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Abstract: In wireless sensor networks, sensor nodes collect plenty of data for each time period. If all
of data are transmitted to a Fusion Center (FC), the power of sensor node would run out rapidly.
On the other hand, the data also needs a filter to remove the noise. Therefore, an efficient fusion
estimation model, which can save the energy of the sensor nodes while maintaining higher accuracy,
is needed. This paper proposes a novel mixed H2/H∞-based energy-efficient fusion estimation model
(MHEEFE) for energy-limited Wearable Body Networks. In the proposed model, the communication
cost is firstly reduced efficiently while keeping the estimation accuracy. Then, the parameters in
quantization method are discussed, and we confirm them by an optimization method with some prior
knowledge. Besides, some calculation methods of important parameters are researched which make
the final estimates more stable. Finally, an iteration-based weight calculation algorithm is presented,
which can improve the fault tolerance of the final estimate. In the simulation, the impacts of some
pivotal parameters are discussed. Meanwhile, compared with the other related models, the MHEEFE
shows a better performance in accuracy, energy-efficiency and fault tolerance.

Keywords: fusion estimation; wearable sensors; energy-efficiency; accuracy

1. Introduction

Recent technology advances have led to the development of sensing, computing, and
communication equipment, which are becoming an essential part of our daily lives. These ubiquitous
systems have proved to be effective in numbers of domains from medical and well-being to the military
and smart vehicles. Wearable body networks (WBNs) [1,2] are one of these platforms consisting of
enormous numbers of body sensor nodes. These nodes are a type of portable device that can be
worn directly or integrated into the user’s clothes. Meanwhile, using different uploaded applications,
WBNs can realize many useful functions, such as monitoring blood glucose, blood pressure, and heart
functions in the medical field; motion monitoring in nursing and sports; and data collection in industry
and the military [3,4].
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Nowadays, wearable devices use microminiaturization and multi-functionalization, which can
collect a great deal of data while maintaining their small size. Therefore, multi-sensor fusion
estimation [5,6], which has attracted considerable research interest during the past decades,
is recommended for managing the resulting multiple data streams. Meanwhile, several kinds of
challenges need to be overcome in this field, such as power efficiency, memory storage, and connectivity.
As a general rule, WBNs are battery-operated. The wearable devices need to collect the body data and
transmit them to the Fusion Center (FC). However, the more data are transmitted, the longer the time
needed to process them is. On the other hand, the main energy consumption in the battery-operated
wearable device is data transmission. Meanwhile, most communication networks can only carry a finite
amount of information per period. Thus, energy efficiency is considered one of the most important
challenges [7] to address the limitation of energy consumption. Here, a normal idea is to reduce
communication traffic between sensors and the FC at each period. Therefore, two common methods
have been used in existing research: the dimensionality reduction method [8,9] and the quantization
method [10]. The idea of the dimensionality reduction method is used to convert high-dimensional
data into low-dimensional data through specific mechanisms. Meanwhile, in the quantization method,
the number of coding bits for each component of high-dimensional data is reduced, and the dimension
of the quantized data is the same as that of the original data.

Furthermore, in most cases, the collected data contain noise that comes from the wearable devices
themselves and environmental effects. Therefore, a state filter is employed to output the estimation
data with more accurate and reliable. One of the typical filters is the Kalman Filter (KF) [11] which can
estimate the states of linear Gaussian state-space models.

However, the KF-based [12,13] filters usually rely on the assumption that the noise should follow
the Gauss process or Gaussian sequence, which is hard to satisfy in most practical applications.
Actually, the KF-based filters need the expectation and variance of the noise to estimate the status
values. Therefore, when the noise has bounded energy and the statistical property of the noise is
unknown, the KF-based filters couldn’t be used for estimation. The H∞ estimation theory [14] was
introduced to solve this state estimation problem. In the H∞ estimation theory, the status value is
obtained according to the maximum amplitude of the evaluated error. On the other hand, H∞ fusion
estimation may be conservative and lead a large intolerable estimation error variance when the system
is driven by white noise signals. Then, the mixed H2/H∞ estimation theory [15,16] is used in this
technical area, which can reduce the estimation error with the bounded noise.

This paper proposes a novel energy-efficient fusion estimation model, which uses the mixed
H2/H∞ filter to remove the noise, and combine the dimensionality reduction method and the
quantization method to compress the collected data. The proposed model can regulate the number of
transmitted data according to the thresholds, and prolong the lifetime of WBNs.

The remainder of this brief is organized as follows: Section 2 introduces related works in the
fusion estimation field. Section 3 describes the preliminary work. Then, a novel mixed H2/H∞-based
energy-efficient fusion estimation (MHEEFE) model is proposed and described in Section 4. Next,
some important parameters are analyzed in Section 5. Experimental results, including comparisons,
are presented in Section 6. Finally, the conclusion is given in Section 7.

2. Related Works

H2/H∞-based filter comes from the H control theory, which obtains the controller according to
the infinite paradigm-based optimization of some performance indicators in Hardy space. In these
filters, H2/H∞-based filter is an important method in the state estimation, which offers much better
robustness in performance when the noise has bounded energy and the statistical property of noise is
unknown. In other words, the H2/H∞-based filter does not need the specific statistical properties of
noise, but describes the noise with bounded energy.

