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Abstract: A rehabilitation robot plays an important role in relieving the therapists’ burden and
helping patients with ankle injuries to perform more accurate and effective rehabilitation training.
However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of
complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good
flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant
ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM’s nonlinear
characteristics during operation and to tackle the human-robot uncertainties in rehabilitation,
an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper.
The human-robot external disturbance can be estimated by an observer, who is then used to adjust the
robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov
stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the
proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output
in real time during operation, resulting in a higher trajectory tracking accuracy and better response
performance especially in dynamic conditions.

Keywords: parallel robot; ankle rehabilitation; pneumatic muscles; disturbance estimation; adaptive
sliding mode control

1. Introduction

The ankle joint plays a key role in maintaining balance during walking [1–3]. Recently, there have
been an increasing number of people suffering from ankle injuries caused by diseases and accidents.
In the US, more than 23,000 cases of ankle sprain injuries happen every day [4]. The postoperative
recovery from ankle injury is slow and ineffective while the application of rehabilitation robots is
supposed to be possible to solve this problem. Rehabilitation robots can help patients accomplish
repetitive training tasks more accurately and effectively without physical therapists’ excessive
participation [5–7]. Increasing attention has been paid to the robotic rehabilitation that is appropriate
to perform repetitive exercises for the recovery from neuromuscular injuries [8].

In the perspective of ankle rehabilitation, parallel robots can produce greater torque as well as
achieve multiple movement degrees of freedom (DOFs) [9]. A series of parallel platform-based ankle
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rehabilitation robots have been developed [10]. Liu et al. [11], Alireza et al. [12], and Mozafar et al. [13]
all proposed a 6-DOF ankle rehabilitation robot based on the Stewart platform. However, these robots
utilized rigid actuators, such as electric motors or cylinders [14] that cannot achieve soft and compliant
interaction with the patients. To overcome the limitations, some researchers started to use pneumatic
muscles (PMs) as actuators to drive the ankle rehabilitation robot. PMs have inner compliance, high
power/weight ratio [15] and can drive the robot in a safer way, so they have become increasingly
popular in the rehabilitation robots [16]. Xie et al. [17,18] designed a four PMs-driven 3-DOF ankle
rehabilitation robot with large workspace and good flexibility. Park et al. [19] in Harvard University
designed a PMs-driven ankle rehabilitation robot by simulating the human muscle-tendon-ligament
model, in which the PMs directly drove the foot to complete dorsiflexion/plantarflexion and
inversion/eversion movements. Sawicki et al. [20] also used multiple PMs to provide dorsiflexion
and plantar flexion torque for the ankle movement. Patrick et al. [21] designed a 2-DOFs ankle
rehabilitation robot driven by three PMs to help patients achieve plantarflexion/dorsiflexion and
inversion/eversion movements.

PMs have strong non-linearity and time-varying properties [22], which may cause difficulties in
implementing precise control [23]. In order to solve these problems, a variety of control approaches
have been developed. Zhao et al. [24] used neural network to adjust the parameters of PID controller.
However, the method has the problems of long response time, poor tracking on desired trajectory
and low tracking accuracy in the step response experiment. Zhang et al. [25] proposed a hybrid
fuzzy controller to control the elbow exoskeleton robot actuated by PMs. However, this method
cannot estimate the external disturbance when chattering happens, resulting in a large overshoot of
step response. For the safety of human-robot interaction, Choi et al. [26] proposed a new approach to
control the compliance and associated position independently. However, when an external disturbance
occurs suddenly, the control method cannot detect the external disturbance quickly and it takes a long
time to re-track the desired trajectory. Meng et al. [9] proposed an iterative feedback tuning control
method for the repetitive training. However, the actual trajectory changed in a ladder shape because
the external disturbance cannot be estimated. Jiang et al. also [27] proposed an adaptive fuzzy control
algorithm based on neural network optimization to control the humanoid lower limb device driven
by pneumatic muscles. However, this method cannot achieve high-accuracy tracking control and the
error would significantly increase when the external load changes.

During the operation of rehabilitation robot, external disturbances are usually inevitable [28].
To obtain good control performance, the applied disturbance needs to be known exactly. However,
external disturbances are often difficult to get accurately [29]. Therefore, one of the reasons why the
above control method cannot achieve better control accuracy is that the external disturbance cannot
be estimated. It has been recently accepted that the disturbance observer is a good choice to solve this
problem [30]. Yang et al. [31] designed an error-feedback controller based on extended state observer to
estimate the external disturbances and improve the trajectory tracking accuracy of a PMs-driven robot.
Zhu et al. [32] presented an adaptive robust controller based on a pressure observer to control a three
PMs-driven robot without pressure sensors. Wu et al. [33] proposed a novel nonlinear disturbance
observer-based dynamic surface control (NDOBDSC) and can solve the friction and unknown external
disturbances existing in the PM-driven device. Youssif et al. [34] designed a nonlinear disturbance
observer (NDO) to estimate the lumped disturbance. Zhang et al. [35] proposed an active disturbance
rejection controller for a PM actuator to achieve angle tracking precisely under varying load conditions.
Plenty of studies have implied that external disturbance observer can reduce the error and improve
the control accuracy effectively.

