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Abstract: HydroColor is a mobile application that utilizes a smartphone’s camera and auxiliary
sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the
smartphone’s digital camera as a three-band radiometer. Users are directed by the application to
collect a series of three images. These images are used to calculate the remote sensing reflectance in
the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can
be inverted to estimate the concentration of absorbing and scattering substances in the water, which
are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter.
This publication describes the measurement method and investigates the precision of HydroColor’s
reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor
can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity
within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality
camera methods in that its operation is based on radiometric measurements instead of image color.
HydroColor is one of the few mobile applications to use a smartphone as a completely objective
sensor, as opposed to subjective user observations or color matching using the human eye. This makes
HydroColor a powerful tool for crowdsourcing of aquatic optical data.
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1. Introduction

The prevalence of sensor rich smartphones and high-speed wireless data connections has opened
the door for low cost, large-scale data collection. Several studies have already demonstrated how
smartphone sensors can be used to crowdsource atmospheric aerosol concentration, air temperature,
seismic activity, and weather [1–5].

In the oceanographic and limnological communities, the use of citizen science as a method of
data collection is not well established. This is partially due to the lack of tools that are both robust and
easy for citizen scientists to acquire and use. Many low cost tools for studying water quality require a
significant initial time commitment (e.g., building a waterproof housing, constructing a Secchi disk,
soldering electrical components, etc.). Our aim was to produce a simple yet robust mobile application
that can be used for crowdsourcing water quality data. Ideally, the application should require a low
commitment, yet produce results comparable to traditional water quality methods. The result was the
HydroColor water quality application (available for iOS and Android devices).

HydroColor uses a smartphone digital camera as a three-band radiometer. The light intensity
measured in a series of three images is used to compute the above water remote sensing reflectance
(Rrs) in the red, green, and blue color channels of the camera. We show that a camera can be a viable
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light sensor, and that smartphones are particularly well suited for this application. The reflectance
measured by HydroColor was directly compared with remote sensing reflectance measurements
from precision radiometers. Additionally, the remote sensing reflectance was used to estimate water
turbidity. The reflectance measured by HydroColor also has the potential to provide information on
chlorophyll and dissolved organic matter.

Other studies have demonstrated working methods to measure water quality using a digital
camera [6,7]. These previous studies used a digital camera fitted to a tube that extended below the
surface of the water. The color of the images was used to estimate the concentration of chlorophyll and
dissolved organic matter. The HydroColor application distinguishes itself from the previous studies in
that it measures actual radiometric quantities instead of analyzing image color. Although this research
focuses primarily on the HydroColor application, the methods described in this paper could be applied
to virtually any digital camera.

The advantage of a reflectance based measurement is the direct comparability to measurements
routinely made from other remote sensing platforms. Satellite remote sensing in particular has become
an invaluable tool for oceanographers and limnologists [8]. HydroColor can complement these
measurements by providing comparable ground based measurements. Therefore, the data produced
by HydroColor can be aligned with the existing scientific goals of several earth observation programs.

2. Materials and Methods

The HydroColor application requires a smartphone, a photographer’s 18% reflectance gray card,
and access to optically deep water. Optically deep refers to a water depth where light reflection from
the bottom does not influence the water leaving radiance. The smartphone must be equipped with a
digital color camera, compass, and gyroscope. An internal Global Positioning System (GPS) and a data
connection are beneficial but not required. These components are standard in all modern smartphones.

The digital camera is the component used for sensing the environment. The other required sensors
are used for auxiliary data that aids in the collection of images. The resolution of the camera is not
critical to the radiance measurement. However, the resolution will have an effect on the field of view
seen by the HydroColor application. The internal Bayer filter contained in the color camera consists of
an alternating pattern of red, green, and blue (RGB) filters. This allows the camera to measure light
intensity in broadband RGB.

A compass and gyroscope are needed to orient the camera in the correct position to capture
images. These sensors are present in most modern smartphones. The azimuth and zenith angles of the
camera are critical for HydroColor to properly remove surface reflected light that enters the camera.
The HydroColor application uses the compass and gyroscope to create an interactive display that
guides the user to the correct azimuth and zenith angles for each image. The angular requirements of
the images are described in the next section.