In the preliminary research, a number of H2/H∞-based controllers or filters were proposed
in different systems, such as the integral quadratic constraints system [17], stochastic uncertain
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systems [18], uncertain stochastic time-delay systems [19], aerospace system [20] and polytopic
discrete-time systems [21]. Afterwards, kinds of the H2/H∞-based fusion filters were presented, which
are not only used to estimate the collected data, but also combined the data fusion method [22,23],
to increase the accuracy of the final estimate. In [23], Wen et al. addressed a H2/H∞-based fusion
filtering problem for networked dynamical systems, where measurements may arrive at fusion center
in four different scenes and the fusion center could receive none, one, or multiple measurements
in a fusion period. They proposed a unified finite horizon H2/H∞-based filtering method to solve
this problem.

On the other hand, the data fusion methods are widely applied to the Internet of Things.
Therefore, dozens of related studies came out of WBNs naturally. In WBNs, one of most important
constraints is the limited energy, which means that the energy-efficiency must be considered. In WBNs,
the energy is mainly the cost of data communication, and many algorithms were presented to decrease
the communication traffic. Zhang et al. [24] proposed an energy-efficient transmission strategy
by reducing the transmission rate of measurements from the sensor nodes to the fusion center.
In the proposed strategy, all sensor nodes are divided into different groups, and only one group
transmits their measurements in each transmission period. This strategy is efficient to save the
energy of nodes, but it’s only suitable for some specific WBNs. Then, Hao et al. [25] developed
channel-aware algorithms for tracking nonstationary state processes based on reduced-dimensionality
data collected by power-limited wireless sensors, which provided sensors with accurate estimates
at affordable communication cost. In these two models, the amounts of transmission data are
decreased. Actually, the quantization method can reduce the communication consumption and
satisfy the limited communication capacity. Then, in [26], Chen et al. studied the distributed H∞ fusion
filtering problem for a class of networked multi-sensor fusion systems, which introduced a multiple
finite-level logarithmic quantizer to reduce the transmission data. In conclusion, the dimensionality
reduction method converts a multidimensional signal directly into a low-dimensional signal, while the
quantization method reduces the number of coding bits for each component of a multidimensional
signal. Obviously, the dimension of the quantized signal is the same as that of the original signal and
the dimensionality reduction method may be more efficient in traffic reduction as compared with
the quantization method. However, the quantization effect must not be ignored in a communication
network. Therefore, Chen et al. [16] studied the problem of distributed fusion estimation, combined
both two energy-efficient methods and proposed a distributed mixed H2/H∞ fusion filter (DMHFE)
with limited communication capacity.

However in [16], the presented model calculated the weights according to the H2/H∞ filter, which
are fixed values, and this would reduce the accuracy and fault-tolerance of the estimation. Therefore,
in this paper, a novel mixed H2/H∞ based energy-efficient fusion estimation (MHEEFE) model is
proposed, which uses the mixed H2/H∞ filter in local node to remove the noise, and combines the
new dimensionality reduction method and the quantization method to decrease the communication
consumption. Besides, an iteration-based weights calculation method is used to fuse the received data
in FC, which provides a higher fault tolerance. Moreover in MHEEFE model, the parameters of mixed
H2/H∞ filter are calculated in FC, and the energy-efficient strategies can reduce more communication
consumption while keep a higher accuracy.

3. Preliminary Work

In practical application, there are some uncertain variables, whose statistics characteristics are
hardly increasing but which affect the state of the system significantly. In contrast with the well-known
Kalman filter, the Hardy space-based filter does not make any assumptions about the statistics of the
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process and measurement noise, but only assumes that the external disturbance has bounded energy.
Consider a linear discrete-time stochastic system described by the following state-space model:

x(t + 1) = Ax(t) + Bω(t)
y(t) = Cx(t) + Dυ(t)
z(t) = Lx(t)

(1)

where x(t) ∈ Rn is the system state, y(t) ∈ Rq is the measured output, z(t) ∈ Rq is the signal to be
estimated, ω(t) and ν(t) are both the energy bounded signal. A, B, C, D and L are constant matrices
with appropriate dimensions.

Before estimation, Equation (1) should be transformed as follows:
x(t + 1) = Ax(t) + B f V(t)
y(t) = Cx(t) + D f V(t)
z(t) = Lx(t)

(2)

where:
V(t) = [ω(t), υ(t)]T , B f V(t) = Bω(t), D f V(t) = Dυ(t)

The key idea of the estimation problem is to find an estimated value x̂(t) of the signal x(t) which
is satisfied a performance criterion preset. In mixed H2/H∞ filter, that is minimized in an estimation
error sense for both H2 and H∞ form. The filter is based on the set of the measurement output signal
obtained at each time t. In this case, the purpose is to design an asymptotically stable linear filter
described by: {

x̂(t + 1) = Ax̂(t) + K(y(t)− Cx̂(t))
ẑ(t) = Lx̂(t)

(3)

where K ∈ Rn×q is the gain matrix to be determined. Then, defining state error as:

e(t) = x(t)− x̂(t) (4)

and the estimation error dynamics is given by:{
e(t + 1) = Ae(t) + BV(t)
z̃(t) = Le(t)

(5)

where
Â f = A− KC, B̂ f = B f − KD f and z̃(t) = z(t)− ẑ(t)

The closed-loop transfer function from the noise signal V(t) to the output z̃(t) is given by:

Hz̃V(ζ) ≡ L(ζ I − A f )
−1B f

Therefore, for the mixed H2/H∞ estimation problem, determine a stable filter such that an upper
bound to the H2 performance criterion is minimized and ‖ Hz̃V ‖∞ ≤ γ. Then, A Linear Matrix
Inequality (LMI) characterization is provided by Theorem 1.