On the other hand, since the parallel robot actuated by PMs is a complex high-order nonlinear
system, it would be increasingly difficult to develop an accurate control scheme for the system [36].
The backstepping sliding mode control (BS-SMC) can decompose a high-order nonlinear system into
several lower order subsystems and design an intermediate virtual controller for each subsystem,
which can improve the control performance [37]. In recent years, BS-SMC has attracted the interest
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of many researchers. Petit et al. [38] used backstepping sliding mode method to control a robot
with variable stiffness and achieved satisfactory tracking performance. However, the tracking error
would obviously increase if external disturbance occurred. Taheri et al. [39] designed a backstepping
sliding mode controller for pneumatic cylinders suitable for wearable robots. The force and stiffness
tracking performance were better than the previous pneumatic force-stiffness sliding mode controllers.
However, the overshoot of this control scheme was still large and there was no experiment with
variable loads. Esmaeili et al. [40] used a backstepping sliding mode controller to achieve balancing
and trajectory tracking of Two Wheeled Balancing Mobile Robots (TWBMRs).

As concluded from the previous studies, there will be excessive overshoots or significantly
increased errors when the external disturbance happens. The main reason is that the above methods
cannot estimate the external disturbance, and as a result the control output cannot be adjusted in
real time. This paper will propose an adaptive backstepping sliding mode control (ABS-SMC) with
the capacity to estimate the external disturbance during operation, thus improving the robustness
and accuracy of the control method. The ABS-SMC method is applied to a new 2-DOF parallel ankle
rehabilitation robot which has been recently developed by us using pneumatic muscles. The controller
can also deal with the nonlinearities and uncertainties of the robot system. The rest of this paper is
arranged as follows: Section 2 presents mechanism design of the ankle robot. The control strategy
is described in Section 3. In Section 4, experiments are carried out to verify the performance of
the controller. Section 5 draws conclusion of the paper.

2. The Ankle Rehabilitation Robot

The complete system of the 2-DOF ankle rehabilitation robot and its hardware configuration
are shown in Figures 1 and 2, respectively. The robot consists of a fixed platform, a moving
platform, and three pneumatic muscle actuators. The moving platform is equipped with two angle
sensors (GONIOMETER SG110) to measure its real-time orientation angle around the X and Y axis.
Each pneumatic muscle (FESTO MAS-20-400N) is controlled by an air pressure proportional valve
(ITV 2050-212N). The position information of each pneumatic muscle is collected by displacement
transducers (MLO-POT-225-TLF). A force/toque sensor (ATI Mini85) is mounted between the platform
and the footplate to measure the applied ankle torque. Through the data acquisition card, the sensing
data are gathered by robRIO and then transmitted to the host computer. After the D/A conversion of
the data, the control signals are input to the corresponding proportional valves to control pneumatic
muscles, thus driving the upper platform to move. The ABS-SMC is implemented in the host computer
and closed-loop control is realized on LabVIEW.
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rehabilitation robot. Since the PM can only provide pulling force, the robot must have a redundant 
actuation mechanism [41]. So the 2-DOF ankle rehabilitation robot is actuated by three pneumatic 
muscles. The lower fixed platform has three fixed holes, and the wires pass through the holes on the 
fixed platform. A strut is fixed between the fixed platform and the moving platform (end-effector). 
The Hooke joints between these two platforms guarantee that the robot can only move at two 
orientations. When the muscles’ lengths change, the platform can be controlled to work on two 
orientations. In order to reduce the height of the robot and make it easier for human usage, three 
PMs are placed in the horizontal direction, using three fixed pulleys to change the direction of 
actuating forces. In this case, the overall height of the robot is only 0.3 m. 
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Figure 3. Kinematics of the designed 2-DOF ankle rehabilitation robot: (a) structure model,  
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Figure 2. The developed ankle rehabilitation robot driven by PMs.

Figure 3a,b shows the simplified structure and geometrical model of the designed ankle
rehabilitation robot. Since the PM can only provide pulling force, the robot must have a
redundant actuation mechanism [41]. So the 2-DOF ankle rehabilitation robot is actuated by three
pneumatic muscles. The lower fixed platform has three fixed holes, and the wires pass through the
holes on the fixed platform. A strut is fixed between the fixed platform and the moving platform
(end-effector). The Hooke joints between these two platforms guarantee that the robot can only move
at two orientations. When the muscles’ lengths change, the platform can be controlled to work on
two orientations. In order to reduce the height of the robot and make it easier for human usage,
three PMs are placed in the horizontal direction, using three fixed pulleys to change the direction of
actuating forces. In this case, the overall height of the robot is only 0.3 m.
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In order to control the robot end-effector to track a predefined trajectory for ankle movement
training, the robot kinematic model must be studied [42], using which the joint space displacements can
be determined from the end-effector orientation. As shown in Figure 3b, b1b2b3 and B1B2B3 represent
the moving platform and the fixed platform, respectively. The vectors that connect the moving platform
and the fixed platform can be written as b1B1, b2B2 and b3B3. O− X′Y′Z′ and O− XYZ are coordinate
system of the moving platform and the fixed platform, respectively. A space vector in the moving
coordinate can be transformed to the fixed via rotation matrix, which is widely used to establish inverse
kinematics of the parallel rehabilitation robot [43]. Here α = 50o, β = 80o, h1 = 0.07 m, h2 = 0.08 m,
H1 = 0.05 m, H2 = 0.06 m. The rotation matrix can be expressed as:

