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Abstract: Urban air pollution has caused public concern globally because it seriously affects
human life. Modern monitoring systems providing pollution information with high spatio-temporal
resolution have been developed to identify personal exposures. However, these systems’ hardware
specifications and configurations are usually fixed according to the applications. They can
be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing
capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor
System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor
node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules
with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation
results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations
dynamically, and detect low concentration air pollution with high energy efficiency and good data
accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be
significantly reduced when deploying the system in the field.
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1. Introduction

Urban air pollution has caused public concern worldwide because it seriously affects human life,
including our health, living environment, and economy. According to the World Health Organization’s
report in 2012, 7 million premature deaths worldwide were related to air pollution [1]. Environmental
issues like global warming, acid rain, and haze are also caused by air pollution. Moreover, expenditure
on public health is increasing rapidly due to excessive levels of air pollutants [2].

In order to mitigate these issues, conventional monitoring systems have been installed in urban
areas. These systems provide authorized information to the decision makers and public to enhance and
manage the urban environment. However, they are suffering from the extremely sparse spatio-temporal
resolution [3]. For example, there are only 16 monitoring stations in Hong Kong covering an area about
2700 square kilometers and the pollution information is updated hourly [4]. Air pollution information
with such low spatio-temporal resolution is inadequate for monitoring personal and acute exposures
to air pollutants, which are proven to be critical to human health [5–8].

Thanks to the advancing technology, in the next generation air monitoring systems [9] with
a great number of stationary, wearable, and/or vehicular sensor nodes deployed in the field,
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micro-level air pollution information and personal exposure warnings can be achieved promptly.
However, the flexibilities of maintenance, reconfiguration, and deployment of the state-of-the-art
systems are limited.

Issue 1: Recent studies mainly focus on the system architecture and implementation, data quality,
energy efficiency, and networking techniques [10–15]. None of them have dealt with the practical
issues in real-life deployment scenarios when thousands of sensor nodes will be deployed in the field.
For example, to ensure optimum performances, maintenances on sensor nodes such as calibrating
sensors, replacing components, etc., which are time-consuming and labor-intensive, are not negligible.
Systems that are easy to maintain can dramatically reduce these costs.

Issue 2: The hardware configurations of the existing systems with real-time fine-grained air
pollution information are usually fixed according to the applications (i.e., without any flexible
modularity feature) [16–21]. It is extraordinary difficult or even impossible to modify or expand
their sensing capabilities, or perform system upgrade and evolution. Typically, wearable sensor nodes
in participatory sensing scenario [17] are carried by users who lack the background knowledge to deal
with the sensor nodes. Sensor nodes that are easy to use and self-adaptable to reconfigurations are
able to relax users’ burden.

In this paper, a Modular Sensor System (MSS) architecture and a Universal Sensor Interface
(USI) are proposed to tackle these issues. An earlier version of this paper was presented at the IEEE
Sensors 2016 Conference and was published in its proceedings [22]. This paper extends the preliminary
work by (1) adding the literature review and the design goals of the proposed system in Section 2
and Section 3.1 respectively; (2) detailing the implementation of the proposed system in Section 3.3;
and (3) enriching the Section 4 including comparisons with more similar systems, power consumption
analysis, and calibrations of the sensor modules. The major contributions of this paper are:

• A Modular Sensor System (MSS) architecture with multiple WSN compatibility, configurable and
expandable sensing capabilities, and plug-and-play ability;

• A Universal Sensor Interface (USI) enabling modular hardware/software design, configurable
and expandable sensing capabilities, and plug-and-play ability;

• Implementing and evaluating a MSS sensor node prototype having six plug-and-play sensor
modules (The sensor node supports at most 16 sensor modules logically and electronically.
Limited by the size and weight, only six physical USI sockets were implemented. The number of
the physical USI sockets can be easily upgraded to 16.) and supporting multiple WSNs, which has
good applicability and can fit in different deployment scenarios.

The remainder of this paper is organized as follows. A literature review on the existing systems is
performed in Section 2. In Section 3, the detailed design and implementation of the MSS architecture
and USI are presented. A sensor node prototype adopting the MSS architecture and USI is evaluated
and calibrated in Section 4. Section 5 presents the conclusions of this paper.

2. Related Works

Previous research has successfully constructed monitoring systems that provide real-time
micro-level air pollution information, flexible data access, and user-friendly data visualization by
utilizing the low-cost sensors and WSNs together with mobile and/or web apps.

Systems proposed in [12,14,16,17,20] were mainly focused on the system architecture and
implementation. An urban scale wireless networking testbed was proposed and implemented in [16]
based on 100 Wi-Fi enabled Linux PCs equipped with a set of low-cost sensors. In [20], a real-time
air monitoring system was proposed and implemented by utilizing the low-cost sensors and the
General Packet Radio Service (GPRS) wireless link. The sensor nodes in [16] were mounted on the
streetlight poles and powered by electrical grid, while the sensor nodes in [20] were stationary and
powered by solar panels. A vehicular sensor network based air monitoring system was proposed
in [12]. In this system, the sensor nodes equipped with low-cost sensors and ZigBee wireless links were
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deployed on the public transportations that enlarged the geographical coverage of each sensor node.
Different from the systems presented above, the sensor systems proposed in [14,17] aimed at enabling
citizens to monitor their exposures to air pollution and simultaneously provide pollution information
for further usages like political decision-making or building urban air quality maps. In [17], a handheld
sensor node with six environmental sensors was implemented. This sensor node was able to transmit
data tagged with Global Positioning System (GPS) information to user’s smartphone through Bluetooth
or directly upload the data to a server through GPRS or 802.15.4 radio. In [14], a maker friendly sensor
node with configurable sensors and a Bluetooth link was implemented. In this system, an NoSQL
database was chosen for the backend server considering the need for storing the time sensory data
at any time from many sources. All of these systems are able to provide fine-grained air pollution
information through mobile and/or web apps in real-time.

