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Abstract: In this paper, we proposed a coarse-alignment method for strapdown inertial navigation
systems based on attitude determination. The observation vectors, which can be obtained by
inertial sensors, usually contain various types of noise, which affects the convergence rate and
the accuracy of the coarse alignment. Given this drawback, we studied an attitude-determination
method named optimal-REQUEST, which is an optimal method for attitude determination that
is based on observation vectors. Compared to the traditional attitude-determination method, the
filtering gain of the proposed method is tuned autonomously; thus, the convergence rate of the
attitude determination is faster than in the traditional method. Within the proposed method, we
developed an iterative method for determining the attitude quaternion. We carried out simulation
and turntable tests, which we used to validate the proposed method’s performance. The experiment’s
results showed that the convergence rate of the proposed optimal-REQUEST algorithm is faster
and that the coarse alignment’s stability is higher. In summary, the proposed method has a high
applicability to practical systems.

Keywords: strapdown inertial navigation system (SINS); coarse alignment; attitude determination;
optimal-REQUEST

1. Introduction

The strapdown inertial navigation system (SINS) is an autonomous system that calculates the
position and orientation of a carrier relative to an initial point and orientation using inertial-sensor
measurements [1,2]. The initial attitude, obtained by initial alignment, is therefore significant for
the achievement of high-precision navigation. There are two important indexes for the evaluation of
initial-alignment performance: the alignment precision and the convergence speed [3,4]. In recent
years, many researchers have been devoted to improving the performance of initial alignment, and a
series of valuable methods have been proposed [5–7].

According to the alignment process, the initial alignment is usually divided into two stages [8–11].
The first stage is called the coarse-alignment process and is utilized to determine the rough attitude
based on the earth’s gravity and angular rate [8,9]. The coarse alignment’s contribution is mainly
reflected in the alignment velocity. Therefore, an effective coarse-alignment method can reduce the
alignment time so that the system can quickly enter the navigation state. The second stage is the
fine-alignment process, which can more accurately determine the initial attitude [10,11]. After the
coarse alignment has been conducted, the misalignment angles can converge to a small angle, so that
the nonlinear error models of SINS can be approximately simplified into the linear error models. Then,
a linear Kalman filter can be applied for the fine alignment. Based on the estimation of the bias of the
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inertial sensors, the misalignment angles can be further reduced. Consequently, as the coarse alignment
is the fine alignment’s premise, its performance will directly affect the fine alignment’s performance.
The design of a coarse-alignment algorithm with fast convergence speed and high alignment accuracy
is very important to practical applications. This paper will focus on the design of a high-performance
coarse-alignment method.

Several methods have been designed to improve coarse-alignment performance; one of them
is based on the inertial frame, which can be summed up as the attitude determination (AD) [12].
This means that the calculation of the initial-attitude matrix in [12] is transformed into the
determination of the constant direction-cosine matrix (DCM). Generally, one solution to the AD
problem focuses on the determination of the attitude matrix [13–15]. Qin and Wang [12,14] proposed
a method, based on the dual-vector AD, that focused on the coarse alignment on the swing base.
However, the method, which was proposed in [12], did not achieve a favorable coarse-alignment
performance, as the acceleration of the observation vectors measured by the inertial measurement unit
(IMU) contained random noise. Another solution to the AD problem involves the determination
of the corresponding attitude quaternion [16–21]. In order to solve the initial alignment on the
swing base, Zhou [16] proposed a coarse-alignment method based on the quaternion-estimation
(QUEST) algorithm, which achieves faster convergence velocity than the dual-vector AD algorithm.
However, when determining the attitude quaternion, the QUEST algorithm utilizes only the vector
observation obtained at a single time point; the information contained in the past measurements gets
lost. Zhu [18] utilized the recursive quaternion estimator (REQUEST) algorithm [19] to achieve the
coarse alignment, which determines the attitude quaternion by recursive calculation to make full
use of the measurements. Wu [20] proposed an optimization-based alignment (OBA) algorithm for
SINS, which establishes the alignment as an optimization problem that involves finding the minimum
eigenvector. Compared with the QUEST algorithm, the OBA method achieves a better performance of
the coarse alignment. However, the vector observation in the REQUEST algorithm and OBA algorithm
also contains random noise. Choukroun [21] proposed an Optimal-REQUEST (OPREQ) algorithm
for AD on the basis of the REQUEST algorithm, which adjusts the gain of the filter adaptively to
achieve a better performance of AD than the REQUEST algorithm. In order to improve both the
convergence velocity and alignment accuracy, this paper proposes a coarse-alignment method based
on the optimal-REQUEST (OPREQ) algorithm.