An internal GPS and data connection allows the smartphone to automatically acquire the user’s
latitude and longitude. The user’s location and the Coordinated Universal Time (UTC) are used to
determine the position of the sun. The sun position is used to direct the user to the correct azimuth
angle for image collection. The user also has the option to enter their GPS coordinates manually. Thus,
an internal GPS or data connection is not required to use the application.

HydroColor requires a surface of known reflectance to measure the downwelling irradiance.
We found that a photographer’s 18% reflectance gray card was a suitable low cost reflectance standard.
Gray cards are widely available online and in photography shops, typically for less than $10 USD.
Several previous studies have also used gray cards as reflectance standards [9,10]. While the standard
gray card is 18% reflectance across the visible spectrum [11], cards with other reflectance values are
available. Therefore, it is important to ensure the gray card reflectance is labeled as 18% before using
it with the HydroColor application. In custom applications of this method, any surface of known
reflectance can be used provided it is a Lambertian reflector and its reflectance value is used in the
computation of remote sensing reflectance.
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2.1. Image Capture

To clarify the image capture procedure, the equation used to calculate above water remote sensing
reflectance must be introduced. The following equation from Mobley [12] is commonly used to
determine the remote sensing reflectance from above water radiometers:

Rrs =
Lt − ρLs

π
Rre f

Lc
(1)

where Lt is the radiance leaving the water surface, Ls is the sky radiance, Rref is the irradiance reflectance
of a reflectance standard (0.18, for the 18% gray card used here), Lc is the measured radiance leaving
the reflectance standard, and ρ is the sea surface reflectance factor. For clarity, the angular and spectral
dependence of these quantities has been dropped (see Table 1 for list of abbreviations and notations).

Table 1. Abbreviations and Notations.

Symbol Definition, Units

α Exposure time, sec.
ap* Mass specific absorption, m2 g−1

bbp* Mass specific backscattering, m2 g−1

CDOM Colored dissolved organic matter
DN Digital pixel number (0–255)
Ed Downwelling irradiance, W m−2

Lc Gray card radiance, W sr−1 m−2

Lrel Relative radiance measured by a camera
Ls Sky radiance, W sr−1 m−2

Lt Water surface radiance, W sr−1 m−2

RGB Red, Green, Blue
RMSE Root mean squared error

ρ Sea surface reflectance factor
Rref Irradiance reflectance of a reflectance standard, unitless
Rrs Above water remote sensing reflectance, sr−1

S ISO speed
SPM Suspended particulate matter
WISP Water Insight Spectrometer

Note that the denominator is equal to the downwelling irradiance (Ed). By measuring the radiance
of a reflectance standard, the downwelling irradiance can be measured without the use of a cosine
collector, assuming the standard is a Lambertian reflector. One radiometer can be used to make all the
required light measurements in Equation (1). The benefit of using one radiometer is that any scaling
factor or multiplicative error cancels out in Equation (1). Therefore, the radiometer needs no absolute
calibration. This is an important consequence of Equation (1), and is the key to HydroColor’s ability to
measure remote sensing reflectance without the camera being calibrated to measure radiance.

The value for ρ has been determined using HydroLight, which is a radiative transfer software
used for modeling above and below water radiance distributions. The specific value of ρ varies with
environmental conditions and observation angle; however, the HydroColor application is programmed
assuming a sun in a clear, cloudless sky. For custom applications, other sky conditions could be used,
and the value of ρ adjusted accordingly. To minimize the amount of surface reflectance, and thus
ρ, the water surface radiance (Lt) should be measured at an azimuth angle 135◦ from the sun and
40◦ from nadir. Under ideal conditions, the value of ρ is approximately 0.028 for these angles. See
Mobley [12,13] for an in-depth discussion of the dependence of ρ on viewing angle and sky conditions.

To fulfill the radiance requirements of Equation (1), three images must be captured. An image of a
gray card is needed to determine the card radiance (Lc), an image of the sky is needed determine the
sky radiance (Ls), and lastly, an image of the water is needed determine the radiance from the water
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surface (Lt) (Figure 1). Care should be taken to avoid capturing a water or gray card image that is
shaded by a boat, dock or any other structure. Additional recommendations for collecting HydroColor
measures can be found in Appendix A.
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Figure 1. Example of three images collected with HydroColor and the optical features captured in each
image. The gray card image is captured at 40◦ from nadir and 135◦ from the sun. The sky image is
captured at 130◦ from nadir and 135◦ degrees from the plane of the sun. The water image is captured
at 40◦ from nadir and 135◦ degrees from the plane of the sun.