In addition to the system architecture and implementation, there exist studies that put more
attention on the data quality, energy efficiency, and networking techniques of the air monitoring
systems. A neural network structure was proposed and implemented in [10] to improve the data
quality of the acquired pollution data by considering the relationship between the pollution data and
the ambient conditions. The GasMobile [19] system achieved high data accuracy by calibrating the
low-cost sensors from time to time with the collocated conventional monitoring stations. Three novel
techniques (i.e., a temporal n-gram augmented Bayesian room localization method; an air exchange
rate based indoor air quality sensing method; and a zone-based proximity detection method for
collaborative sensing) were proposed and implemented to improve the data accuracy and energy
efficiency of the Mobile Air Quality Sensing (MAQS) [18] system. The energy consumption of the
system proposed in [11] was optimized on sensor level, node level, and network level by performing
dynamic gas sampling, people presence sensing, and nodes cooperating, respectively. A Clustering
Protocol of Air Sensor (CPAS) network was proposed in [13] to improve the energy efficiency, life-time,
and data rate of the network. In [21], a next generation air monitoring system was developed and
evaluated with both laboratory and field tests. In order to correct the impacts of ambient conditions
(i.e., temperature and relative humidity) on the electrochemical sensors, a multi-parameter correction
algorithm was adopted. For the monitoring system proposed in [15], a Low Power Wide Area Network
(LPWAN) was utilized to enlarge the network coverage to meet the communication requirements of a
massive number of air quality sensors over a large sensing area. Adaptive duty cycle technique was
employed in the sensor nodes for energy saving and hence enlarged the network lifetime.

Issues and challenges like privacy problem, user behavior, and data visualization were studied
in [23–25]. In addition, a detailed implementation, including both hardware and software, of adding
the electrochemical sensors to the OpenSense [26] box was presented in [27].

3. System Architecture and Implementation

In this section, the objectives of the Modular Sensor System (MSS) architecture are first described.
Then, the detailed design of the MSS architecture and the Universal Sensor Interface (USI) are presented.
A sensor node prototype adopting the MSS architecture and USI is also implemented in this section.

3.1. Design Goals

G.1 Portability: Compared to a stationary sensor node, a portable one enlarges its geographic coverage,
which leads to higher spatial resolution of the data acquired [12,28], when it is carried by an active
user, the public transportation, or even an Unmanned Aerial Vehicle (UAV) [3].

G.2 Energy Efficiency: The portability of a sensor node is achieved at the expense of limited size,
weight, and power. A sensor node with high energy efficiency can increase the flexibility of
maintenance by reducing the charging frequency.

G.3 Multiple WSN Compatibility: A sensor node with multiple WSN compatibility can be deployed in
stationary, wearable, or vehicular scenarios by replacing the wireless module only, while having
satisfying trade-off among network connectivity, energy consumption, and cost efficiency.
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G.4 Multiple Sensing Ability: The multiple sensing ability enables performing data correction,
compensation, and fusion on sensors’ readings [10,29,30]. Moreover, a sensor node with multiple
sensors has advantages over that with single sensor in terms of energy and cost efficiency.

G.5 Configurable and Adaptable Sensing Capability: By employing modular software/hardware design,
the number and types of sensors on a sensor node are user-configurable and self-adaptable
(i.e., plug-and-play) for different kinds of monitoring scenarios that increase the system flexibility
and usability, while the sensors’ sensing intervals are self-configured for power managing and
detection maximizing purposes. System evolution is cost-efficiently achieved by developing
advanced sensor modules for existing sensor nodes.

3.2. System Architecture Design

The system architecture design of the proposed MSS is illustrated in Figure 1 and the functionality
of each block is presented as follows.

PC 

MCU 
Universal 

Sensor 
Interface 

Sensor 1 

Sensor 2 

Sensor N 

Power 
Lines 

SPI 

UART 

Power Management 

Power 
Module 

Battery 
Charger 

Battery 

AC 
Adapter 

AC 
Power 

USB 

SD Card Data Logger 

Wireless 
Communication 

Management 

Bluetooth 

ZigBee 

GPRS/3G/LTE 

Wi-Fi 

SIM Card 

UART 

I2C 

SPI 

I2C 

Real-Time Clock 

GPS 

Figure 1. System architecture of a MSS sensor node. (GPS: Global Positioning System; SPI: Serial
Peripheral Interface; UART: Universal Asynchronous Receiver/Transmitter; MCU: micro-controller
unit; I2C: Inter-Integrated Circuit; GPRS: General Packet Radio Service; 3G: 3rd-Generation; LTE: Long
Term Evolution; SIM: Subscriber Identification Module; SD: Secure Digital; USB: Universal Serial Bus;
PC: Personal Computer; AC: Alternating Current.)

All of the sensors are connected to the micro-controller unit (MCU) through the proposed USI that
enables the multiple sensing ability and the configurable and adaptable sensing capability described
in G.4 and G.5, respectively. In addition, a lightweight Serial Peripheral Interface (SPI) based protocol
is adopted in the USI, which is essential to the configurable and adaptable sensing capability described
in G.5, to bridge the communication between the sensors and the MCU. The power lines of each sensor
are controlled by the MCU for power managing (i.e., dealing with the energy efficiency described
in G.2) and detection maximizing (e.g., configure the sensing interval of each sensor), and fault
tolerance (e.g., restart or power down malfunction sensor) purposes.