We propose a new inertial-frame-based coarse-alignment method that is inspired by the OPREQ
algorithm [21]. Based on the swaying motion’s properties, the coarse alignment of the inertial
frame transforms the determination of the initial-attitude matrix into the constant-DCM calculation;
we adopted the integral algorithm in order to filter the inertial sensors’ random noise. Then, we utilized
the OPREQ algorithm for attitude determination in order to determine the constant DCM. There are
two advantages to our proposed coarse-alignment method, which can improve the convergence rate
and the stability of the coarse alignment. On the one hand, the proposed method changes the gain of
the filter adaptively, rendering the OPREQ filter optimal. On the other hand, the proposed method can
filter observation noise by building an accurate measurement model. We verified the performance of
this coarse-alignment method with simulation and turntable tests.

The rest of the paper is organized as follows: we introduce the definition of a coordinate frame in
the next section. Then, in Section 3, we state the principle of coarse alignment based on the inertial
frame. In Section 4, we derive the principle of the OPREQ algorithm. The performance of the proposed
method is illustrated through the simulation and turntable tests in Section 5. Finally, our conclusions
for this paper are summarized in Section 6.

2. Definition of the Coordinate Frame

Some frame definitions in this paper are as follows:

1. i-frame: Earth-centered initially-fixed orthogonal reference frame;
2. n-frame: orthogonal reference frame aligned with East-North-Up (ENU) geodetic axes;
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3. b-frame: orthogonal reference frame aligned with IMU axes;
4. b0-frame: orthogonal reference frame that is non-rotating relative to the i-frame, which is formed

by fixing the b-frame at start-up in the inertial space;
5. e-frame: Earth-centered Earth-fixed (ECEF) orthogonal reference frame;
6. e0-frame: orthogonal reference frame that is non-rotating relative to the i-frame, which is formed

by fixing the e-frame at start-up in the inertial space.

The above coordinate frames are shown in Figure 1.
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Figure 1. Alignment error curves of three different constant biases. 

3. The Principle of Coarse Alignment Based on the Inertial Frame 

The attitude matrix can be calculated by the following equation: =  (1) 

According to the definition of the relevant frame,  and  can be calculated as follows: 

= 0 1 0− ( ) 0 ( )( ) 0 ( )  (2) 

= ∙ ( − ) ∙ ( − ) 0− ∙ ( − ) ∙ ( − ) 00 0 1 (3) 

where  denotes the latitude of the carrier and  denotes the angular rate of the Earth. The 
attitude transfer matrix  between the b- and b0-frames can be calculated by the gyroscope output 
in real time, that is by solving the attitude-matrix differential Equation (4): = ×( ) =  (4) 

Therefore, the key to calculating the attitude matrix  is to determine the constant attitude 
matrix . Assuming that the carrier does not exhibit a linear motion during the whole alignment 
process,  consists of the output of three accelerometers: the gravity-acceleration vector , the 
bias of the accelerometer , and the additional interference acceleration , which is to say =− + + . The projection of the vector  in the b0-frame can be calculated as Equation (5): = = (− + + ) = − + ( + ) (5) 

where: 

Figure 1. Alignment error curves of three different constant biases.

3. The Principle of Coarse Alignment Based on the Inertial Frame

The attitude matrix can be calculated by the following equation:

Cn
b = Cn

e Ce
e0Ce0

b0Cb0
b (1)

According to the definition of the relevant frame, Cn
e and Ce

e0 can be calculated as follows:

Cn
e =

 0 1 0
−sin(L) 0 cos(L)
cos(L) 0 sin(L)

 (2)

Ce
e0 =

 cos(ωie · (t− t0)) sin(ωie · (t− t0)) 0
−sin(ωie · (t− t0)) cos(ωie · (t− t0)) 0

0 0 1

 (3)

where L denotes the latitude of the carrier and ωie denotes the angular rate of the Earth. The attitude
transfer matrix Cb0

b between the b- and b0-frames can be calculated by the gyroscope output in real
time, that is by solving the attitude-matrix differential Equation (4):

.
C

b0
b = Cb0

b

[
ωb

ib×
]

Cb0
b (t0) = I3

(4)

Therefore, the key to calculating the attitude matrix Cn
b is to determine the constant attitude matrix