T = T(y, φ)T(x, θ) =

 cos φ sin φ sin θ sin φ cos θ

0 cos θ − sin θ

− sin φ cos φ sin θ cos φ cos θ

. (1)

The solution of b1B1, b2B2 and b3B3 is necessary for robot control and workspace analysis. It can
be obtained by using the inverse kinematics. The link’s length of this parallel robot is:

li = |L|i =
∣∣∣Tr′bi

+ P− rBi

∣∣∣i = 1, 2, 3 (2)

where Li is the vector from Bi to bi, P is the vector from O to O′, r′bi
is the vector from O′ to bi(i = 1, 2, 3)

and r′Bi
is the vector from O to Bi(i = 1, 2, 3).

The dynamic model of the robot describes the relationship between the output torque and the
desired angle as well as angular velocity [44]. The dynamics model is also the foundation of sliding

mode control [45]. Define q =
[

θ ϕ φ
]T

=
[

θ ϕ 0
]T

as the generalized coordinates of the
robot’s moving platform, thus the generalized speed of the moving platform is shown in Equation (3).

ω = Ẽ·


.
θ
.
ϕ

0

 =

 cos ϕ 0 0
0 1 0

− sin ϕ 0 1




.
θ
.
ϕ

0

. (3)

Lagrange’s equation is suitable for the complete system and it can solve the complex system
dynamic equation in a simpler way [46]. So we use the Lagrange’s equation to establish the dynamic
equation of the moving platform:

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ + τd, (4)

where M(q), C(q,
.
q) and G(q) represent the robot inertia matrix, the Coriolis centrifugal force matrix

and the gravity matrix, τ is the robot torque and τd is the external disturbance torque. τd is mainly
composed of human applied torque and the friction. The parameters in Equation (4):

M(q) = TIPTT

C(q,
.
q)

.
q = ω̃TTIPTT

G(q) = −mT̃rm g
, (5)

where m is the mass of the moving platform, Ip is the rotational inertia of the moving platform, rm

is the position vector of the moving platform centroid, Trm = Trm and T̃rm is the spiral matrix of Trm .
According to the formula, the driving force of each pneumatic muscle can be obtained, and finally to
realize the accurate trajectory tracking of the robot platform.
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3. Control Strategy

3.1. Backstepping Sliding Mode Control

The basic idea of backstepping design method is to decompose the complex nonlinear system into
subsystems with lower orders, and then design Lyapunov function and intermediate virtual control
for each subsystem [47]. Based on Equation (4), the controlled object model can be defined as{ .

q1 = q2.
q2 = −M−1Cq2 + M−1τ −M−1G + M−1τd

, (6)

where q1 = q, q is the actual trajectory.
Assuming the desired position qd, the controller can be designed by the following two steps:

Step 1: Define the tracking error e1 = q1 − qd, then
.
e1 =

.
q1 −

.
qd = q2 −

.
qd, and define the Lyapunov

function as
V1 =

1
2

eT
1 e1. (7)

So .
V1 = eT

1
.
e1 = eT

1
(
q2 −

.
qd
)
. (8)

Define
q2 = e2 +

.
qd − c1e1, (9)

where c1 > 0, e2 is a virtual control law. From Equation (9), we can obtain

.
e1 =

.
q1 −

.
qd

= q2 −
.
qd + c1e− c1e1

= e2 − c1e1

. (10)

From Equations (8) and (10) we can obtain

.
V1 = eT

1
.
e1 = eT

1 e2 − c1eT
1 e1. (11)

If e2 = 0,
.

V1 = −c1eT
1 e1 = −c1(‖e1‖2)

2 ≤ 0. So it is necessary to further design the control law.
Step 2: Define the switch function as

s = k1e1 + e2, (12)

where k1 > 0. Taking Equation (10) into (12), we can obtain

s = k1e1 +
.
e1 + c1e1 = (k1 + c1)e1 +

.
e1. (13)

The Lyapunov function is

V2 =
1
2

eT
1 e1 +

1
2

sTs. (14)

From Equation (14) we can obtain

.
V2 = eT

1
.
e1 + sT .

s
= eT

1 e2 − c1eT
1 e1 + sT(k1(e2 − c1e1)−M−1C(e2 +

.
qd − c1e1)

+M−1τ + M−1τd −M−1G− ..
qd + c1

.
e1)

. (15)

So the control law can be written as

τBS−SMC = τeq + M∆τ, (16)
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where
τeq = M(−k1(e2 − c1e1) + M−1C(e2 +

.
qd − c1e1) + M−1G +

..
qd − c1

.
e1)

∆τ = −h(s + βsgn(s))
. (17)

where h and β are the parameters of exponential reaching law. They can determine the speed and time
of the moving point approaching to the sliding surface.