The location and time information that tagged to the sensing data are acquired from a GPS
module and a real-time clock module, respectively. The GPS module periodically updates the location
information to the MCU through the Universal Asynchronous Receiver/Transmitter (UART) port
and the time information is acquired from the real-time clock module by the MCU through the
Inter-Integrated Circuit (I2C) port. Time information is also available from the GPS module and it is
utilized to synchronize the real-time clock module when needed.
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For the design goal described in G.3, multiple wireless communication modules (Bluetooth,
ZigBee, Wi-Fi, GPRS, etc.) are supported by the wireless communication management block using
the UART port. A sensor node is ready for a specific kind of deployment scenario (stationary,
wearable, or vehicular) with satisfying network connectivity, energy consumption, and cost efficiency
by replacing the wireless communication module with a proper one. For example, a Bluetooth module
that has low energy consumption and price is used for a wearable sensor node to utilize a user’s
smartphone that has promising network connectivity for uploading data to the central server.

A data logger using the SPI port is utilized to buffer the sensing data when the connection
between the sensor node and the central server is not available. A Universal Serial Bus (USB) port is
also available for development purpose. Typically, a sensor node is powered by battery and a battery
power system using I2C port is adopted.

3.3. Detailed Implementation

A sensor node prototype adopting the MSS architecture and USI is implemented in this section.
It consists of one Main-Body subsystem and multiple Sensor-Module subsystems.

3.3.1. Main Body Subsystem

As illustrated in Figure 2, a Main-Body consists of a main control unit, six physical USI sockets,
a WSN and GPS module (In wearable scenario where user carries the sensor node connected to the
user’s smart phone, the GPS module is disabled and the location information from the user’s smart
phone will be used instead.), two batteries with charging system, and a 3D printed protective case.
It is 180.6 mm long by 122.6 mm wide by 36.0 mm high and weighs about 320.0 g.
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Figure 2. Main-Body subsystem and sensor nodes in wearable scenarios.

An ARMmbed [31] LPC1768 platform is utilized in the main control unit. A real-time clock that
keeps track of the current time is used and it communicates with the MCU through the I2C port.
A micro Secure Digital (microSD) card based data logger for data buffering communicates with the
MCU through the SPI port. To achieve the multiple sensing ability described in G.4, three 16-bit I2C
input/output expanders are used to bridge the signals between the MCU and the pins Module_Power,
SELECT and Module_Present of each USI illustrated in Figure 3a. Therefore, a main control unit is able
to support up to sixteen USIs.
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Figure 3. Schematic and communication protocol of the USI. (a) schematic of a USI on Main-Body;
(b) timing diagram of the SPI based communication protocol.

The schematic of a USI on the Main-Body is shown in Figure 3a. J1 is the USI’s 8-pin connector.
Pin VCC_Conti powers the components that require continuous power in Sensor-Module. Controlled
by the main control unit using the pin Module_Power on the solid-state relay U1, pin VCC_Contr
powers the module control unit and other electronic components in a Sensor-Module for power
managing, detection maximizing, and fault tolerating purposes mentioned in Section 3.2. Whenever
a Sensor-Module is inserted into the Main-Body, pin Module_Present will be driven low and the main
control unit is notified. It enables the adaptivity part (i.e., plug-and-play) of the configurable and
adaptable sensing capability described in G.5. Pins MOSI, MISO, SCLK, and SELECT are standard SPI
pins. The Main-Body communicates with the Sensor-Modules using a lightweight SPI based protocol
and its timing diagram is presented in Figure 3b.

For the WSN and GPS module, because the Xbee [32] footprint is adopted, any Xbee packaged
wireless modules can be applied in the Main-Body. The hardware compatibility of the multiple WSNs
compatibility mentioned in G.3 is achieved. Multiple wireless technologies, including Bluetooth2.0/4.0,
ZigBee PRO 2007, and IEEE802.11b/g/n, have been tested in the proposed system.
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3.3.2. Sensor-Module Subsystem

For a Sensor-Module, it consists of one or more sensors (depends on the sensors’ physical
constraints like size, weight, power, etc.) with supporting circuits, a module control unit, a USI
connector (J1 in Figure 3a), and a 3D printed protective case. A CO Sensor-Module illustrated in
Figure 4a is presented as an example. It is 56.1 mm long by 44.0 mm wide by 26.0 mm high and
weights about 45.0 g. In Figure 4b, eight types of Sensor-Modules have been implemented, namely
CO, SO2, O3, NO2, CO2, THP, NR1, and NR2, and they are able to monitor the carbon monoxide,
sulfur dioxide, ozone, nitrogen dioxide, carbon dioxide, temperature-humidity-pressure condition,
β-γ radiation, and α-β-γ radiation, respectively. More Sensor-Modules are under development. Due to
page limitation, only the detailed implementation of the gas pollution (CO, SO2, O3, and NO2)
Sensor-Modules are presented in this section.

CO	Sensor	and	ISB	

3-D	Printed	
Protec5ve	Case	

Module	Control	Unit	

Assembled	
Sensor-Module	

U
SI	Connector	

(a)

CO SO2 

O3 NO2 

CO2 THP 

NR1 NR2 

(b)

Figure 4. Sensor-Module subsystems. (a) a CO Sensor-Module subsystem; (b) eight implemented
Sensor-Modules.

Based on the conclusions of [29,33] and the authors review on existing pollution sensing
technologies [3], the solid-state and electrochemical sensors are suitable candidates for detecting
the CO, SO2, O3, and NO2 pollution gases in the proposed system. Because the solid-state gas sensors
are usually with higher power consumption, worse sensitivity, and lower resolution compared to the
electrochemical ones, the Alphasense B4 series electrochemical gas sensors with Individual Sensor
Boards (ISB) are selected. According to their specifications [34–38] summarized in Table 1, data with
low noise and ppb-level resolution are achievable while having mW-level power consumption.

To achieve ppb-level resolution, a 6V low-noise Direct Current (DC) power supply is required by
these sensors. Because a 2S Li-Po battery (8.4 V) is utilized in the Main-Body, a low-dropout (LDO)
voltage regulator with the lowest output noise at the expense of slightly higher power consumption
compared to other solutions [27] is adopted. Finally, the LF60AB LDO is selected as it has the highest
output accuracy (6 ± 0.06 V) and lowest noise (50 µV) among all available LDOs.