Ce0
b0. Assuming that the carrier does not exhibit a linear motion during the whole alignment process,

fb consists of the output of three accelerometers: the gravity-acceleration vector gb, the bias of the
accelerometer ∇b, and the additional interference acceleration ab, which is to say fb = −gb +∇b + ab.
The projection of the vector fb in the b0-frame can be calculated as Equation (5):



Sensors 2018, 18, 239 4 of 18

fb0 = Cb0
b fb = Cb0

b

(
−gb +∇b + ab

)
= −Cb0

e0ge0 + Cb0
b

(
∇b + ab

)
(5)

where:

ge0 = Ce0
e Ce

ngn =

 −g · cos(L) · cos(ωie · (t− t0))

−g · cos(L) · sin(ωie · (t− t0))

−g · sin(L)

 (6)

We used integrals on both sides of Equation (5) to eliminate random noise:

∫ t

t0

fb0dt = Cb0
e0

∫ t

t0

−ge0dt +
∫ t

t0

Cb0
b

(
∇b + ab

)
dt (7)

We denoted Vb0(t) =
∫ t

t0
fb0dt and Ve0(t) =

∫ t
t0
−ge0dt. Ignoring the second integral term on the

right, Equation (7) was simplified as:

Vb0(t) = Cb0
e0Ve0(t) (8)

where,

Ve0(t) =

 g · cos(L) · sin(ωie · (t− t0))/ωie
g · cos(L) · [1− cos(ωie · (t− t0))]/ωie

g · sin(L) · (t− t0)

 (9)

We normalized the vectors Vb0(t) and Ve0(t), denoted by b and r:

b = Vb0(t)
||Vb0(t) || r = Ve0(t)

||Ve0(t) || (10)

where ||· || denotes the Euclidean norm. Equation (8) can then be rewritten as the vector
observations-based measurement model for Cb0

e0 , as:

b = Cb0
e0r (11)

From Equation (11), we know that the coarse alignment based on the inertial frame can be summed
up as an AD problem. Additionally, the DCM matrix Cb0

e0 is a constant attitude matrix. One solution
to the AD problem would be to calculate the optimal matrix A itself; the other solution involves
the determination of the corresponding optimal quaternion q. The three-axis attitude determination
(TRIAD) algorithm belongs to the former method. However, the TRIAD algorithm is incapable of
achieving an accurate result as it ignores the vector-observation measurement error. The OPREQ
algorithm computes the optimal quaternion q by constructing a matrix K, which can reduce the
influence of measurement noise adaptively.

4. The Principle of the Optimal-REQUEST Algorithm

Reference [21] expresses that the optimal quaternion q for the AD problem is the eigenvector of
matrix K that belongs to its largest positive eigenvalue. Matrix K can be calculated by Equation (12),
given a set of n simultaneous observations bi, ri, i = 1, 2, . . . , n, obtained at time tk, and the
corresponding weights ai, where, ∑n

i=1 ai = 1. We defined the 4× 4 symmetric matrix K as:

Kk/k =

[
Sk − σkI3 zk

zT
k σk

]
(12)

where the 3× 3 matrix Sk, the 3× 1 vector zk, and the scalar σk are defined as follows:

Bk , ∑n
i=1 aibirT

i Sk , Bk + BT
k

zk , ∑n
i=1 aibi × ri σk , tr(Bk)

(13)
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where tr(·) denotes the trace operator.
The update equation of the attitude quaternion is:

qk+1 =
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of the observation at time tk+1 was denoted by ak+1. The corresponding matrix K at time tk+1, denoted
by δKk+1, was constructed as follows:

δKk+1 =
1

ak+1

[
Sk+1 − σk+1I3 zk+1

zT
k+1 σk+1

]
(15)

where the 3× 3 matrix Sk+1, the 3× 1 vector zk+1, and the scalar σk+1 are defined as follows:

Bk+1 , ak+1bk+1rT
k+1 Sk+1 , Bk+1 + BT

k+1
zk+1 , ak+1bk+1 × rk+1 σk+1 , tr(Bk+1)

(16)

4.1. Measurement Equation

With regards to the observation vectors obtained at time tk+1, we supposed that the reference
vector rk+1 is acquired error-free, while the measurement vector bk+1 contains the noise vector δbk+1.
That is:

bk+1 = Ak+1rk+1 + δbk+1 (17)

A 4× 4 symmetric matrix, which is denoted by Vk+1, is defined as [19]:

Vk+1 =
1

ak+1

[
Sb − κbI3 zb

zT
b κb

]
(18)

where the quantities used in Equation (18) are defined as follows:

Bb , ak+1δbk+1rT
k+1 Sb , Bb + BT

b
zb , ak+1δbk+1 × rk+1 κb , tr(Bb)

(19)

Matrix Vk+1 is the noise matrix contained in the matrix δKk+1:

δKk+1 = δKo
k+1 + Vk+1 (20)

where δKk+1 and δKo
k+1 are respectively the noisy and the noise-free matrices of the new vectors

obtained at tk+1.