Even though the surface reflection cannot be eliminated, it can be significantly reduced by
collecting the water image at an angle of 135◦ from the sun and 40◦ from nadir. HydroColor collects a
water image at these specific angles by taking advantage of the smartphone’s clock, GPS, compass,
and gyroscope.

HydroColor uses the current GPS coordinates and the current UTC time to determine the position
of the sun in the sky. HydroColor puts this information into a simple sun position model that runs
onboard the phone [14]. HydroColor uses the resulting sun azimuth angle to create a compass display.
The compass display guides users to point the phone ±135◦ from the plane of the sun. The sun
zenith angle is not used; however, it is saved along with the rest of the data. It can be used later for
quality control.

The gyroscope measures pitch, yaw, and roll of the phone. HydroColor uses the pitch and roll
function to create an inclinometer display alongside the compass display. The inclinometer display
guides users to position the phone 40◦ or 130◦ from nadir, for the water and sky images, respectively.
The exact angle of the phone is saved in the HydroColor metadata when each image is captured.
Therefore, the metadata can be used to ensure the images were captured at the correct angle.

2.2. Extracting Radiance from Images

A digital smartphone camera, while not meant to be a quantitative environmental sensor, can
be used to measure light intensity. Most smartphone cameras use a complementary metal-oxide
semiconductor (CMOS) as the light sensor. In the HydroColor application, light intensity is extracted
from compressed images captured by the camera. Ideally, raw data from the CMOS sensor should
be used. However, due to limitations of the standard application program interface (API) of
common smartphones cameras, compressed image data are used. Compression introduces some
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nonlinearity into the camera response. However, it was found that light measurements were not
greatly influenced by image compression (Figure 2). HydroColor measures relative light radiance
using the following equation:

Lrel =
DN
αS

(2)

where DN is the digital pixel value (0–255) from the camera image in either the red, green, or blue
channel, α is the exposure time, and S is the ISO speed. Aperture does not appear in the equation
since the aperture is fixed for standard smartphone cameras. White balance of the camera does not
appear because it is automatically locked by the HydroColor application at the beginning of each
image collection sequence. Equation (2) is applied separately to each RGB channel to determine the
relative radiance in each of the three channels.
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Figure 2. Camera response as a function of radiance. Measurements were made by gradually
attenuating a white light source while collecting images with an Apple iPod touch. Relative radiance
was calculated using Equation (2). The true radiance was measured using a Satlantic HyperPro
radiometer. The response in the: red (a); green (b); and blue (c) color channels are shown. This figure is
meant to show the linear relationship between the camera’s measure of relative radiance and the true
radiance; it is not meant to provide an absolute calibration for measuring radiance.

To compare HydroColor measurements from different devices, the spectral sensitivity of the
RGB channels must be similar between devices. Sensitivity curves for each device were acquired
by recording the digital pixel values (0–255) returned by the camera while viewing the variable
wavelength light source of a Cary 500 spectrophotometer. Light output from the spectrophotometer
was varied from 400 to 700 nm at 1 nm intervals. A diffuser was placed between the camera and
the light source to prevent pixel saturation. The exposure time, ISO speed, and white balance of the
cameras were held constant during the spectral sensitivity measurement. The digital pixel values were
recorded onboard the smartphone using a custom program. The resulting pixel values were smoothed
using a 20 nm running average, then normalized by the largest recorded value in each channel.

2.3. Calculation of Remote Sensing Reflectance

Once the images are collected, they are processed onboard the phone to provide the remote
sensing reflectance. To decrease the uncertainties of the measurements, the RGB pixel values from a
200 × 200 pixel region at the center of the image are averaged. The position of this region is highlighted
when measurements are taken so that the user can minimize interferences by shadows and clouds.
The average values are used to calculate the relative radiance using Equation (2). The relative radiances
are used in Equation (1) to calculate the remote sensing reflectance.