According to Table 1, the lowest output resolution of the ISB is ≤1.192 mV. Because the build-in
Analog-to-Digital Converter (ADC) of the module control unit (ARMmbed [31] LPC11U35 MCU) does
not meet this requirement, a 16-bit 4-channel ADC with internal Programmable Gain Amplifier (PGA)
named ADS1115 is utilized. A voltage divider is also applied to shrink down the ISB’s output
range (0 to ≈6 V) to the ADC’s operating range (0 to 4.096 V).

In a gas pollution Sensor-Module, the gas sensor and ISB are powered by the pin VCC_Conti
continuously while the module control unit is powered up by the pin VCC_Contr in each sensing
interval. This mechanism enables high energy efficiency and good data quality at the same time because
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these gas sensors with ISB that consume mW-level power require about two hours to stabilized every
time after switching on (Assuming each sensing interval is T = ts + ta + ti, where ts is the sensor’s
stabilization time, ta is the data acquisition time, and ti is the idle time before next sensing interval,
and the power consumption of the gas sensor, ISB, and module control unit is PS, PISB, and PMCU,
respectively. In order to achieve same level of data quality, the total energy consumption of each
sensing interval with or without adopting the mechanism above is Ewi = (PS + PISB) · T + PMCU · ta

and Ewo = (PS + PISB + PMCU) · (ts + ta), respectively. Given (PS + PISB)� PMCU, Ewi ≥ Ewo stands
only when ti � ts. In this manuscript, T = 5 s and ts � T that result in Ewi < Ewo.).

Table 1. Technical detail of Alphasense sensors and Individual Sensor Boards (ISB).

Parameters CO NO2 SO2 O3 NO H2S

Precision ^ [ppb] 4 15 5 15 15 1
Sensor Sensitivity ^ [nA/ppb] 0.525 −0.425 0.35 −0.4 0.65 1.75

ISB Gain ^ [mV/nA] 0.8 −0.726 0.8 −0.746 0.8 0.8
Working Electrode Sensitivity * [mV/ppb] 0.42 0.309 0.28 0.298 0.52 1.4

Working Electrode Zero Offset ^ [mV] 270 225 355 260 545 350
Auxiliary Electrode Zero Offset ^ [mV] 340 245 345 300 510 350

Output Resolution [mV] 1.68 3.708 1.4 1.192 7.8 1.4
Full Scale Range @ 6V [ppm] 13 18 20 19 10 4

Maximum Output [V] 5.46 5.562 5.6 5.662 5.2 5.6

* The Working Electrode Sensitivities are achieved using the ISB. ^ These are typical values and the actual
values can be achieved by calibration.

4. Evaluation and Calibration

In this section, a functional evaluation including comparison between the MSS and similar
systems, data acquisition and visualization, and power consumption analysis was performed. Then,
the THP, CO, NO2, and O3 Sensor-Modules were calibrated by comparing the collocated and
time-synchronized data from them with that from equipment of authorized agencies like the Hong
Kong Observatory (HKO) and the Environmental Protection Department (EPD). The collocation
calibration sites of the sensors should be carefully selected to ensure that the ambient conditions are
similar to the locations where they are being used. If possible, the pollution levels of the calibration
site should cover the maximum and minimum levels of the locations where the sensors are being
deployed. Calibration on a more frequent basis may help ensure the most accurate data.

4.1. Functional Evaluation

Firstly, comparison between the MSS and other similar systems were performed as shown in
Table 2. Most of them (systems without Configurable in the Sensor Number column) did not adopt
any modular design in their systems and hence the hardware sets of these sensor nodes were
fixed once they were designed, not to mention the plug-and-play feature (i.e., dynamically and
automatically recognizing the inserted sensors without users’ configuration). For the Waspmote Pro
(Libelium Comunicaciones Distribuidas S.L., Zaragoza, Spain) [14] and UPOD [39] sensor systems,
their limited configurable sensing capabilities are based on the sensors’ analog interfaces that have
drawbacks such as (1) inconsistent analog interfaces for different sensors from different manufactures,
and (2) inconsistent calibration parameters for sensors inserted in different sensor nodes. For the
NODE+ (Variable Inc., Chattanooga, TN, USA) [40] system, the configurable sensing capability is
based on the digital interfaces on the sensor modules, which is similar to the proposed MSS. However,
it supports two sensor modules at most and Bluetooth only while the MSS supports 16 sensor modules
at most and multiple wireless modules. To the best of our knowledge, the proposed MSS is the first
air monitoring system with (1) modular design, (2) plug-and-play feature, and (3) multiple WSNs
compatibility.
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Table 2. Comparison between the MSS and similar systems. (VOC: Volatile Organic Compound;
PM: Particulate Matter; MAQS: Mobile Air Quality Sensing; GPRS: General Packet Radio Service;
MAS: Mini Air Station; GSM: Global System for Mobile Communications; UMTS: Universal Mobile
Telecommunications System; WLAN: Wireless Local Area Network; PID: Photo-Ionization Detector.)

System Name Number of Sensors Type of Sensor Type of WSN Deployment Scenario

Waspmote PRO [14]
Configurable

(max. 5)

CO, NO2, O3,
VOC, humidity,

temperature
Bluetooth Wearable, Vehicular

Monitoring Node [15] 3
PM2.5, humidity,

temperature 802.15.4k Stationary

CitySense [16] 5
temperature,

humidity,
pressure, etc.

Wi-Fi Stationary

CommonSense [17] 6
CO, O3, NOX,
temperature,
humidity, etc.

