divided into two parts. First,
we have presented the closed-form achievable SE of massive MIMO with channel estimation error.
Second, based on the the results, we have provided an effective scheme to determine the number of
antennas required in each group. Numerical results showed that the derived theoretical achievable
SE and Ng are accurate enough, and thus be provided as an useful tool for the design of massive
MIMO-based wireless sensor networks and many other related engineering applications.
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