As discussed previously, any scaling factor cancels out in Equation (1). Therefore, the camera
needs no absolute calibration. All that is needed to calculate Rrs is a quantity proportional to radiance.
The proportionality between the actual radiance and the camera’s measure of relative radiance is likely
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to change with cleanliness of the lens, age, temperature, and device manufacturer. However, because
the three images are all taken using the same device in a short period of time (less than a minute
typically), these errors cancel out in the calculation of Rrs.

2.4. Measuring SPM from Remote Sensing Reflectance

The concentration of suspended particulate matter (SPM) in the surface water has a direct and
nonlinear effect on reflectance. SPM represents the concentration of all suspended particles, including
organic and inorganic particles. Water is typically the dominating absorber in red wavelengths, leaving
the red reflectance to be governed mostly by SPM concentration (via scattering). Chlorophyll does
have an absorption peak at 676 nm, however, this peak falls nearly outside the red sensitivity curve
of the camera. Indeed, both red and near infrared wavelengths are often used for satellite SPM
algorithms [15,16]. Similarly, the change in reflectance associated with increasing SPM concentration
can be detected in the HydroColor Rrs red channel.

2.5. Field Tests

Field data were collected in three different campaigns. The first campaign was designed to
compare HydroColor measurements to precision radiometers and turbidimeters for a wide range of
water types. The second campaign was a volunteer driven HydroColor collection day, to demonstrate
HydroColor as a citizen science tool. The third campaign was a brief comparison of HydroColor
measurement from Android and Apple devices.

In the first campaign in 2013, field data were collected at three locations: the Columbia River
mouth, the coast of Maine, USA, and the coast of Georgia, USA. Data were collected during the summer
months under a variety of meteorological conditions, ranging from clear sky to fully overcast. An Apple
iPhone 4, iPhone 5 or iPod touch where used to collect HydroColor measurements. Measurements
were made under calm conditions where wind speed was less than 5 m s−1. The measurements were
made in coastal case II waters where CDOM and mineral particles greatly influenced the water leaving
radiance. Coastal Georgia measurements contained the highest amounts of mineral particles compared
to the other study sites. Nearly all the field sites were influenced by freshwater input. HydroColor data
were collected in parallel with an above water radiometer and a turbidimeter. The concurrent data
were used to validate HydroColor’s calculation of Rrs and provide a calibration for the measurement
of turbidity.

A total of 63 HydroColor measurements collected during the first campaign were accompanied
by measurements with a Water Insight Spectrometer (WISP). Both HydroColor and the WISP are
designed to measure Rrs. using the same method. The WISP uses three spectrometers to measure
Lt, Ls and Ed. Therefore, the WISP served as a convenient instrument to determine the accuracy of
HydroColor. To ensure the most accurate results, the WISP was vicariously calibrated to agree with
recently calibrated Satlantic Hyper-Pro radiometers.

Rrs was calculated from WISP data using Equation (1), where Ed replaced the denominator.
To compare the WISP hyperspectral Rrs with HydroColor broadband Rrs, the WISP spectra were
averaged using the spectral sensitivity curves in Figure 3 as weights:

Rrs(i) =

∫ 700
400 Rrs(λ)wi(λ)dλ∫ 700

400 wi(λ)dλ
(3)

where Rrs(λ) is the Rrs value measured by the WISP at wavelength λ, wi(λ) is the relative camera
sensitivity in color channel i at wavelength λ (from Figure 3), and Rrs(i) is the Rrs value that would
result if the WISP had the same spectral sensitivity as color channel i.

In this study, we used turbidity measured in nephelometric turbidity units (NTU) as a proxy for
SPM concentration. Turbidity was measured using a Hach 2100Q portable turbidimeter. Using
turbidity simplified the methodology and was a convenient choice since it is used by many
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environmental monitoring agencies. The turbidity dataset is made up of 58 different measurements
collected on an iPhone 5, iPhone 4 or iPod touch. The turbidity measurements were made at the same
study sites as the radiance measurements.

The second field campaign consisted of HydroColor measurements collected by volunteer citizen
scientists. San Francisco Bay National Estuarine Research Reserve members organized volunteers
to collect HydroColor measurements and water samples on 24 July 2014. In total, 14 measurements
were collected along the shores of San Francisco Bay. Volunteers were spread over a large area of the
bay spanning a wide range of turbidities. It is likely the measurements also spanned a wide range
of chlorophyll and CDOM concentrations. SPM concentrations of the collected water samples were
measured by filtration and gravimetric analysis. Sky conditions were partly cloudy.