Bluetooth,
802.15.4,

GPRS
Wearable

MAQS [18] 4
CO2, light,

humidity, etc. Bluetooth Wearable

GasMobile [19] 1 O3 None (cable) Wearable

Multi-Gas Monitoring
Stations [20] 3 or 5

O3, NO2, CO,
etc. GPRS Stationary

MAS [21] 6
NO2, CO, O3,

PM2.5, humidity,
temperature

GSM Stationary

OpenSense [41] 6

O3, CO, NO2,
fine particles,
temperature,

humidity

GPRS/UMTS,
WLAN Stationary, Vehicular

UPOD [39]
Configurable

(max. 13)

CO2, PID,
humidity,

temperature,
metal-oxide
sensor, etc.

Wi-Fi
Stationary,
Vehicular

Speck [42] 1 PM2.5 Wi-Fi Indoor

AirBeam [43] 1 PM2.5 Bluetooth Wearable

AirQualityEgg [44] 7
NO2, CO,

temperature,
humidity, etc.

Wi-Fi Indoor

AirBoxx Monitor [45] 8
CO, CO2,

temperature,
humidity, etc.

Bluetooth Indoor

NODE+ [40]
Configurable

(max. 2)

CO, CO2, H2S,
NO, NO2, SO2,
temperature,
humidity, etc.

Bluetooth Wearable

MSS
Configurabl

(max. 16)

Configurable
and

Expandable

Bluetooth,
GPRS, ZigBee,

Wi-Fi, etc.

Stationary, Wearable,
and Vehicular

Secondly, as an illustrative example, a CO Sensor-Module was inserted into the Main-Body that
was connecting to a PC through USB port for data acquisition. The inserted CO Sensor-Module was
successfully identified and the data from it were handled automatically and properly as shown in
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Figure 5a. Port_ID is the inserted USI’s ID (from 1 to 16) and Module_ID is the Sensor-Module’s unique
ID. Module_Type represents the type of this Sensor-Module and 1 means CO. Data_Raw is the current
pollutant concentration in ppb level. Time_Stamp records the UTC+8 time at which the pollution
information was acquired and GPS_Location in Earth Centered Earth Fixed (ECEF) mode is also tagged.
Three hours of data as presented in Figure 5b were collected that the data acquisition rate was 5 s and
the sensor node was installed next to the campus road. In this graph, four peaks are labeled and their
appearances accompanied the shuttle buses going by. This indicates that the sensor node is able to
capture micro-level air pollution information and in-time personal exposure warnings can be issued as
appropriate. An Android app was also implemented. It utilizes Bluetooth to collect data from the MSS
sensor node. The acquired data will then be uploaded to the central server using a cellular network or
Wi-Fi. The screenshots of the app are shown in Figure 5c.
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Figure 5. (a) raw data from the MSS sensor node through USB Port; (b) CO concentration over time
(data were collected from 11:11:40 to 14:02:30 on 27 April 2016. The four labeled peaks accompanied the
shuttle buses going by); (c) screenshots of the Android app (The first sub-figure shows data collected by
the implemented MSS sensor node. The remaining sub-figures are other features of the app developed
by the Institute of Future City of The Chinese University of Hong Kong, and the data displayed on
them are from Hong Kong Observatory and Environmental Protection Department of Hong Kong.)

Table 3. Power consumption of each major component on the MSS sensor node. (MCU: micro-controller
unit; LED: Light Emitting Diode; WSN: Wireless Sensor Network; GPS: Global Positioning System;
USI: Universal Sensor Interface; ISB: Individual Sensor Board.)

Component Name Voltage (V) Current (mA) Power (mW)

MCU 8.4 51 428.4
LED 1 8.4 36 302.4
LED 2 3.3 18 59.4
Relay 1 5 16 80.0
Relay 2 5 16 80.0

Main Control Unit

Remaining Circuits - - 282.8

Bluetooth 3.3 12 39.6
GPS 3.3 47 155.1WSN and GPS Module

Remaining Circuits - - 305.9
USI Relay 3.3 13 42.9

Module Control Unit 5 7 35
Sensor and ISB 6 2 12Gas Sensor-Module

Remaining Circuits - - 38.7

Thirdly, a power consumption analysis of the implemented MSS sensor node was performed.
The power consumption of each major component of the Main-Body and the gas pollution (CO, SO2,
O3, and NO2) Sensor-Module is listed in Table 3. The LEDs and relays on the main control unit are
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used to indicate system status and control power supplies, respectively. The USI’s relay and the
module control unit with supporting circuits (LDO voltage regulator, ADC, etc.) that highlighted in
Table 3 are the essential components of the configurable and adaptable sensing capability described
in G.5. Extra power is consumed by these highlighted components to achieve the desired features.
As illustrated in Figure 6, although the power consumption of the highlighted components contributes
only 6.3% to the total power consumption if 1 Sensor-Module is plugged in, it becomes more and more
significant when the number of Sensor-Modules increases and 49.2% of the total power is consumed
by them if 16 Sensor-Modules are inserted. Such issue is well considered when designing the MSS and
USI. As mentioned in Sections 3.2 and 3.3.2, these highlighted components of each Sensor-Module
will only be switched on when data acquisition is required. Assuming the data acquisition process
will take 0.1 s (in fact, less than 0.1 s) and the sensing interval is 5 s, only 0.13% and 1.9% of the
total energy in one sensing interval is consumed by the highlighted components with 1 and 16
Sensor-Modules, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
USI and Module Control Unit 116.6 233.2 349.8 466.4 583 699.6 816.2 932.8 1049.4 1166 1282.61399.21515.81632.4 1749 1865.6
Sensor and ISB 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192
WSN and GPS Module 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6
Main Control Unit 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233
Total Power 1862.21990.82119.4 2248 2376.62505.22633.82762.4 2891 3019.63148.23276.83405.4 3534 3662.63791.2
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Figure 6. Power consumption distribution of the MSS sensor node with different numbers of gas
Sensor-Modules (The data table is showing the exact power consumption of each major component
with respect to the number of gas Sensor-Modules inserted. The unit of power consumption is mW.
Each indicator in percentage on top of the rectangle column is the proportion of the total power
consumption that was contributed by the USIs and module control units.)