Theorem 1 [15]. The optimal solution of:
min
J,Y,W

Tr{J}

subject to: [
J B′Y− D′W ′

YB−WD Y

]
≥ 0
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
Y 0 A′Y− C′W ′ L′

0 γ2 I B′Y− D′W ′ 0
YA−WC YB−WD Y 0

L 0 0 I

 ≥ 0

Y > 0

with Y = Y’ ∈ Rn×n, W ∈ Rn×r and J = J’ ∈ Rm×m is such that:

Tr{J} ≥ ‖Hz̃w‖2
2, ‖Hz̃w‖∞ ≤ γ

and the optimal filtering gain is given by K = Y−1W.

4. The Mixed H2/H∞-Based Energy-Efficient Fusion Estimation (MHEEFE) Model

4.1. The Computation Procedures for the DMHFE with Limited Communication Capacity

In [16], a distributed mixed H2/H∞ fusion estimator (DMHFE) model is presented, and the
computation procedures are summarized as follows:

As shown in Table 1, steps 1 through 3 are used to determine the parameters. Before collecting
the observation data, each sensor computes its gain matrix. The fusion center calculates the quantized
parameters and sends them to each sensor. Each sensor then collects the observation data and estimates
them with a mixed H2/H∞ filter. After that, each sensor selects the sending components in a random
way, quantizes the sending components according to the correlation parameter, and sends the RSE to
the fusion center. Finally, when the fusion center receives the RSE, it compensates them to become the
complete state estimate and fuse them to a final estimate.

Table 1. The computation procedures of DMHFE.

For given appropriate parameters:

1. Determine the local estimation gains Ki in i-th sensor node;
2. Determine the parameters of the quantization method in FC, and sends them to sensor nodes;
3. Determine the parameters of the weights in FC;
4. Calculate the reorganized state estimate (RSE) according to the parameters in step 2 and 3, and send the

RSE to FC for each sensor node;
5. Calculate the local compensating state estimate (CSE) according to the received RSE;
6. Calculate the final estimate according to the weights.

The proposed strategy establishes an optimal fusion criterion in terms of LMIs, which can be
easily solved according to the Matlab LMI Toolbox. Besides, a dual data compression strategy (DDCS)
is presented to satisfy the limited communication capacity and reduce the communication traffic.
However, there are some steps still can be improved.

Firstly, in the procedures above, the dimensionality reduction method is executed in a random
way, and for each sensor, the exact selection probabilities are given before the sensor collects the data
without changing. However, in fact, in a state estimate system such as (1), ω(t) is the energy-bounded
signal with uncertain statistical characteristics, then the part of system state may have a large change,
meaning the energy-bounded signal outputs a large value unexpectedly. In this case, if the sensor
keeps the random way to select the transmitted components, the component with large change may be
missed. Therefore, a enormous error may be generated.

Considering a realistic scene, in a state estimate system (2):

A =

 0.8673 0 0.2022
0.0293 0.9763 −0.0301
0.0259 0 0.8032

, B f =

 0.1
0.5
−0.2

0
0
0

, C =

[
1 1 0
0 1 0

]
, D f =

[
0.3 0.2
0.1 0.3

]
, L =

 1 0 0
0 1 0
0 0 1

 and x(0) =

 0
0
0


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where V(t) is the energy-bounded signal. To simplify, we define:

V(t) =


[

5 5
]T

, t = 50

Random Noise, others

Then, the mean square error (MSE) of DMHFE is calculated, and depicted in Figure 1, which shows
that when t falls between 40 and 60 there is an obvious wave. The wave occurs for the energy-bounded
signal working, which the DMHFE could not avoid if the components with large change are not
submitted to FC.
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Figure 1. The mean square errors (MSEs) of distributed mixed H2/H∞ fusion estimator (DMHFE).

Figure 1 demonstrates that the wave is hard to avoid in the random dimensionality reduction
method, and the difference is the time periods for the value of MSE reducing to the acceptable
level. Hence, a simple experiment is performed to discuss a better dimensionality reduction method.
Using the same system model above, three kinds of conditions are considered: choose the whole
components, choose the components randomly and choose the components with higher probability
which have a greater change. For simplicity, the MSE line for the first condition is called “Whole Line,”
the second is called “Random Line,” and the third is called “Selected Line”. Then, these lines are
calculated as the mean for 100 times, and the iterations from 30th to 70th are shown in Figure 2
as follows:
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As shown in Figure 2, the Random Line almost maintains the largest MSE value after
the energy-bounded signal works. In other words, when the signal makes a great change,
the dimensionality reduction method using the random approach shows the worst performance,
the Selected Line shows a better performance than Random Line, and the Whole Line is the best.

Second, in the quantization method above, the quantizer is a logarithmic quantization strategy:

q(x) =


ρ}u if ρ}u

1+δ ≤ x < ρ}u
1−δ

0 if x = 0
−q(−x) if x < 0

(6)

which divides the interval closer when the value is close to 0 and incompact when the value is further
from 0. However, according to (6), ρ = 0.1 and u = 2 are set. Then it results x1 = 1.1 × 10−50 and
x2 = 1.1 × 10−52 are divided into different intervals. Obviously, this division is too short to quantize
the continuous variable, which leads the over-division.

Third, the FC calculates the weight of each sensor before the WBNs work. And those weights
are fixed values. However, in each time, the sensors transmit the data after being randomly selected.
And the weight is larger while the transmitted data are more important. Therefore, if the accuracy of
each sensor changes frequently, the weight should change too. Besides, if a sensor out of order, then it
transmits a misdata. The fixed weights couldn’t recognize it and may cut down the accuracy of final
estimate. Then, to solve the weaknesses above, a novel mixed H2/H∞-based energy-efficient fusion
estimation (MHEEFE) model is proposed.