The third field campaign was a device comparison between Apple iOS and Android based
smartphones. This comparison was conducted at several sites around the Seattle, WA, USA area
on 21 May 2017. HydroColor measurements from an iPhone 4, iPhone 5, iPhone 6, HTC One M8,
Nexus 5 and a Galaxy S5 where collected sequentially at five different field sites. The field sites ranged
from low turbidity water in Lake Washington and Puget Sound, to moderately turbid waters of the
Duwamish and Puyallup rivers. Sky conditions were clear. The same gray card was used for all
measurements, unlike the previous two campaigns. The reflectance and turbidity values measured
by each device were compared to ensure HydroColor results were similar between a wide range of
devices and operating systems.

3. Results

3.1. Camera Spectral Sensitivity

Spectral sensitivity curves from an iPod Touch, iPhone 4, iPhone 5, Samsung Galaxy S5, HTC one
M8 and a Google Nexus 5 are shown in Figure 3. Note that this measure of sensitivity is for the camera
as a whole, which includes the transmission of the Bayer and infrared filters and the sensitivity of the
CMOS sensor itself.
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The peak near 490 nm in the green response of several cameras appears to be an artifact. Typical
Bayer filters used in color cameras do not have multi-peaked transmission spectra. The peak near
490 nm is most likely caused by cross talk between green and blue pixels [17]. The close alignment
of the secondary green peak and the first blue peak provide further evidence that green pixels were,
in some cases, influenced by optical or electrical cross talk from blue pixels.

Besides the artifact in the green curves, the spectral responses between all six cameras are very
similar. These results are not surprising, as a significant deviation from these curves would not produce
an acceptable color image to the human eye. Therefore, the spectral sensitivity can be assumed, for our
purposes, to be device independent.

3.2. Validation of Reflectance Measurement

Equation (3) was applied to the WISP field data using the spectral sensitivity curve (Figure 3)
from the camera used to collect the concurrent HydroColor measurement. For each color channel,
a regression line was fit to the WISP and HydroColor Rrs using type-I least-squares linear regression.
After the initial fit, the standard deviation of the absolute error between the models predicted values
and the measured values were calculated. Any data falling more than 3.5 standard deviations outside
the median fit error were considered outliers and were removed from the regression. The regression
line was then fit to the dataset with the outliers omitted.

The HydroColor measured Rrs compares well with concurrent WISP measurements (Figure 4).
The majority of data points fall close to the one-to-one line. The scatter of the data around the
one-to-one line is similar for all channels (note the difference in scale for the blue channel in Figure 4).
The range of Rrs values spanned in the data set represent a wide range of conditions. However,
HydroColor has yet to be tested in highly turbid waters (turbidity >80 NTU). The median percent
error of the HydroColor measurement of Rrs relative to the WISP was 18%, 16% and 26% for the red,
green, and blue channels, respectively. The median bias for the same comparison was 1.3 × 10−4 sr−1,
−5.2 × 10−4 sr−1, and−9.5 × 10−4 sr−1, respectively. The error in ρ is not realized in this comparison
because the same value of ρ is used for both the HydroColor and WISP calculations of Rrs.
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Figure 4. Comparison of HydroColor Rrs with WISP Rrs. The three plots show the Rrs comparison
for each color channel. To show a meaningful comparison, the WISP spectra were averaged using
the camera spectral sensitivity curves as weights Equation (3). For replicate measurements, error
bars display the standard error. The dashed line shows the one-to-one line and the solid line shows
the results of a type-I linear regression. The data are broken out by location: Columbia River (blue
triangles), Georgia (green circles), Maine (red squares). The data points in boxes were identified as
outliers (using an objective procedure) and were not included in the regression.

There are several possible circumstances that may have generated the three outliers seen in
Figure 4. The total duration of capturing the three images may play an important role, especially
when the sky conditions exhibit patchy clouds. If the illumination or sky conditions change during the
collection of the three images, it would lead to incorrect Rrs values.
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To further investigate HydroColor’s accuracy when measuring Rrs, each component of
Equation (1) can be looked at individually. When interpreting these data, it is important to note they
are relative radiance values prior to taking any ratio. Therefore, they may contain biases due to white
balance and variations in sensitivity. However, their examination can still provide useful conclusions.