3.2. Adaptive Backstepping Sliding Mode Control

The proposed ABS-SMC can estimate the external disturbance by establishing an disturbance
observer [48]. Assuming that the external disturbance observer is τ̂d.

Define

Q =

[
q1
q2

]
. (18)

So
.

Q =

[ .
q1.
q2

]
=

[
q2.
q2

]

=

[
q2

−M−1Cq2 −M−1G + M−1τ + M−1τd

] , (19)

Equation (19) can be rewritten as:

.
Q =

[
q2

−M−1Cq2 −M−1G

]
+

[
0
M−1

]
τ +

[
0
M−1

]
τd

= f1(Q) + f2(Q)τ + f2(Q)τd

, (20)

where

f1(Q) =

[
q2

−M−1Cq2 −M−1G

]
; f2(Q) =

[
0
M−1

]
, (21)

The disturbance observer is designed based on the difference between estimated output and
actual output. Equation (20) can be rewritten as

f2(Q)τd =
.

Q− f1(Q)− f2(Q)τ, (22)

So the disturbance observer is designed:

.
τ̂d = Γ(

.
Q− f1(Q)− f2(Q)τ − f2(Q)τ̂d), (23)

Define vector z = τ̂d − p(Q). The observer gain can be expressed as Γ = ∂p(Q)/∂Q. Let

Γ =
[

ξ2 ξ2

]
,ξ1 > 0, ξ2 > 0 (24)

p(Q) = ξ1q1 + ξ2q2 = ξ1q + ξ2
.
q. (25)

.
z =

.
τ̂d −

.
p(Q). (26)

Substituting Equations (23) and (25) into (26),

.
z =

.
τ̂d −

.
p(Q)

= Γ(− f1(Q)− f2(Q)τ − f2(Q)(z + p(Q)))

+
[

ξ1 ξ2

][
.
q

..
q
]T
− ξ1

.
q− ξ2

..
q

= Γ(− f1(Q)− f2(Q)τ − f2(Q)(z + p(Q)))

. (27)
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Let τ̃d = τd − τ̂d. When the disturbance varies slowly relative to the observer dynamics, which is
commonly assumed in observer design [48,49], it is reasonable that

.
τd = 0, so we have

.
τ̃d +

.
τ̂d = 0. (28)

Substituting Equations (24) and (25) into (28),

0 =
.
τ̃d + Γ(

.
Q− f1(Q)− f2(Q)τ − f2(Q)τ̂d)

=
.
τ̃d + Γ( f2(Q)τd − f2(Q)τ̂d) =

.
τ̃d + Γ f2(Q)τ̃d

. (29)

Substituting Equation (21) into (27), the disturbance observer can be written as

τ̂d = z + p(Q)
.
z = −(ξ1

.
q + ξ2M−1(−C

.
q−G + τ) + ξ2M−1(z + ξ1q + ξ2

.
q))

. (30)

Based on Equations (17) and (30), the adaptive control law can be written as

τABS−SMC = M(−k1(e2 − c1e1) + M−1C(e2 +
.
qd − c1e1) + M−1G

−M−1τ̂d +
..
qd − c1

.
e1 − h(s + βsgn(s)))

. (31)

According to these, the proposed ABS-SMC controller for the developed ankle rehabilitation robot
with external disturbance in practice can be implemented based on the diagram in Figure 4, in which
the controller observer can adaptively estimate the external disturbance.

1 
 

 

 

Switch part

Dynamic Model   Equivalent part

  disturbance 
observer

2-DOF Ankle 
Rehabilitation robot

Figure 4. Implementation of ABS-SMC for the ankle rehabilitation robot.

3.3. Stability Analysis

To prove the stability of a closed-loop system, Lyapunov function is commonly used [28,29,50],
through which we firstly prove that the estimation error of disturbance is bounded.

Remark 1. For the dynamic model in (4) and the disturbance observer in (29), the estimation error τ̃d is bounded.