4.2. MHEEFE Model

In this part, the details of the MHEEFE model is introduced, which is used for multi-sensor
fusion estimation. In this model, new dimensionality reduction method and the quantization
method are proposed. Moreover, an adaptive algorithm is presented to calculate the weights which
can weaken the effect of data with low accuracy and keep the accuracy of final estimate. In this
section, the energy-efficient data transmission strategy and the high-accuracy data fusion strategy
are introduced.

Before the MHEEFE model works, a mixed H2/H∞-based local filter is performed to gain the
estimated value. Here, for sensor i, the state system is similar to (1):{

x(t + 1) = Ax(t) + BV(t)
yi(t) = Cix(t) + DiV(t)

(7)

where yi(t) is the observed value of sensor i, and Ci and Di are the constant matrices with appropriate
dimensions. In this paper, the mixed H2/H∞ filter is used for local estimation. Therefore, according to
Theorem 1, the gain matrix Ki for sensor i can be calculated. Thus, the estimated value of the state is:

x̂i(t + 1) = Ax̂i(t) + Ki(yi(t)− Ci x̂i(x)) (8)

In the mixed H2/H∞ filter, the gain matrix can be confirmed only by the matrix A, B, Ci and Di.
Therefore, the gain matrix can be calculated at the fusion center, and then it is transmitted to each
sensor before the WBNs works.

4.2.1. The Energy-Efficient Data Transmission Strategy

In energy-efficient data transmission strategy, two methods are used to reduce the communication
consumption, which are the dimensionality reduction method and the quantization method. In the
dimensionality reduction method, it is assumed that only ri(t) (1 ≤ ri(t) < n) components of the i-th
local estimated value are allowed to be transmitted to the FC in time t. Then, the selected components
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are quantized to the finite-level before transmitted. Here, the quantizer is similar to (6) and defined by
the following nonlinear mapping:

q
(

xij(t)
)
=


ρj

}uj + sj if τ ≤ ρj
}uj

1+δj
≤ xij(t)− sj <

ρj
}uj

1−δj

sj if
∣∣xij(t)− sj

∣∣ < τ

−q
(
−xij(t)

)
+ sj if xij(t)− sj ≤ −τ

(9)

where uj > 0, 0 < ρj < 1, δj = (1 − ρj)/(1 + ρj) (0 < δj < 1), h̄ = 0, ±1, ±2, . . . . sj is the median of value
range for the jth component of the state vector and τ is the interceptive threshold which is used to
prevent the over-division. Therefore, the reorganized state estimate (RSE), which is the transmitted
data for sensor i, is expressed as follows:

x̂r
i (t) = Hi(t)q(x̂i(t)) (10)

where:

q(x̂i(t)) =


q(x̂i1(t))
q(x̂i2(t))
...
q(x̂in(t))


Hi(t) = diag{hi1(t), hi2(t), · · · , hin(t)}, hij(t) =

{
1, the jth component is sellected
0, others

and Tr(Hi(t)) = ri(t)

Here, for the jth components of sensor i, the median, the boundaries and the interceptive threshold
for each component of state vector are given, and the parameters u, ρ, and Hi(t) need to be confirmed.

4.2.2. The High-Accuracy Data Fusion Strategy

In sensor node, the energy-efficient data transmission strategy is executed and the RSEs are
transmitted to the FC. Then, the high-accuracy data fusion strategy would be executed in FC. Firstly,
each RSE x̂r

i (t) contains incomplete information of the original estimate x̂i(t). Therefore, it is necessary
to compensate each RSE for improving its estimated accuracy. In this case, the state estimate from the
RSE of sensor i, denoted by x̂c

i (t), is proposed as:

x̂c
i (t) = Hi(t)q(x̂i(t)) + (I − Hi(t))Ax̂c

i (t− 1) (11)

where (I − Hi(t))Ax̂c
i (t− 1) is used to compensate for the components “0” of x̂r

i (t). It means that,
if partial components of the x̂i(t) are not transmitted to the FC at time t, they will be estimated by
x̂c

i (t− 1).
According to the previous process, the FC receives L (the number of sensors) state estimates x̂c

1(t),
x̂c

2(t), . . . , x̂c
L(t). FC then fuses them to the final estimate x̂(t). In this paper, the weights of each sensor

change over time t and the fusion estimate is given as follows:

x̂(t) =
L

∑
i=1

Wi(t)x̂c
i (t) (12)

where Wi(t) = diag{wi1(t), wi2(t), . . . , win(t)}, and Σiwij(t) = 1.
Thus, the final fusion estimation can be calculated. The parameters of this model will be calculated

in the next part.
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5. Parameters Analysis

In last section, the MHEEFE model is proposed and two important strategies are introduced.
However, some parameters should be confirmed. Then the parameters in energy-efficient data
transmission strategy and high-accuracy data fusion strategy are analyzed respectively in this section.

5.1. The Parameters Analysis in Energy-Efficienct Data Transmission Strategy

In energy-efficient data transmission strategy, Hi(t), u, ρ and τ need to be confirmed, where:

Hi(t) = diag{hi1(t), hi2(t), · · · , hin(t)} (i = 1, 2, . . . , L)

u = [u1, u2, · · · , un]
T , ρ = [ρ1, ρ2, · · · , ρn]

T and τ = [τ1, τ2, · · · , τn]
T

L is the number of sensor nodes, and n is the number of components for the state vector.
Here, uj, ρj and τj (j = 1, 2, . . . , n) are the fixed parameters while Hi(t) (i = 1, 2, . . . , L) changes

over time t. The parameters uj, ρj and τj come from the quantization method. Firstly, the minimum
value of the MSE is calculated with some assumptions.