Figure 5 helps to confirm the assumption that any calibration factor needed to convert the camera
measured relative radiance (Lrel) to true radiance cancels out in the ratio of Equation (1). The slope
values for Ed, Ls and Lt are similar within each channel (Table 2). This also indicates that the conversion
from the relative radiance of the gray card to the relative downwelling irradiance is correct. Figure 5
also shows that the smartphone cameras used in this study have similar sensitivities to light, however,
this is not required for the method to work.
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Figure 5. Comparison of HydroColor and WISP measurements of Ed, Ls, and Lt. This figure shows
data from the: red (a–c); green (d–f); and blue (g–i) color channels of the camera. Statistics are listed in
Table 2. The data are broken down by device: iPod (green circles), iPhone 4 (red squares), and iPhone 5
(blue diamonds).

HydroColor’s measurement of Ed is more variable than the other two radiance measurements
(Table 2). The gray card was always placed in a low area relative to the camera so the picture could be
taken at a downward angle, possibly causing parts of the sky to be shaded by the person taking the
image. The WISP irradiance sensor was typically at eye level. Variability in the reflectance of different
gray cards could have also contributed. It is not known if age or long term sun exposure has an effect
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on gray card reflectance. These results suggest that HydroColor’s measurement of Ed is the largest
source of error.

Table 2. Statistics for type-I linear regressions in Figure 5.

Figure Property Channel Slope (×104) Intercept (×104) R2 RMSE (×104)

5a Ed Red 5.82 −1.95 0.75 109.13
5b Ls Red 6.23 0.22 0.84 19.90
5c Lt Red 5.52 0.39 0.84 0.96
5d Ed Green 5.27 −8.23 0.76 108.41
5e Ls Green 5.67 0.47 0.86 17.93
5f Lt Green 5.27 0.41 0.86 0.89
5g Ed Blue 6.17 −31.76 0.76 114.82
5h Ls Blue 6.92 −6.01 0.79 25.69
5i Lt Blue 6.43 0.27 0.72 1.14

Data collected on 21 May 2017 using multiple Apple and Android devices allowed for an
inter-device comparison of reflectance and turbidity. The study sites ranged from relatively clear water
in Lake Washington (~2 NTU) to moderately turbid water of the Puyallup River (~7 NTU). Figure 6
show the reflectance and turbidity measured by each device at each study site. Only small variations in
reflectance and turbidity exists between the six devices tested. None of the devices showed a consistent
bias that was greater than the uncertainty of the HydroColor measurement.
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Figure 6. Comparison of the measured reflectance and turbidity from several smartphones at the same
study sites. Bars show the mean of three measurements. Error bars show the standard deviation.
No error bars present indicates the standard deviation between replicates was zero.
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3.3. Validation of Turbidity Measurement

The relationship between turbidity and HydroColor measured Rrs in the red channel is shown
in Figure 7. A function was fit to the data that provided an equation for converting HydroColor Rrs

(Red) to turbidity. When applying this equation (turbidity = 22.57Rrs(Red) / (0.044 − Rrs(Red)))
back to the data in Figure 7, the median percent error in retrieval of turbidity was 24%. Compared to
other methods for measuring turbidity [18], this accuracy is more than sufficient to collect meaningful
turbidity measurements in inland and coastal waters.
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Figure 7. Relationship between turbidity and HydroColor Rrs(Red). The plot on the right is a closer
view of the lower turbidity values in the left plot. Error bars display the standard error (when replicate
measurements were available). The single boxed data point identifies an outlier that was not included
in the fitting of the radiance model or regression line. The solid lines and dash lines show the fitted
relationships described in the validation section. The radiance model and regression line are on top of
each another in the right plot. For the solid line R2 = 0.93 and RMSE = 0.003 sr−1.

To determine if the relationship between turbidity and Rrs (Red) is reasonable, an oceanic radiance
model from Gordon et al. [19] was fit to the data. To fit the model, the relationship between turbidity
and SPM concentration was assumed to be 1 NTU:1 g m−3 [18,20]. Fitting the radiance model to the
turbidity and Rrs (Red) data provided a mass specific backscattering (bbp*) value of 0.010 m2 g−1 and
a mass specific absorption (ap*) value of 0.0086 m2 g−1. These values are the effective bbp* and ap*
values for the red channel of the camera, which spans a large portion of the visible spectrum. If a flat
mass specific backscattering spectrum is assumed [21], the fitted bbp* provides the magnitude of the
mass specific backscattering spectrum. A value of 0.010 m2 g−1 is within the range of values seen in
the environment for the red portion of the visible spectrum [20].