4.2. Stochastic Models and Measurement Uncertainty

We supposed that the observation vectors bk are symmetrically distributed around their true value.
We established an error model to approximately express the mean and covariance of δbk. The first and
the second moments of this model are:

E[δbk] = 0, E
[
δbkδbT

k+i

]
= µk

(
I3 − bkbT

k+i

)
δk,k+i (21)

for k = 1, 2, . . ., where µk is the variance of the component of δbk.
We noticed that Vk is a linear function of δbk and rk. As δbk is a zero-mean white-noise process,

Vk is also a zero-mean white-noise process. Thus:
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E
[
VkVT

k+i

]
= 04 (22)

where i 6= 0. For the zero-mean matrix Vk, the measurement uncertainty
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We supposed that the set of nk simultaneous observations obtained at time tk have the same
variance µk. Additionally, ∑nk

i=1 ai = 1. The detailed calculation of
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k is provided in Reference [21].

4.3. Measurement Update Process

Through the above analysis, we obtained the predicted estimate matrix Kk/k and the new
observation matrix δKk+1. We then utilized an iterative calculation method to calculate the updated
estimate matrix Kk+1/k+1. The updated estimate Kk+1/k+1 is calculated via the convex combination of
the priori estimate Kk/k and the new observation δKk+1, that is:

Kk+1/k+1 = (1− ρk+1)
mk

mk+1
Kk/k + ρk+1

δmk+1
mk+1

δKk+1 (26)

where δmk+1 is a positive scalar weight and mk+1 is computed as follows:

mk+1 = (1− ρk+1)mk + ρk+1δmk+1 (27)

for k = 0, 1, . . . and m0 = δm0. The scalar ρk+1 ∈ (0 , 1) is the gain of Equation (26). If the value
of the scalar ρk+1 is fixed, the algorithm is called a REQUEST algorithm [19]. The determination
of the scalar ρk+1 is tentative, rendering the REQUEST algorithm suboptimal. We wished to find
the optimal value of the scalar ρk+1, which could be changed adaptively according to the estimated
residual. In doing so, the convergence of the attitude determination would be faster and the result
would become more accurate.

The estimate errors of the algorithm are defined as follows:

∆Kk/k , Ko
k/k −Kk/k

∆Kk+1/k+1 , Ko
k+1/k+1 −Kk+1/k+1

(28)

where ∆Kk/k and ∆Kk+1/k+1 respectively represent the priori and posteriori estimation errors.
We supposed that the priori estimate Kk/k is unbiased, that is to say E[∆Kk/k] = 0. The expression

Ko
k+1/k+1 was calculated by:

Ko
k+1/k+1 = (1− ρk+1)

mk
mk+1

Ko
k/k + ρk+1

δmk+1
mk+1

δKo
k+1 (29)
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By subtracting Equation (26) from Equation (29), we obtained the relation between the priori and
posteriori errors:

∆Kk+1/k+1 = (1− ρk+1)
mk

mk+1
∆Kk/k + ρk+1

δmk+1
mk+1

Vk+1 (30)

where Vk+1 is the measurement error defined in Equation (19). Taking the expectation of both sides of
Equation (30), we obtained:

E[∆Kk+1/k+1] = (1− ρk+1)
mk

mk+1
E[∆Kk/k] + ρk+1

δmk+1
mk+1

E[Vk+1] (31)

As mentioned above, the priori error ∆Kk/k and the measurement error Vk+1 are zero-mean.
We know from Equation (30) that ∆Kk+1/k+1 is the linear function of ∆Kk/k and Vk+1. Therefore,
the posteriori error is zero-mean.