1. The jth component of the observed data is evenly distributed between sj + aj and sj − aj.

2. The value sj + aj is located on one edge of the quantization method, where sj + aj = 1/2(1 + ρj)uj·ρj
h

with a fixed h (it is set to h = 1 for ease of calculation).
3. The value τj is located on other edge of the quantization method, where τj = 1/2(1 + ρj)uj·ρj

k

with a fixed k (it is supposed k = k0).

Then, we have:
min

τj ,uj ,ρj
MSE

(
xj, q

(
xj
))

(13)

where xj is evenly distributed between sj + aj and sj − aj. Therefore:

MSE
(

xj, q
(

xj
))

=
k0
∑

h=2

∫ sj+
1+ρj

2 ·ujρj
h−1

sj+
1+ρj

2 ·ujρj
h

(sj+ujρj
h−xj)

2
dxj+

k0
∑

h=2

∫ sj−
1+ρj

2 ·ujρj
h−1

sj−
1+ρj

2 ·ujρj
h

(sj+ujρj
h−xj)

2
dxj

2(aj−τj)
+

∫ sj+τ

sj−τ (sj−xj)
2
dxj

2τj

According to the symmetry of the quantization function, the MSE can be translated to:

MSE
(

xj, q
(

xj
))

=

k0
∑

h=2

∫ sj+
1+ρj

2 ·ujρj
h−1

sj+
1+ρj

2 ·ujρj
h

(sj+ujρj
h−xj)

2
dxj

aj−τj
+ 1

3 τ3
j

=
(1−ρj)

3
(1+ρj

3)
24(aj−τj)(1−ρj

3)

(
u3

j ρ3
j − u3

j ρ3k0
j

)
+ 1

3 τ3
j

(14)

In assumptions 2 and 3:

(
1 + ρj

)
ujρj

2
= aj,

(
1 + ρj

)
ujρ

k0
j

2
= τj

Next, combining Equation (14) and eliminating the parameters τj, an optimization formula
is obtained:

min
aj ,uj ,ρj ,τj

MSE
(

xj, q
(

xj
))

⇒ min
0<ρj<1,aj ,k0

f
(
aj,ρj, k0

)
=

a2
j

(
1+ρ

k0−1
j +ρ

2(k0−1)
j

)
(1−ρj)

2(
1−ρj+ρ2

j

)
3
(

1+ρj+ρ2
j

)
(1+ρj)

2 +
a3

j ρ
3(k0−1)
j
3

(15)
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Then, the optimization Equation (15) should be discussed. When the parameters aj and k0 are
fixed and assumed to 1 and 20, respectively. The function image of f is drawn approximately, and is
shown in Figure 3.
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In Figure 3, it is obvious that there is a minimum value of the function f with ρj ∈ (0, 1) when
the parameters aj and k0 are fixed. However, f is a kind of higher-order polynomial function whose
analytic solution of minimum value is hardly calculated. Therefore, an optimization method, such as
newton descent method, is introduced to calculate the approximate solution.

After calculating the parameters uj and ρj for all the components of the observed value,
the parameter Hi(t) (i = 1,2, . . . , L) in dimensionality reduction method needs to be ascertained.
Here, for sensor i, the parameter Hi(t) is used to make the MSE small enough. Thus, to satisfy the
requirements above, an optimal problem is given as follows:

min
Hi(t)

Tr[Hi(t)]

s.t. MSE(xi(t), q(Hi(t) · xi(t)) + (I − Hi(t))Axi(t− 1)) ≤ αi

(16)

According to the equation q(Hi(t)xi(t)) = Hi(t)q(xi(t)), the optimal problem is transformed
as follows:

min
Hi(t)

Tr[Hi(t)]

s.t. MSE(xi(t), Axi(t− 1) + Hi(t)(q(xi(t))− Axi(t− 1))) ≤ αi

(17)

On the other hand:

MSE(xi(t), Ax(t− 1)− Hi(t)(q(xi(t))− Ax(t− 1)))
= MSE(xi(t), Ax(t− 1))−

[
MSEp −MSEq

] (18)

where:
MSEp = MES(Hi(t)xi(t), Hi(t)Ax(t− 1))
MSEq = MSE(Hi(t)xi(t), Hi(t)q(xi(t)))

(19)

and:

MESp −MSEq =
1
n

n

∑
k=1

hk(t)
[
(xik(t)− akxi(t− 1))2 − (xik(t)− q(xik(t)))

2
]

(20)
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where hk(t) is the sum of the kth row of matrix Hi(t), and ak is the kth row of matrix A. Therefore,
the optimal problem becomes:

min
Hi(t)

Tr[Hi(t)]

s.t.
n
∑

k=1
hk(t)

[
(xik(t)− akxi(t− 1))2 − (xik(t)− q(xik(t)))

2
]
≥ n(MSE(xi(t), Axi(t− 1))− αi)

(21)

Parameter Hi(t) can then be solved by an order-based algorithm. The computation procedures for
the order-based algorithm are summarized in the order-based algorithm (Algorithm 1).

Algorithm 1 Order-based Algorithm. For given s, τ, u, and ρ to determine the quantization function q(x), and
for given the threshold αi.