4.2. Collocation Calibration

In this section, the THP, CO, NO2, and O3 Sensor-Modules were calibrated by comparing the
collocated and time-synchronized data from them with that from equipment of authorized agencies
like Hong Kong Observatory (HKO) and Environmental Protection Department (EPD) of Hong Kong.
For the THP Sensor-Module, the sensor node was placed inside the Stevenson’s screen, which is
next (≈5 meters) to the HKO’s monitoring station in King’s Park as shown in Figure 7a, and collected
data consecutively for 6 days. For the CO, NO2, and O3 Sensor-Modules, the sensor node with
a weatherproof case was placed next (≈4 meters) to the EPD’s monitoring station in Tseung Kwan O
as shown in Figure 7b, and collected data consecutively for 23 days. Although the sensor node took
a measurement every five seconds, we only have access to the 1-minute averaged data from HKO’s
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and EPD’s equipment. Therefore, we averaged the 12 measurements from the sensor node in each
minute and used the averaged value to represent the measurement of that 1-minute interval.

MSS	Sensor	Node

Power	Supply

Stevenson’s	Screen

MSS	Sensor	Node

Station	Inlet

(a)

MSS	Sensor	Node

Power	
Supply

Station	Inlet

MSS	Sensor	Node

(b)

Figure 7. Collocation calibration sites. (a) HKO King’s park site; (b) EPD Tseung Kwan O site.

Algorithm 1: Pairwise calibration algorithm proposed in [46]

Input : P = {pi} = {(si, ri)}, where si and ri are the sensor value and reference value at time i
respectively;
α, size of the slide window;
β, percentage of top ranks.

Output : P′ = {pj} = {(sj, rj)}, where sj and rj are the filtered sensor value and reference value at
time j respectively.

1 W← {0} ; // W = {wi}, where wi the weight of each (si, ri) pair

2 for k← 0 to |P| − α do
3 Q← {(sm, rm) ∈ P | k ≤ m < k + α} ;
4 c← corrcoe f (Q) ; // calculate the correlation coefficient of the pairs in Q

5 for l ← 0 to α− 1 do
6 Q′ ← Q \ {(sn, rn) | n = k + l} ; // remove the element (sk+l, rk+l)

7 c′ ← corrcoe f (Q′) ; // calculate the correlation coefficient of the pairs in Q′

8 if c′ > 0 and c′ < c then // (sk+l, rk+l) has positive contribution to c

9 wk + l ← wk + l + c ; // increase the weight of data pair at position k + l with c

10 end
11 end
12 end
13 W′ ← descend_sort(W, β) ; // perform descending sort on W and assign the top β percent to W′

14 P′ ← {(sj, rj) ∈ P | wj ∈ W′}

The key idea of collocation calibration is that if the sensor node and the reference station are
collocated, they are likely observing the same phenomenon and the acquired data pairs should be
highly correlated [46]. A relationship of these collocated and time-synchronized data pairs (In order
to identify the events for which the sensor node and the reference station were monitoring the
same phenomenon, a data filter proposed in [46] was adopted with a 6-h window and 20% top
ranks. The filter algorithm can be found in Algorithm 1. Because this filter was evaluated using
a temperature sensor in the original paper, only the temperature data pairs were filtered in our
experiment.), which are plotted in Figure 8 with the horizontal axises representing the sensor values
and the vertical axises representing the reference values, respectively, can be established by performing
a polynomial regression (For the THP Sensor-Module and CO Sensor-Module, 1st order polynomial
regression seems to be a good approximation because the improvement of using 2nd, 3rd, and 4th order
polynomials is less than 2% in terms of mean squared error. For the NO2 Sensor-Module, 3rd order
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polynomial regression seems to be a good approximation because the improvement of using 1st, 2nd,
and 4th order polynomials is −82%, −7%, and 3%, respectively, in terms of mean squared error.) on
them. Calibrated sensor values, with respect to the reference values, are achieved by filling the sensor
values to the calibration functions generated by the polynomial regression.

Temperature (R² = 0.98)

Reference Values[⁰C]

Sensor Values (⁰C)

Relative Humidity (R² = 0.92)

Reference Values [%
]

Sensor Values (%)

Atmospheric Pressure (R² = 0.99)

Reference Values [Pa]

Sensor Values (Pa)
CO (R² = 0.91)

Reference Values [ppb]

Sensor Values (mV)

NO2 (R² = 0.42)

Reference Values [ppb]
Sensor Values (mV)

O3 (R² = 0.00)

Reference Values [ppb]

Sensor Values (mV)

Figure 8. Scatter plots of sensor value (horizontal axises) and reference value (vertical axises) pairs
of each monitoring species (The temperature data pairs were preprocessed using the filter proposed
in [46] with a 6-h window and 20% top ranks. The R2 is the square of the correlation coefficient.)

Throughout our discussion, we assume that the relationships of the sensor value and reference
value pairs of each monitoring species are polynomial, and that the calibration functions are of the
following format:

p̂(xi) = a0 + a1xi + a2xi
2 + ... + anxi

n, (1)

where xi is the sensor value at time i, and p̂(xi) is the calibrated sensor value, with respect to sensor
value xi at time i, using calibration parameter set {a0, a1, a2, ..., an}. We quantify the performances of
the calibrated sensors using the Mean Absolute Error (MAE) and the Standard Deviation (SD), which are
defined as follows:

MAE =
1
N

N

∑
i=1
| p̂(xi)− r(xi)|, (2)

SD =

√√√√ 1
N

N

∑
i=1

(| p̂(xi)− r(xi)| −MAE)2, (3)

where r(xi) is the reference value corresponding to sensor value xi at time i, and N is the number of
sensor value and reference value pairs of the monitoring species. In instrumentation and measurement
society, the MAE is defined as accuracy and the SD represents the precison, stability or repeatability of
a sensor.