The measurement uncertainty corresponding to the two estimate errors is defined as follows:

Pk/k , E
[
∆Kk/k∆KT

k/k

]
Pk+1/k+1 , E

[
∆Kk+1/k+1∆KT

k+1/k+1

] (32)

According to Equation (30), it can be calculated as the following expression:

∆Kk+1/k+1∆KT
k+1/k+1

=
[
(1− ρk+1)

mk
mk+1

]2
× ∆Kk/k∆KT

k/k − (1− ρk+1)ρk+1
mkδmk+1

m2
k+1

×
(

∆Kk/kVT
k+1 + Vk+1∆KT

k/k

)
+
[
ρk+1

δmk+1
mk+1

]2
Vk+1VT

k+1

(33)

As the priori error ∆Kk/k only contains the observations from time t0 to tk, ∆Kk/k and Vk+1 are
uncorrelated. Thus:

E
[
∆Kk/kVT

k+1

]
= E

[
Vk+1∆KT

k/k

]
= 04 (34)

Taking the expectation of both sides of Equation (33), we obtained:

Pk+1/k+1 =

[
(1− ρk+1)

mk
mk+1

]2
E
[
∆Kk/k∆KT

k/k

]
+

[
ρk+1

δmk+1
mk+1

]2
E
[
VkVT

k

]
(35)

We used Pk/k and
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k+1 to denote, respectively, the first and the second terms of the right-hand
side of Equation (35).

Pk+1/k+1 =

[
(1− ρk+1)

mk
mk+1

]2
Pk/k +

[
ρk+1

δmk+1
mk+1

]2
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k+1 (36)

Equation (36) represents the uncertainty update in the K-matrix estimation process for any ρk+1,
when a new measurement is acquired.

4.4. Optimal Gain

We wanted the estimation uncertainty to decrease as much as possible when a new measurement
was acquired. Reference [21] proposed that the trace of the matrix P expresses the measurement
uncertainty in a way that is suitable. Here, a cost function is defined as:

Jk+1 , tr
(

E
[
∆Kk+1/k+1∆KT

k+1/k+1

])
= tr(Pk+1/k+1) (37)

Hence, the design problem of the filter gain ρk+1 comes down to solving the following
minimization problem with respect to ρk+1:
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min
ρk+1∈(0,1)

tr(Pk+1/k+1) (38)

By substituting Equation (36) into Equation (37), we obtained:

Jk+1(ρk+1) =

[
(1− ρk+1)

mk
mk+1

]2
tr(Pk/k) +

[
ρk+1

δmk+1
mk+1

]2
tr(
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The first-order necessary condition for an extremum of Jk+1 is:

dJk+1
dρk+1

= 2

[(
mk

mk+1

)2
tr(Pk/k) +

(
δmk+1
mk+1

)2
tr(
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k+1)

]
ρk+1 − 2

(
mk

mk+1

)2
tr(Pk/k) = 0 (40)

As a result, in order for ρ∗k+1 to yield a stationary point for Jk+1, the following condition
must apply:

ρ∗k+1 =
m2

ktr(Pk/k)

m2
ktr(Pk/k) + δm2

k+1tr(
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It can be shown that Equation (41) is the sufficient condition for the minimum value of the
cost function Jk+1. When the priori estimate’s uncertainty is above the measurement uncertainty,
the gain approaches 1 and assigns a high weight to the new update-stage measurement described in
Equation (26). On the other hand, when the measurement uncertainty is higher than the priori-estimate
uncertainty, the gain approaches 0, and the filter assigns a low weight to the new measurement.

The OPREQ algorithm presented in this section is summarized in Table 1:

Table 1. Attitude determination based on the OPREQ algorithm.

Initialization: Set K0/0 = ffiK0, P0/0 =
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0, ai = 1, æ∗0 = 1, and m0 = ffim0 = 1.

Step 1: Set k = k + 1;

Step 2: Compute the matrix Kk/k according to Equation (12), compute the matrix
δKk+1 according to Equation (15);

Step 3: Compute the matrix
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k+1 according to Equations (24) and (25);

Step 4: Update the gain ρ∗k+1 by equation (41);

Step 5: Compute the factor mk+1 according to Equation (27);

Step 6: Update the matrix Kk+1/k+1 according to Equation (26);

Step 7: Compute the attitude quaternion qk+1 at the current time;

Step 8: Compute the matrix Pk+1/k+1 according to Equation (36);

Step 9: Go to Step 1 until the end.