Description of some important values:
xi(t − 1) is the last transmitted data saved by sensor i.
xi(t) is the estimated data in time t by sensor i.
n is the dimensionality of xi(t).
Calculate the threshold:

threshold = n(MSE(xi(t)− Axi(t− 1))− αi).

Calculate the vector ci:
ci = [ci1, ci2, · · · , cin]

where:
cik = [xik(t)− akxi(t− 1)]2 − [xik(t)− q(xik(t))]

2

and q(xik(t)) is calculated according to Equation (9)
find the maximum in vector ci, which is check = max{ci}
while check ≤ threshold
update the vector ci: delete max{ci} in ci;
update check: check = check + max{ci}
end while

5.2. The Parameters Analysis in High-Accuracy Data Fusion Strategy

In the fusion estimation, FC receives only the compressed data from all sensor nodes, and fuses
them with the parameter weights matrix. Normally, the weights should be related to the accuracy of
each node. Here, the accuracy of compressed data with one node may change in a different time period.
In addition, the accuracy of some sensor nodes may decline due to damage or failure. Therefore,
the weights matrix changes over time t and is expressed as W(t). The computation procedures for the
iterative method are summarized in the iterative method (Algorithm 2):
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Algorithm 2 Iterative Method. For given CSEs of all sensors x̂c
1(t), x̂c

2(t), . . . , x̂c
L(t).

Initialization:
Wi(1) = diag{1/L, 1/L, . . . , 1/L}, for i = 1, 2, . . . , L.
FE(1) = 1

L ∑L
i=1 x̂c

i (1),
In time t (t > 1):
for j = 1 to n

if FEj(t− 1)− x̂ij(t− 1) = 0
w’ij(t) = n

else

w’ij(t) = 1− |FEj(t−1)−x̂ij(t−1)|
∑n

s=1|FEs(t−1)−x̂is(t−1)| , for i = 1, 2, . . . , L and j = 1, 2, . . . , n.

end if
end for
Normalize [w’1j(t), w’2j(t), . . . , w’Lj(t)] to become [w1j(t), w2j(t), . . . , wLj(t)], where Σiwij(t) = 1.
Then, Wj(t) = diag{w1j(t), w2j(t), . . . , wLj(t)}

And FEj(t) =
L
∑

s=1
wsj(t)x̂c

sj(t)

6. Simulation

In this part, two kinds of simulations: parameters simulation and performances simulation,
are performed. The rate of convergence, the parameters k0 and threshold are simulated in the
parameters simulation. The MSEs, communication traffics, and distribution of MSEs are simulated
in the performance simulation. Meanwhile, for all simulations, the results are simulated 200 times,
and the average of the 100 results is used as the final simulation results.

Here, a dynamic system is used for simulation, whose state-space model is shown as follows:{
x(t + 1) = Ax(t) + B(ω(t) + v(t))
yi(t) = Cix(t) + Di(ω(t) + v(t))

where ω(t) is the energy-bounded signal and v(t) is the white noise process with the initial state of 0.
In parameters simulation, for more precise analysis, other parameters are simplified to reduce the

effect on the analyzed parameter. Then, the system matrixes are:

A =



0.9 0.1 0 0 0 0 0
0 0.9 0.1 0 0 0 0
0 0 0.9 0.1 0 0 0
0 0 0 0.9 0.1 0 0
0 0 0 0 0.9 0.1 0
0 0 0 0 0 0.9 0.1
0.1 0 0 0 0 0 0.9


, B = Di = 0.5I, Ci = I

In performance simulation, a more practical system is needed. Therefore, an F-404 aircraft engine
system is introduced and the system matrixes are:

A =

 0.8673 0 0.2022
0.0293 0.9763 −0.0301
0.0259 0 0.8032

, B =

 0.1
0.5
−0.2

0
0
0


It’s assumed two sensors collect the data. The related matrixes are:

C1 =

[
1 1 0
0 1 0

]
, C2 =

[
1 1 0
0 1 1

]
, D1 =

[
0.3 0.2
0.1 0.3

]
and D2 =

[
0.2 0.3
0.1 0.1

]
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6.1. Paremeters Simulation

Firstly, the convergence of MHEEFE when the energy-bounded signal suddenly produces a large
signal is discussed. Figure 4 shows the different iterations for the data convergence when the different
number of components are transmitted, and compares with DMHFE model.

As shown in Figure 4, the iterations of MHEEFE are always less than DMHFE for the same
conditions. Here, it is assumed that nt is the number of transmitted components, and ndc is the number
of drastically changed components. Then we have, when nt = ndc, the estimated value keeps a high
accuracy. And the estimated value converges with 1 iteration step, when 2 × nt ≥ ndc. Actually, if it is
expected, the estimate converges after k (k 6= 0) iteration steps; the minimum number of transmitted
components should be [ndc/(k + 1)]. Therefore, we can obtain a sufficient rate of convergence, as long
as half of the state vector are transmitted in each period.

Secondly, Figure 5 simulates the averages and variances of MSEs and communication traffics
with different k0. Here, the energy-bounded signal is not working, and the communication traffics are
represented by the rate of actual traffics and maximum traffics.
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Figure 4. Iterations when the number of transmitted data changed: (a) The number of drastically
changed components is 1; (b) The number of drastically changed components is 3; (c) The number of
drastically changed components is 5; (d) The number of drastically changed components is 7.
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As shown in Figure 5, both the averages and variances of MSEs become stable with the increase
of parameter k0. In fact, when k0 < 10, the proposed quantization only divides the range of true value
into several subintervals. This division may lead to high and unstable MSE values. When k0 ≥ 10,
this division can keep the MSE values lower and more stable. Besides, the communication traffics are
still unstable when k0 < 20. It is means that when k0 stays in this range, the MHEEFE model needs to
transmit more components to keep the MSEs stable. Therefore, when k0 is assigned to be 20 (or more
than 20), the statistical data of MSEs and communication traffics can keep lower and more stable.