Proof. Define a Lyapunov function V3 as follows:

V3 =
1
2

τ̃T
d τ̃d. (32)



Sensors 2018, 18, 66 9 of 21

Substituting Equations (21) and (24) into (23):

.
τ̂d =

[
ξ1 ξ2

]([ .
q1.
q2

]
−
[

q2
−M−1Cq2 −M−1G

]
−
[

0
M−1

]
τ −

[
0
M−1

]
τ̂d

)
= ξ2(

..
q + M−1Cq2 + M−1G−M−1τ −M−1τ̂d)

. (33)

Substituting Equation (6) into (33):

.
τ̂d = ξ2(M−1τd −M−1τ̂d) = ξ2M−1τ̃d. (34)

So

τ̃T
d

.
τ̃d = τ̃T

d (
.
τd −

.
τ̂d) = −τ̃T

d

.
τ̂d. (35)

Substituting Equation (34) into (35), we have

τ̃T
d

.
τ̃d = −ξ2τ̃T

d M−1τ̃d. (36)

Because M−1 is a positive definite matrix and ξ2 > 0, then

.
V3 = τ̃T

d

.
τ̃d ≤ 0. (37)

This indicates that the designed disturbance observer can track external disturbance, which means
the estimation error τ̃d is bounded, so Remark 1 is proved to be correct.

Then, we prove the stability of the combined system. As the robot moves within a confined space,
the inertia matrix M is bounded and positive definite so M−1 exists and is bounded,

‖M−1τ̃d‖1 = ‖M−1τd −M−1τ̂d‖1 ≤ δ. (38)

δ̂ is the estimated value of δ. Then define:
.
δ̂ = γ‖s‖1. (39)

where γ > 0 [51,52]. �

Remark 2. As long as the parameters are appropriately set, the closed-loop system is stable for disturbance
observer in (30) and control law in (31).

Proof. The Lyapunov function is defined as

V = V2 +
1

2γ
δ̃2 +

1
2

τ̃T
d τ̃d. (40)

where δ̃ = δ− δ̂.
From Equation (40), we can get

.
V =

.
V2 +

1
γ

δ̃
.
δ̃ + τ̃T

d

.
τ̃d. (41)

Substituting Equation (31) into (15), we can get

.
V2 +

1
γ δ̃

.
δ̃ = eT

1 e2 − c1eT
1 e1 + sTM−1τ̃d − hsTs− hβ‖s‖1 − 1

γ δ̃
.
δ̂

≤ eT
1 e2 − c1eT

1 e1 + δ‖s‖1 − hsTs− hβ‖s‖1 − δ̃‖s‖1
= eT

1 e2 − c1eT
1 e1 − hsTs + (δ− δ̃− hβ)‖s‖1

. (42)
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Let hβ = δ̂ =
∫

γ‖s‖1dt. Equation (42) can be rewritten as:

.
V2 +

1
γ δ̃

.
δ̃ ≤ eT

1 e2 − c1eT
1 e1 − hsTs + (δ− δ̃− hβ)‖s‖1

= eT
1 e2 − c1eT

1 e1 − hsTs + (δ− δ̃− δ̂)‖s‖1
= eT

1 e2 − c1eT
1 e1 − hsTs

. (43)

Define e =
[

eT
1 eT

2

]
, eT =

[
e1

e2

]
, and =

[
c1 + hk2

1 hk1 − 1
2

hk1 − 1
2 h

]
.

Then

eBeT =
[

eT
1 eT

2

][ c1 + hk2
1 hk1 − 1

2
hk1 − 1

2 h

][
e1

e2

]
= c1eT

1 e1 − eT
1 e2 + hk2

1eT
1 e1 + hk1eT

1 e2 + hk1eT
2 e1 + heT

2 e2

= c1eT
1 e1 − eT

1 e2 + hsTs

. (44)

Substituting Equation (44) into (43):

.
V2 +

1
γ

δ̃
.
δ̃ ≤ −eBeT . (45)

If we make be a positive definite matrix, then

.
V2 +

1
γ

δ̃
.
δ̃ ≤ −eTBe ≤ 0. (46)

Because
|B| = h(c1 + hk2

1)− (hk1 − 1
2 )

2

= h(c1 + k1)− 1
4

. (47)

By appropriately setting h, c1, k1, we can make |B| > 0, so that B is a positive definite matrix and

guarantee
.

V2 +
1
γ δ̃

.
δ̃ ≤ 0.

From Equation (37), we can get
τ̃T

d

.
τ̃d ≤ 0. (48)

Substituting Equations (46) and (48) into (41):

.
V =

.
V2 +

1
γ

δ̃
.
δ̃ + τ̃T

d

.
τ̃d ≤ 0. (49)

Therefore, as long as the mentioned parameters are appropriately set, we can ensure the system
be stable. In this way, Remark 2 is proved to be correct. �

4. Experimental and Results Discussion

In order to confirm the performance of the proposed control method, experiments were carried
out on the 2-DOF ankle rehabilitation robot. The experiments can be divided into four groups: (1) step
response experiment; (2) sine trajectory tracking experiment (without subject); (3) robustness test with
human subjects; and (4) sudden external disturbance experiment. BS-SMC has been widely used
in recent years and achieved good control performance [38–40], so we conduct the experiments to
compare the proposed control method with BS-SMC to verify its control capacity and advantages.
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4.1. Step Response

To simulate step response, the moving platform was firstly set to its initial pose (θ = 0◦, ϕ = 0◦).
Then, at t = 10 s, the expected position of the moving platform was set as θ = 10◦ and ϕ = 10◦.
The experimental results of both BS-SMC and ABS-SMC are shown in Figure 5.
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Figure 5. Actuator position tracking results and errors in step response experiment with robot
controlled by BS-SMC and ABS-SMC respectively.