The fitted value for ap* is slightly harder to interpret since the mass specific absorption spectrum
of particles tends to be an exponentially decreasing function of wavelengths. However, using the
iPod red sensitivity curve, an example of an absorption spectrum that would provide the value of
0.0086 m2 g−1 after a weighted average is: a∗p = 0.015e−0.01(λ−550). Both the magnitude and slope of
this function are within the values seen in the environment [22,23]. Therefore, the relationship between
turbidity and HydroColor Rrs (Red) is consistent with other published works. The error between the
modeled and measured Rrs (Red) values is likely caused by the errors in ρ and variations in bbp* and
ap* that are undoubtedly present in such a spatially large dataset.

3.4. Validation of Citizen Collected Data

Turbidity from volunteer collected measurements was derived from HydroColor reflectance using
the relationship in Figure 7. Only the HydroColor derived turbidity was collected from volunteers,
the metadata was not recovered. Therefore, it was not possible to determine if the volunteer collected
measurements were performed correctly.
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SPM of the collected water samples and the turbidity reported by HydroColor were correlated
(Figure 8). However, the relationship is much weaker than what is seen in Figure 7. This is likely
due to errors in the measurement that went undetected, or differences in the absorption or scattering
properties of the sediment at different location in the bay. The relationship of SPM and turbidity is also
highly dependent on particle size and composition [18]. Even though this example demonstrates the
worst-case scenario, where no HydroColor metadata were available for quality control. It shows that
citizen scientists are able to observe trends in the environment using the HydroColor application.
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4. Discussion

This study has demonstrated how a digital camera can be used as an aquatic remote sensing
device. Smartphones are particularly well suited for this application because they contain a multitude
of additional sensors. The HydroColor application can measure Rrs in the red, green, and blue portions
of the visible spectrum within 26% of a precision radiometer. Using the RGB Rrs, various water quality
parameters can be inferred. This study demonstrates that turbidity can be estimated, however, users
can use the RGB reflectance to develop their own regional or global algorithms. While we do not think
that a global algorithm for chlorophyll can be derived from HydroColor (e.g., using the green/blue
reflectance ratio), due to variability of CDOM, it may be possible to derive a local algorithm that will
work at a specific time and location.

HydroColor’s ability to measure reflectance accurately will depend on environmental conditions.
Sea surface roughness can have a large effect on the value of ρ. When the surface of the water is sloped,
an observer or detector is viewing a different portion of the sky than what is seen on a level surface.
Currently HydroColor does not obtain any information on wind speed or sea state. Therefore, this
is a known source of error in the calculation of Rrs. The sensitivity of ρ to wind speed is a function
of sun zenith angle and sky condition. As the sun is higher in sky, the influence of wind speed on
ρ becomes greater. At a sun zenith angle of 30◦ and a wind speed of 15 m s−1, ρ can be as large as
0.05 [12]. This can lead to substantial error in Rrs. Therefore, it follows that HydroColor should not be
used in windy conditions where the sea surface is choppy. For purposes of this study, measurements
were made in calm conditions and the value of ρ was assumed to be constant at 0.028. This is an
accurate value of ρ for wind speeds less than approximately 5 m s−1. We observed that the most
accurate data were collected under perfectly clear or homogeneously overcast skies, the cases modeled
by Mobley [12]. See Appendix A for additional tips on using HydroColor.
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It should be noted that inaccuracies in Rrs due to sky conditions and a never truly known ρ value
are not unique to HydroColor measurements. We have shown that a smartphone camera is able to
measure a quantity proportional to radiance. Thus, the difficulties in minimizing surface reflectance
and determining a correct ρ value for the calculation of Rrs are inherent to even the most well calibrated
above water radiometers systems.