Finally, like in Figure 5, the statistical data of MSEs and communication traffics with different
threshold are simulated in Figure 6. As shown in Figure 6, the variances of MSEs show a little change
when threshold changes, which means the MSEs remain stable all the time. On the other hand, the
averages of MSEs show a great increase as the threshold increases. Moreover, when 0 < threshold < 0.1,
the communication traffics show a dramatic decline and decreases gradually when threshold > 0.1.
Therefore, if threshold is between 0.05 and 1.5 we can achieve good performance.
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6.2. Performance Simulation

In this part, the final estimations for three components with different models, which are DMHFE,
MHEEFE and MHEEFE with Quantization only (MHEEFE-QO)), are compared firstly and shown in
Figure 7. Then, the statistical data and communication traffic for each component with different models
are calculated and listed in Table 2. After that, the distributions of MSEs for different models are
simulated in Figure 8. Besides, Figure 9 simulates the MSEs comparison with the drastically changed
components. And the comparison of transmitted data is simulated in Figure 10. Finally, the fault
tolerances for different models are compared in Figure 11.
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Table 2. Some statistical data and communication traffics for each component with different models.

Components Models Averages of MSEs Variances of MSEs Communication Traffic

1st component
DMHFE 0.0068 1.28 × 10−5 122.75
MHEEFE 0.0098 1.04 × 10−4 46

MHEEFE-QO 0.002 6.71 × 10−6 400

2nd component
DMHFE 0.3081 0.0376 140
MHEEFE 0.0701 0.0102 220

MHEEFE-QO 0.0838 0.0172 400

3rd component
DMHFE 0.0149 6.00 × 10−5 140.45
MHEEFE 0.0108 1.93 × 10−4 138

MHEEFE-QO 0.0042 2.97 × 10−5 400

In Figure 7, three final estimations for three components are simulated to discuss the different
performances of three models, respectively. DMHFE is the fusion estimation which is proposed
in [16]. MHEEFE is the fusion estimation which is presented in this paper. MHEEFE-QO is the fusion
estimation which only quantizes the data, and transmits the whole data to FC.

Sensors 2018, 18, 56  15 of 19 

 

MHEEFE is the fusion estimation which is presented in this paper. MHEEFE-QO is the fusion 
estimation which only quantizes the data, and transmits the whole data to FC.  

 
Figure 7. The final estimations for three components with different models. 

Then, Figure 7 shows that all of fusion estimation models can achieve a good performance which 
is hardly to compare further. Therefore, some statistical results and communication traffic for each 
component with different models are calculated and shown in Table 2, where it can be seen that in 
both in the average and variance of MSEs, the MHEEFE-QO still shows lower values. However, the 
communication traffics for each component keep the highest values. Then, the DMHFE and MHEEFE 
are compared. In 1st component, DMHFE shows lower value both in the average and variance of 
MSEs while employing about 2.67 times of communication traffic in MHEEFE. In 2nd component, 
the MHEEFE shows lower value in statistical data while employing about 1.57 times of 
communication traffic in DMHFE. In 3rd component, DMHFE shows lower variance and similar 
average and communication traffic. Combining with the Figure 7, the true value in 1st and 3rd 
components are changed in a smaller range while changed in the larger range for 2nd component. In 
these components, MHEEFE still keeps in the acceptable level. In DMHFE, when the change range is 
small, it shows a good result. However, when the change range get larger, the average of MSEs turns 
worse. 

As shown in Figure 8, the abscissa expresses the percentage of the maximum MSE value of three 
models. And in this figure, the values of MHEEFE and MHEEFE-QO are centralized between 0% and 
20% of the maximum MSE, while the values of DMHFE are centralized between 0% and 50% of the 
maximum MSE. Obviously, MHEEFE and MHEEFE-QO gain the lower and more stable MSE than 
DMHFE. 

0 20 40 60 80 100 120 140 160 180 200

Iterations

-1

-0.5

0

0.5

1
st

Ture Value DMHFE MHEEFE MHEEFE-QO

0 20 40 60 80 100 120 140 160 180 200

Iterations

-5

0

5

10

2
n

d

Ture Value DMHFE MHEEFE MHEEFE-QO

0 20 40 60 80 100 120 140 160 180 200

Iterations

-1

-0.5

0

0.5

3
rd

Ture Value DMHFE MHEEFE MHEEFE-QO

Figure 7. The final estimations for three components with different models.

Then, Figure 7 shows that all of fusion estimation models can achieve a good performance which
is hardly to compare further. Therefore, some statistical results and communication traffic for each
component with different models are calculated and shown in Table 2, where it can be seen that
in both in the average and variance of MSEs, the MHEEFE-QO still shows lower values. However,
the communication traffics for each component keep the highest values. Then, the DMHFE and
MHEEFE are compared. In 1st component, DMHFE shows lower value both in the average and
variance of MSEs while employing about 2.67 times of communication traffic in MHEEFE. In 2nd
component, the MHEEFE shows lower value in statistical data while employing about 1.57 times
of communication traffic in DMHFE. In 3rd component, DMHFE shows lower variance and similar
average and communication traffic. Combining with the Figure 7, the true value in 1st and 3rd
components are changed in a smaller range while changed in the larger range for 2nd component.
In these components, MHEEFE still keeps in the acceptable level. In DMHFE, when the change range
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is small, it shows a good result. However, when the change range get larger, the average of MSEs
turns worse.