Figure 5 shows the step response of three PMs under different control methods. It can be seen that
both the proposed ABS-SMC and BS-SMC were able to generate delay less than 0.5 s, but the ABS-SMC
reached the desired trajectory more quickly after a short shock. The response time of the proposed
control method was 1 s while that of the BS-SMC was about 1.5 s. In addition, there was always
vibration existing near the desired trajectory in the BS-SMC experiment, while the proposed ABS-SMC
could effectively reduce chattering and guaranteed the operation safety. Moreover, the overshoot
of ABS-SMC was significantly smaller than that of BS-SMC. For example, the tracking overshoot of
Actuator 3 was about 5 mm when controlled by ABS-SMC. If the overshoot is too large, the patient’s
foot may have to rotate at a large angle in a short time, which may cause the secondary injury to
the patient. On the other hand, after the system reached the steady state, the error of the ABS-SMC
was smaller than 0.5 mm while the maximum error of the BS-SMC was 2 mm.

4.2. Sine Trajectory Tracking Experiment (without Subject)

The desired trajectory was set θ = 10 sin(2π f t)(deg), ϕ = 10 cos(2π f t)(deg), f = 10 Hz.
The results of sine trajectory tracking with no subject involved (load = 0) are shown in Figures 6 and 7.
From Figure 6, we can see that the proposed method had higher control accuracy and smaller chattering
than BS-SMC, due to its ability to compensate the external disturbance, which can effectively guarantee
the safety and stability of the rehabilitation operations. In order to further quantitatively compare
the performance between ABS-SMC and BS-SMC, maximum error (ME) and average error (AE) of
the robot control results were calculated for statistical evaluation. Table 1 shows the position tracking
errors of the two control methods. Taking Actuator 1 as an example, for the proposed control method,
the ME and AE were 0.84 mm and 0.39 mm respectively, while the ME and AE of BS-SMC were
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1.48 mm and 0.64 mm. Compared with BS-SMC, the ME and AE of ABS-SMC were reduced by about
43% and 40% respectively. In Table 2, the ME (0.69◦) and AE (0.19◦) of the rotation angle around
X-axis were reduced by 53% and 70%, compared with BS-SMC (1.48◦ and 0.57◦). Compared with
BS-SMC, the proposed ABS-SMC cannot only improve the position control accuracy, but also has a
lower chattering level attributing to its ability of disturbance estimation.
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Figure 7. Robot end-effector angle tracking results (without subject).
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Table 1. Statistical analysis of actuator position tracking errors under different control methods
(without subject).

Methods
Maximum Error (mm) Average Error (mm)

A1 A2 A3 A1 A2 A3

Position tracking results ABS-SMC 0.84 1.05 0.93 0.39 0.47 0.46
BS-SMC 1.48 1.64 1.55 0.64 0.72 0.75

Table 2. Statistical analysis of end-effector angle tracking errors under different control methods
(without subject).

Methods
Maximum Error (◦) Average Error (◦)

θ ϕ θ ϕ

Angle tracking results ABS-SMC 0.69 0.68 0.19 0.20
BS-SMC 1.48 1.41 0.44 0.44

4.3. Robustness Test with Human Subjects

In order to verify the robustness of the proposed controller, especially when interacting with
human users, five healthy subjects were involved in the experiment. The information of all subjects is
shown in Table 3. The participants were instructed to fix their right foot on the robot moving platform
so that they can follow the moving platform for passive training. This trial has been approved by the
Human Participants Ethics Committees from Wuhan University of Technology, China and written
informed consent was obtained from each participant. The experimental results were compared with
BS-SMC to verify its superior ability by taking advantage of external disturbance estimation. We take
Subject 1 as an example with results shown in Figures 8 and 9.

Table 3. Information of all involved subject.

Participants Gender Age Height (cm) Weight (kg)

Subject 1 male 23 175 65
Subject 2 male 22 178 64
Subject 3 female 23 160 49
Subject 4 female 24 165 50
Subject 5 male 25 180 70

The results of the sine wave tracking with Subject 1 are shown in Figures 8 and 9. Compared with
BS-SMC, we can see that proposed control method has smaller tracking errors. In the case of
Actuator 1, as shown in Tables 1 and 4, when the ABS-SMC was applied to the robot, compared
to the experiment without subject, the ME and AE of position tracking result increased by about
0.26 mm and 0.04 mm only. However, when BS-SMC was used, the ME and AE increased by 1.23 mm
and 0.66 mm. Comparing Tables 2 and 5, taking the rotation angle around X axis as an example, in the
use of ABS-SMC and when subject participated, the ME and AE only increased by about 0.21◦ and
0.01◦, but the ME and AE increased by 0.56◦ and 0.10◦ when using BS-SMC.