In order to identify over-fitting, the data pairs of each monitoring species were randomly divided
into two parts, namely training set (80%) and testing set (20%). The Correlation Coefficients (CC) for both
training and testing sets were then calculated. The calibration parameter set of each monitoring species
was achieved by performing polynomial regression on the training set. The calibration parameter set
was then applied to the training and testing sets to find out the calibrated sensor value p̂(xi) for each
sensor value xi at time i. Finally, the Mean Absolute Error (MAE) and Standard Deviation (SD) of both
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training and testing sets were calculated using Equations (2) and (3), respectively. The procedures
above were repeated five times and the results are listed in Table 4. We evaluate the regression
performance of each monitoring species by looking at the mean difference between the training MAE
and testing MAE (MDMAE), and the mean difference between the training SD and testing SD (MDSD)
of all iterations that are defined as follows:

MDMAE =
100%

n

n

∑
i=1

(
|MAETest

i −MAETrain
i |

MAETrain
i

), (4)

MDSD =
100%

n

n

∑
i=1

(
|SDTest

i − SDTrain
i |

SDTrain
i

), (5)

where MAETest
i , MAETrain

i , SDTest
i , and SDTrain

i are the testing MAE, training MAE, testing SD,
and training SD values in iteration i, respectively.

Table 4. Calibration results of THP (temperature-humidity-pressure) Sensor-Module, CO
Sensor-Module, and NO2 Sensor-Module.

Iteration 1 2 3 4 5

Temperature * ‡ (°C)

Training Set
CC 0.988 0.987 0.987 0.988 0.987

MAE 0.160 0.163 0.162 0.162 0.163
SD 0.133 0.130 0.132 0.132 0.131

Testing Set
CC 0.987 0.987 0.988 0.987 0.989

MAE 0.166 0.156 0.159 0.159 0.153
SD 0.125 0.133 0.125 0.130 0.130

Relative Humidity ‡ (%)

Training Set
CC 0.962 0.961 0.962 0.962 0.962

MAE 1.697 1.684 1.684 1.696 1.685
SD 1.358 1.360 1.350 1.357 1.345

Testing Set
CC 0.961 0.962 0.960 0.960 0.958

MAE 1.673 1.714 1.718 1.671 1.716
SD 1.352 1.355 1.391 1.360 1.407

Atmospheric Pressure ‡ (Pa)

Training Set
CC 0.999 0.999 0.999 0.999 0.999

MAE 10.24 10.25 10.31 10.25 10.25
SD 7.521 7.499 7.517 7.492 7.492

Testing Set
CC 0.999 0.999 0.999 0.999 0.999

MAE 10.41 10.40 10.13 10.38 10.39
SD 7.460 7.516 7.466 7.569 7.544

CO ^ (ppb)

Training Set
CC 0.952 0.952 0.952 0.953 0.951

MAE 31.99 31.97 32.14 32.02 32.04
SD 27.04 27.14 27.18 27.03 27.14

Testing Set
CC 0.953 0.952 0.951 0.948 0.956

MAE 32.35 32.44 31.84 32.29 32.14
SD 27.50 27.12 26.88 27.52 27.15

NO2
† (ppb)

Training Set
CC 0.643 0.647 0.643 0.642 0.646

MAE 3.180 3.190 3.166 3.169 3.180
SD 3.031 3.056 3.024 3.038 3.030

Testing Set
CC 0.660 0.644 0.643 0.642 0.648

MAE 3.190 3.159 3.230 3.216 3.200
SD 3.070 2.954 3.110 3.058 3.064

* The sensor value and reference value pairs were preprocessed using the filtered proposed in [46] with
6-h window and 20% top rank. ‡ Calibration parameter set is achieved by setting a0 = 1

N ∑N
i=1(r(xi)− xi),

a1 = 1.0, and an = 0 for n ≥ 2, respectively. ^ Calibration parameter set is achieved by performing 1st order
polynomial regression. † Calibration parameter set is achieved by performing 3rd order polynomial regression.
Note: CC is the correlation coefficient of the data pairs and R2 = CC ∗ CC. MAE and SD are calculated using
Equations (2) and (3), respectively.
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For the THP Sensor-Module, the SHT31 temperature-humidity sensor and the BMP280 barometer
are utilized. The sensor node with the THP Sensor-Module was collocated with HKO’s monitoring
station and the data acquired from the 6-day measurement campaign (over 8000 data pairs per species)
are shown in Figure A1. The sensor value and reference value pairs of each monitoring species
are highly correlated and the squared correlation coefficients (R2) are 0.98 (temperature), 0.92 (relative
humidity), and 0.99 (atmospheric pressure), respectively. From the scatter plots of the sensor value
and reference value pairs of temperature, relative humidity, and atmospheric pressure illustrated
in Figure 8, they show clear linear relationships between the sensor values and reference values.
Moreover, for each monitoring species, the sensor values and reference values have the same unit
(i.e., °C, %, or Pa), and the relationships of the reference values and the differences between reference
and sensor values are not significant (The R2 values of the reference values and the differences between
reference and sensor values for temperature, relative humidity, and atmospheric pressure are 0.00, 0.41,
and 0.03, respectively. Although the R2 value of relative humidity is significantly larger than that of
temperature and atmospheric pressure due to the fact that the accuracy of typical humidity measuring
equipment decreases when humidity level increases, we consider it as insignificant relationship for
simplicity reason.). Therefore, the calibration parameter set {a0, a1, a2, ..., an} can be achieved by setting
a0 = 1

N ∑N
i=1(r(xi)− xi), a1 = 1.0, and an = 0 for n ≥ 2, respectively.