As shown in Figure 8, the abscissa expresses the percentage of the maximum MSE value of three
models. And in this figure, the values of MHEEFE and MHEEFE-QO are centralized between 0%
and 20% of the maximum MSE, while the values of DMHFE are centralized between 0% and 50%
of the maximum MSE. Obviously, MHEEFE and MHEEFE-QO gain the lower and more stable MSE
than DMHFE.
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According to the Figures 7 and 8 and Table 2, MHEEFE model shows better performance on
MSE, and transmits less data to FC. However, those figures and table are simulated without the
drastically changed components. Figure 9 simulates the MSEs comparison with the drastically
changed components.
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As shown in Figure 9, the MSEs of three models are compared. At the 50th iteration,
the energy-bounded signal is working and great changes happen in state value. In DMHFE, there are
no corresponding solutions. Then the MSE takes a tremendous increasing. In MHEEFE-QO, all of
components are transmitted to FC all the time. Then the MSEs are hardly affected by energy-bounded
signal. Finally in MHEEFE, when the energy-bounded signal is working, the corresponding strategy
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is working. Because of the restricted of communication capacity, the increasing of MSE couldn’t be
eliminated but weaken. Moreover, the MSEs go back to the normal level more quickly than DMHFE.

The MHEEFE-QO always expresses better performance according to Figures 7–9 and Table 2.
However, as shown in Figure 10, MHEEFE-QO shows the highest communication cost in three models.
Moreover, communication cost in MHEEFE-QO is 3 times more than DMHFE, and about 6 times more
than MHEEFE. Obviously, MHEEFE-QO can hardly be used for energy constrained WBNs, and the
comprehensive performance of MHEEFE is better than DMHFE.Sensors 2018, 18, 56  17 of 19 

 

 
Figure 10. The sum of communication cost. 

Finally, the MSEs comparison between the fixed weights and iteration-based weights is 
simulated. In this simulation, the number of sensor nodes needs 3 at least. Then, a new node should 
be added and the related matrixes are: 









=








=

2.05.0

3.02.0
  and  ,

110

001
33 DC   

Moreover, the new added sensor would be broken at the 50th iteration. And after that, its local 
estimated value always is [25, 25, 25]T. Then, the simulation is shown in Figure 11. Here, the MHEEFE 
and MHEEFE-QO use the iteration-based weights. 

 
Figure 11. MSEs with a broken node. 

As shown in Figure 11, when the 3rd node is broken and transmits false data, all of models show 
great MSEs. As the iteration goes on, the MSEs of MHEEFE and MHEEFE-QO decrease to a low value 
like before, however, the MSEs of DMHFE shows a higher value than before and hardly decreases. 
Obviously, iteration-based weights provide a better fault tolerance than DMHFE. 

7. Conclusions 

This paper has investigated the mixed H2/H∞-based fusion estimation problem. Meanwhile, the 
energy-limited condition is considered. Then a novel mixed H2/H∞-based energy-efficient fusion 
estimation model (MHEEFE) is proposed, presenting a dimensionality reduction-based data 
compression method. Unlike the existing dimensionality reduction method, the method in this model 
adopted the selective dimensionality reduction, which provides higher selective probability if it has 
a larger change. Furthermore, an iteration-based weight calculation algorithm is used in the FC to 
fuse the estimated received data. On the other hand, the parameters of mixed H2/H∞-based filter are 

S
um

 o
f 

co
m

m
un

ic
at

io
n 

co
st

Figure 10. The sum of communication cost.

Finally, the MSEs comparison between the fixed weights and iteration-based weights is simulated.
In this simulation, the number of sensor nodes needs 3 at least. Then, a new node should be added
and the related matrixes are:

C3 =

[
1 0 0
0 1 1

]
, and D3 =

[
0.2 0.3
0.5 0.2

]

Moreover, the new added sensor would be broken at the 50th iteration. And after that, its local
estimated value always is [25, 25, 25]T. Then, the simulation is shown in Figure 11. Here, the MHEEFE
and MHEEFE-QO use the iteration-based weights.
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As shown in Figure 11, when the 3rd node is broken and transmits false data, all of models show
great MSEs. As the iteration goes on, the MSEs of MHEEFE and MHEEFE-QO decrease to a low value
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like before, however, the MSEs of DMHFE shows a higher value than before and hardly decreases.
Obviously, iteration-based weights provide a better fault tolerance than DMHFE.

7. Conclusions

This paper has investigated the mixed H2/H∞-based fusion estimation problem. Meanwhile,
the energy-limited condition is considered. Then a novel mixed H2/H∞-based energy-efficient
fusion estimation model (MHEEFE) is proposed, presenting a dimensionality reduction-based data
compression method. Unlike the existing dimensionality reduction method, the method in this model
adopted the selective dimensionality reduction, which provides higher selective probability if it has
a larger change. Furthermore, an iteration-based weight calculation algorithm is used in the FC to
fuse the estimated received data. On the other hand, the parameters of mixed H2/H∞-based filter are
calculated at the FC, and the sensor nodes only collect the data, choose the transmitted data, quantize
the transmitted data and send them to FC. These operations work with less energy consumption and
can be used by WBNs. Finally, the simulations discussed the appropriate dimension for transmitting
to FC. Compared with other related models, the MHEEFE shows a better performance.
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