In Figure 8c, the desired trajectory was sinusoidal, so the torque applied by the subject to the
moving platform showed a similar pattern. ABS-SMC regarded the exerted force as an external
disturbance, thus the estimated external disturbance torque also revealed similar sine changes. On the
other hand, it can be seen from Figure 8d that the control law of the proposed ABS-SMC was quite
different from that of the BS-SMC, especially when it reached the extreme point. This is because the
external disturbance reached the maximum at the extreme point of the control law. It can also be
noticed that the estimated external disturbance of Z-axis was much smaller than X and Y axes. This is
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because the designed robot cannot rotate around the Z-axis. The ideal Z-axis torque should be zero,
but in practice the moving platform still has a slight rotation in the Z-axis.
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Figure 8. Actuator position tracking results with subject 1: (a) actuator position tracking results; (b) the
actuator tracking errors; (c) the estimated external torque (using ABS-SMC) and (d) the control output
tuning processing via ABS-SMC disturbance estimation.
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Figure 9. End-effector angle tracking results with subject 1.

Figure 10 further shows the errors of three actuators with all five participants. We can see that the
proposed ABS-SMC is able to obtain smaller errors which also changed more smoothly. It can be again
validated that the proposed ABS-SMC is able to obtain better robustness. The statistical details in
Tables 4 and 5 indicate the robustness of the ABS-SMC scheme for its adaptability to different subjects
with varying capabilities. When different subjects involved, the actuators’ ME changed very slightly.
The minimum ME was 1.10 mm and the maximum 2.07 mm. The change of AE was also small
(0.37~0.49 mm). When using BS-SMC to control the robot, the ME ranged 2.71~5.30 mm, and the
AE ranged 1.14~1.56 mm; therefore, the stability and control accuracy of ABS-SMC were better than
BS-SMC, which could adapt to different people’s rehabilitation training. Therefore, we can conclude
that the ABS-SMC has a better robustness as it estimates the exerted disturbance and adjusts the control
law in real time, resulting in higher control accuracy and reduced chattering.Sensors 2018, 18, 66  16 of 21 
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Figure 10. Actuator tracking error results with five subjects.
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Table 4. Statistical analysis of actuator position tracking errors under different control methods (with
five subjects).

Participants Methods
Maximum Error (mm) Average Error (mm)

A1 A2 A3 A1 A2 A3

Position
tracking
results

Subject 1 ABS-SMC 1.10 1.13 1.33 0.43 0.47 0.49
BS-SMC 2.71 3.60 3.24 1.30 1.48 1.56

Subject 2 ABS-SMC 1.52 2.07 1.76 0.39 0.47 0.37
BS-SMC 3.71 4.67 4.20 1.19 1.43 1.07

Subject 3 ABS-SMC 1.53 2.02 1.81 0.40 0.47 0.37
BS-SMC 3.90 5.01 4.19 1.17 1.46 1.10

Subject 4 ABS-SMC 1.77 2.07 1.88 0.39 0.48 0.38
BS-SMC 3.86 5.22 5.30 1.22 1.27 1.29

Subject 5 ABS-SMC 1.39 1.97 1.66 0.39 0.47 0.37
BS-SMC 3.74 4.96 4.63 1.14 1.34 1.09

Table 5. End-effector angle tracking errors under different control methods (with five subjects).

Participants Methods
Maximum Error (◦) Average Error (◦)

θ ϕ θ ϕ

Angle
tracking
results

Subject 1 ABS-SMC 0.90 0.99 0.20 0.39
BS-SMC 2.04 2.50 0.54 0.75

Subject 2 ABS-SMC 1.12 0.99 0.29 0.28
BS-SMC 2.25 2.18 0.50 0.78

Subject 3 ABS-SMC 1.21 1.18 0.29 0.34
BS-SMC 2.91 2.36 0.67 0.78

Subject 4 ABS-SMC 1.41 1.13 0.43 0.34
BS-SMC 3.32 2.75 0.63 0.66

Subject 5 ABS-SMC 1.14 0.89 0.27 0.28
BS-SMC 2.97 2.17 0.92 0.94

4.4. Sudden External Disturbance

To further confirm the anti-interference ability of the proposed ABS-SMC, a certain resistance was
applied on the 2-DOFs ankle rehabilitation robot. During different training cycles, the strength and
duration of the resistance are shown in Table 6 and the experimental results are compared with BS-SMC.
It can be seen that the trajectories of the actuator 2 and 3 were exactly the same when the trajectory of
the moving platform is θ = 0◦, ϕ = 10 cos(2π f t)◦. In order to ensure the applied force consistent for
the two control methods comparison, the ABS-SMC was used to control the actuator 1 and actuator 2,
while the BS-SMC was used to control the actuator 3 of the rehabilitation robot. The experimental
results are shown in Figure 11.