Several improvements to the HydroColor application remain to be included. A large improvement
to the application would be a better estimate of uncertainty. For example, examining the variability in
an image, or in a series of images, could provide more information about meteorological conditions.
The image variability could be an indicator of cloud cover or water surface roughness. This could
be used to alert the user when conditions are not suitable for HydroColor measurements. Another
improvement would be to make the sea surface reflectance factor (ρ) dynamic. This value could
be adjusted based on results of image processing or weather data collected via the phone’s data
connection. The use of raw camera data, instead of compressed data, would improve HydroColor’s
ability to measure relative radiance. This feature will likely be implemented in the near future as new
smartphone software and hardware features become available. Lastly, the HydroColor application
uses a fixed number of pixels at the center of each image. Smartphones cameras have a wide variety of
resolutions. Therefore, using a fixed area instead of a fixed number of pixels would help ensure the
field of view of the camera is the same between devices.

HydroColor has the potential to make a large impact on both scientific and educational
communities. Before the release of this application, such a simple and low cost method for measuring
above water reflectance (and the derived turbidity) did not exist. The HydroColor application
now allows citizen scientists to collect objective water quality data without the need for water
samples, expensive instruments, or upfront time commitments. The data collected by HydroColor
would complement already existing crowdsourcing efforts as well as ocean color remote sensing
measurements. When coupled with Secchi Disk measurements and measurement using the Forel–Ule
scale, for which mobile applications and cheap sensors exists [24–26], HydroColor can provide a
different, and human-eye independent measurement of the water quality. Since all three are dependent
on slightly different water properties, together they can better constrain water optical properties such
as scattering and absorption. They can be used in concert as a quality check, as we would expect blue
water based on Forel–Ule scale to have a high blue reflectance in the HydroColor application.

HydroColor has the additional advantage that the measurement tool and method are standardized
across the globe. Smartphones are found worldwide, and they predominately contain hardware
similar to what is described in this study. Assuming HydroColor is used correctly (which can be
confirmed by examining the measurement metadata), the measurement method will have a high
degree of consistency.

HydroColor also has value as an educational tool. Many students already own smartphones.
Therefore, the infrastructure for wide scale educational application of HydroColor is already in place.
HydroColor would be well suited as a teaching tool in environmental monitoring, oceanography,
limnology, optics, and remote sensing classes. HydroColor can also be used as a public outreach tool,
as the application can show people how a tool as simple as their camera can help them learn about
their environment.
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Appendix A

Clear sunny skies or homogeneous cloud cover are the best conditions for using the HydroColor
application. The sun zenith angle should be between 15 and 60 degrees. The measurement should
be conducted in an open area with minimal shading by nearby objects. The measurement must be
conducted in optically deep water. Since the water depth and clarity are typically unknown, the user
must estimate if a location is deep enough. As a general rule of thumb, if any portion of the bottom is
visible, this area is too shallow to collect HydroColor measurements. Docks, piers, and ships provide
the best platforms for making HydroColor measurements. It is also important to avoid taking the
water image in the shadow of a dock or any other structure.

HydroColor saves the reflectance, turbidity, and auxiliary data in a text file on the phones
file system. The text file contains headers that describe the data. The data file can be offloaded
from the device by connecting the smartphone to a computer. For Apple devices, the file can be
downloaded from the application file-sharing tab in iTunes. For Android devices, the file system can be
accessed using a free program such as Android File Transfer. The data file is stored in the HydroColor
application folder.

The procedure utilized by HydroColor can be applied to almost any digital camera.
When applying this method outside the HydroColor application, several things must be considered.
It is important the white balance of the camera remains static when collecting images. This is
accomplished in the HydroColor application by locking the white balance when the gray card image
is collected. The application forces the user to collect the gray card image first so that all images are
collected using the same white balance setting. Additionally, exposure and ISO speed of the camera
must not be locked between the capture of images. This is important, since the sky is typically several
times brighter than the water. Allowing the exposure and ISO speed to change, then compensating for
the changes in Equation (2) increases the dynamic range of the relative radiance measurement.

Cameras can also be deployed facing in a fixed direction. The sun position will need to be tracked
and the appropriate ρ value then applied to each series of image captures. This method could also be
used if images are captured from an aerial platform where the viewing direction cannot be controlled.
A table of ρ values based on wind speed and sun position can be found on the Ocean Optics Web Book
website [27]. It should be noted that the directions provided here are intended to minimize surface
glint and hence the uncertainty in its correction.
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