For the CO, NO2, and O3 Sensor-Modules, the Alphasense CO-B4, NO2-B4, and O3-B4 sensors
are utilized, respectively. The sensor node with these three Sensor-Modules was collocated with EPD’s
monitoring station and the data acquired from the 23-day measurement campaign (over 33,000 data
pairs per species) are shown in Figure A3. The sensor value and reference value pairs for CO are highly
correlated with R2 = 0.91. For the NO2 data pairs, although the R2 value drops down to 0.42, we still
consider it as significant. For the O3 data pairs, the R2 value is close to 0. Such insignificant correlation
may be caused by the fact that the O3 sensor reacts to both ozone and nitrogen dioxide [36]. Currently,
we conclude that our calibration method is not suitable for this O3 sensor and the calibration of the O3

Sensor-Module is considered as future work. From the scatter plots of the sensor value and reference
value pairs for CO and NO2 illustrated in Figure 8, the CO data pairs show a clear linear relationship
and the NO2 data pairs shows a clear nonlinear relationship. Preliminary results indicated that the 1st
order and the 3rd order polynomial regressions seem to be good approximations to the CO data pairs
and NO2 data pairs, respectively.

Referring to the calibration results of the temperature, relative humidity, atmospheric pressure,
CO, and NO2 data pairs listed in Table 4, the MDMAEs calculated using Equation (4) are 3.6%, 1.7%,
1.5%, 0.9%, and 1.1% respectively, and the MDSDs calculated using Equation (5) are 3.2%, 1.7%,
0.7%, 0.9%, and 1.8%, respectively. We consider that the MDMAE and MDSD values of all these five
monitoring species are relatively small, which means the calibration parameter sets achieved from the
training sets perform well in the testing sets. Hence, we conclude that no over-fitting is observed.

Finally, the calibration parameter sets for the temperature, relative humidity, atmospheric pressure,
CO, and NO2 sensors were calculated by performing polynomial regressions on all data pairs of each
monitoring species. The calibrated sensor values and reference values are plotted in Figures A2 and A4.
The MAE and SD values of each monitoring species were then calculated and shown in Figure 9.
For the temperature, relative humidity, and atmospheric pressure data pairs, the MAE values equal to
0.16, 1.69, and 10.26, respectively. This means that the accuracies of the calibrated temperature, relative
humidity, and atmospheric pressure sensors, with respect to the HKO’s reference station, are ±0.16 ◦C,
±1.69%, and ±10.26 Pa, respectively. All these values are within the accuracy tolerances listed in
the sensors’ specifications, which are ±0.3 ◦C, ±2%, and ±12 Pa, respectively. We conclude that the
THP Sensor-Module is successfully calibrated. For the CO and NO2 data pairs, the MAE values are
32.03 and 3.12, respectively. Hence, the accuracies of the calibrated CO and NO2 sensors, with respect
to EPD’s reference station, are ±32 ppb, and ±3 ppb, respectively. Considering that the maximum
concentrations of the CO and NO2 from the 23-day measurement campaign are about 1700 ppb and



Sensors 2018, 18, 7 16 of 22

70 ppb, and that EPD [47] sets their objectives to≤30,000 µg/m3 (equivalent to 26,200 ppb, 1-h average)
and ≤200 µg/m3 (equivalent to 106 ppb, 1-h average), respectively, such accuracies are acceptable.

(℃) (%) (𝑃𝑎) (𝑝𝑝𝑏) (𝑝𝑝𝑏) 
2 

Figure 9. The Mean Absolute Error (MAE) and Standard Deviation (SD) values of the temperature,
relative humidity, atmospheric pressure, CO, and NO2.

5. Conclusions

In this paper, we proposed the Modular Sensor System (MSS) architecture and the Universal
Sensor Interface (USI) to address the fixed hardware configuration issue of existing air monitoring
systems. We adopted the modular design into the proposed architecture, which enables it with multiple
WSNs compatibility, multiple sensing capability, and configurable and adaptable sensing capability.
We anticipate that the flexibilities of maintenance and usability of the monitoring system adopting
the proposed architecture are improved compared to similar systems. To the best of our knowledge,
the proposed MSS is the first air monitoring system with (1) modular design, (2) plug-and-play
feature, and (3) multiple WSNs compatibility. In Sections 3.3 and 4.1, a MSS sensor node prototype
was implemented and evaluated. Evaluation results show that MSS sensor nodes can easily fit in
different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution
with high energy efficiency and good data accuracy. In Section 4.2, the implemented THP, CO, and
NO2 Sensor-Modules were calibrated by comparing the data from them with that from the reference
equipment of authorized agencies. The calibrated accuracies of the temperature, relative humidity,
atmospheric pressure, CO, and NO2 sensors are ±0.16 ◦C, ±1.69%, ±10.26 Pa, ±32 ppb, and ±3 ppb,
respectively. All these values are within acceptable ranges and we concluded that the THP, CO,
and NO2 Sensor-Modules were successfully calibrated. The implementation and calibration of more
Sensor-Modules are considered as future work.
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Appendix A

(a)

(b)

(c)

Figure A1. Line plots of sensor values from THP Sensor-Module and reference values from
HKO’s station. (a) temperature data pairs; (b) relative humidity data pairs; (c) atmospheric pressure
data pairs.
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(a)

(b)

(c)

Figure A2. Line plots of calibrated sensor values from THP Sensor-Module and reference values from
HKO’s station. (a) temperature data pairs; (b) relative humidity data pairs; (c) atmospheric pressure
data pairs.
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(a)

(b)

2

2

Figure A3. Line plots of sensor values from CO and NO2 Sensor-Modules, and reference values from
EPD’s station. (a) CO data pairs; (b) NO2 data pairs.

(a)

(b)

2

Figure A4. Cont.
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(a)

(b)

2

Figure A4. Line plots of calibrated sensor values from CO and NO2 Sensor-Modules, and reference
values from EPD’s station. (a) CO data pairs; (b) NO2 data pairs.
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