Table 6. Resistance force and duration of four phases in the experiment.

Man-Made Resistance Size (N) Duration (s)

Phase i (P i) None 0 0
Phase ii (P ii) Applied 10 2

Phase iii (P iii) Applied 30 2
Phase iv (P iv) Applied 30 3
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Figure 11 shows the trajectory tracking curve after applying sudden disturbances. It can be
seen that the time required for ABS-SMC to track the desired trajectory was about 1.53 s and the
maximum error was about 7.50 mm in phase ii, while the time required for the BS-SMC was 2.39 s
and the maximum error 9.61 mm. In phase iii, compared with phase ii, the time that the proposed
ABS-SMC required to tracks the desired trajectory only increased by 3.92% and the maximum error
increased by 7.60%. However, the required time and maximum error increased by 7.60% and 20.9%
respectively in BS-SMC. Similar patterns were found in phase iv, the data increased by 4.81% and
4.96% respectively in ABS-SMC, while in BS-SMC increased by 8.40% and 17.53% respectively. So we
can conclude that the time required to re-follow the desired trajectory by using ABS-SMC was reduced
and the maximum error also remained small under uncertain resistances. The ABS-SMC can achieve a
better anti-interference performance compared with the BS-SMC, attributing to its ability of estimating
external disturbance and adjusting the control output accordingly.

To further verify superior ability of the proposed method, we also compared our results with
other recently published works, which also aimed to control the PMs-driven rehabilitation robot.
As summarized in Table 7, the proposed control method shows a better performance. Zhang et al. [53]
used adaptive patient-cooperative control method to control a compliant ankle rehabilitation robot
driven by PMs. They conducted the experiments with the subject, and the root mean square deviation
(RMSD) was 2.34◦. Jamwal et al. [18] used a fuzzy-based disturbance observer (FBDO) to control a
3-DOF ankle rehabilitation robot driven by PMs. The maximum error (ME) and average error (AE) of
end-effector were 22.93% and 6.43%. The team also designed a robust iterative feedback tuning control
scheme to improve the performance, and the ME and RMSD of trajectory tracking of the robot were
about 12.48% and 1.40◦ [9]. In addition, Su at al. [54] proposed a model-based chattering mitigation
robust variable control (CRVC) method and applied this method to control a lower limb rehabilitation
robot driven by PMs. The ME of the end-effector was 15.00% and The RMSD was 2.34◦. In this paper,
when there was a participant, the ME, AE and RMSD were 7.05%, 2.15% and 0.78◦, respectively. It can
be seen from the above analysis that the control performance of the proposed method is obviously
better than that of the above methods.
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Table 7. Comparison of existing control methods and the proposed method for PMs-driven parallel
rehabilitation robot. (*, unknown).

Literature

End-Effector Tracking Error

Without Human Participant With Human Participant

ME (%) AE (%) RMSD ME (%) AE (%) RMSD

[9] 11.18 * 1.35 12.48 * 1.40
[18] * * * 22.93 6.43 *
[53] * * * * * 2.34
[54] * * * 15.00 * *

Current study 3.45 1.00 0.44 7.05 2.15 0.78

From the experimental results analysis, it can be concluded that the ABS-SMC estimates external
disturbance and adaptively adjusts the control law so the performance is obviously better than that
of the BS-SMC and the recent published control schemes in [15,23,43,44] in terms of response speed,
control accuracy, robustness and ability to resist external disturbance. This controller can meet the
rehabilitation demands of patients under dynamic conditions.

5. Conclusions

In this paper, a 2-DOF parallel robot was developed for ankle rehabilitation and the inverse
kinematics model as well as the dynamics model of the robot were constructed. This paper proposed an
ABS-SMC for PMs by introducing a disturbance observer, so the external disturbances can be estimated
and the control output can be adjusted in real time. Experimental results show that the ABS-SMC had
better trajectory tracking performance compared with the conventional method. The proposed method
can greatly reduce chattering, which may reduce secondary damage to the patient. When participants
were involved, the tracking error of traditional method obviously increased while the error of the
proposed method remained small. In addition, the ABS-SMC has a better anti-interference ability.
When the ankle rehabilitation robot was applied with greater resistance, the proposed method could
quickly track the desired trajectory after removing the resistance. How the control would perform
under uncertainties in the model and the applied torque is also need to be studied in the future.
Because of the complexity of the ankle rehabilitation robot, it is difficult to establish a precise dynamic
model. Our model here can match the real system to a large extent, which can also be reflected from
the experimental results. However, the model uncertainties should be optimized further and the
applied torque can be measured in real time by using a force/torque sensor to reach a more accurate
model that will in turn improve the control performance. To improve the patient’s participation in
the future work, patient force feedback must be considered. In this case, the performance of current
position/force hybrid control and impedance control can be improved by incorporating the proposed
ABS-SMC method. Furthermore, functional electrical stimulation, and biological signals should also be
applied to the control of the robot to improve the patient’s voluntary participation and rehabilitation
training performance.
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