5. Experimental Analysis

Based on the aforementioned analysis, we described the detailed experimental process as follows.
First, the constant DCM matrix Cb0

e0 for the coarse alignment of the inertial frame can be selected as the
sought attitude matrix A. The vectors Vb0(tk) and Ve0(tk), computed at every update period, are used
to construct the measurement vector bk and reference vector rk, respectively. Since the measurement
vector bk and reference vector rk obtained at any given time always constitute a single observation,
the parameter nk and the corresponding weight ak are both equal to 1. Following this, the optimal
quaternion q corresponding to the DCM matrix Cb0

e0 is calculated via the OPREQ algorithm. Figure 2
summarizes the alignment procedure of the proposed algorithm.
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Figure 2. The alignment procedure of the proposed OPREQ algorithm. 
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modeled as a zero-mean Gaussian white-noise with a standard deviation of 0.1° h⁄ . The sample 
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5.1. Simulation Test for Attitude Determination

In this subsection, we conducted a simulation test for attitude determination on measurement
noise in order to verify the effectiveness of the OPREQ algorithm. We assumed that the body frame
was static relative to the inertial reference system. The reference vectors we acquired were error-free,
while the noise contained in the measurement vectors was modeled as a zero-mean white-noise with
an angular standard deviation of 0.1 degrees. Since the body frame was fixed with respect to the
reference frame, the gyro output used to measure the angular velocity between the body and reference
frames only included the bias. The noise contained in the gyroscope was modeled as a zero-mean
Gaussian white-noise with a standard deviation of 0.1

◦
/h. The sample rates of the vector observation

and gyroscope were both 100 Hz, and different single-vector observations were obtained at each
sampling time. The whole simulation test lasted for 100 s. The results are shown in Figures 3 and 4.
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Figure 3. The simulation results of attitude determination based on the OPREQ algorithm. (a) the
curve of the norm of δφ; (b) the curve of the gain ρ∗.

Figure 3a shows the curve of the attitude error δφ′s norm, calculated by the optimal REQUEST
algorithm. The figure shows that the norm is approximately steady at 0.003 degrees. Figure 3b
represents the curve of the optimal gain ρ∗ during the whole simulation process. The optimal gain
drops gradually from the initial value 1 to 0.001. Figure 3b shows that at the beginning of the estimation
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process, the optimal REQUEST algorithm puts more weight on the incoming observation. As the
number of managed observations increases, the algorithm puts less weight on the new observation.
Through the OPREQ algorithm, the estimated attitude approaches the real attitude successfully.
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Figure 4. A comparison of the OPREQ and REQUEST algorithms.

Figure 4 compares the attitude error between the OPREQ algorithm and several different cases
of the REQUEST algorithm. We chose three kinds of constant values for gain: 0.001, 0.01, and 0.1.
These are typical values within the range of the optimal gain ρ∗ as shown in Figure 3b. Figure 4 clearly
shows that the red line representing the OPREQ algorithm has the fastest convergence speed and the
highest accuracy. Out of the three kinds of REQUEST algorithms, the black line representing ρ = 0.1
converges fastest because of the measurements’ relatively large weight. Nevertheless, its error still
has a relatively high steady state (0.025

◦
) and shows random variations. For ρ = 0.1, represented by

the blue line, the algorithm converges smoothly and steadily reaches a value of 0.003
◦
. Meanwhile,

a very low gain puts very little weight on the measurements so that the algorithm has a very slow
convergence velocity. Therefore, the OPREQ algorithm can quickly and smoothly achieve the error
convergence because the algorithm’s gain changes adaptively.

5.2. Simulation Test for the Coarse Alignment

In order to verify the effectiveness of the proposed algorithm for the coarse alignment on the
swing base, we used the sinusoidal motion model in order to simulate the IMU swing motion in a ship.
The swing model was set as A sin(2π f t + ϕ) + θ, where the parameters A and f are the amplitude
and frequency of the swing motion, and the quantities ϕ and θ represent, respectively, the initial phase
and swaying center. The parameters of this swing model are listed in Table 2.

Table 2. The parameters of the swing model.

Items Pitch (θ) Roll (γ) Yaw (ψ)

Amplitude (◦) 8 10 6
Frequency (Hz) 0.15 0.125 0.2
Initial phase (◦) 0 0 0

Swaying center (◦) 0 0 0

In a practical inertial navigation system, several errors occur in the output of gyroscopes and
accelerometers. We assumed that inertial-sensor outputs contain both constant and random errors.
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In the simulation test, the error parameters of the gyroscopes and accelerometers were set as shown
in Table 3. As the carrier does not move in the swing motion, the position of the carrier was fixed
in the simulation test. The geographic latitude and longitude of the carrier were set to L = 32

◦
(N)

and λ = 118
◦
(E), respectively. The whole coarse alignment of this test lasted for 200 s. The curve of

the optimal gain ρ∗ is displayed in Figure 5. Figures 6 and 7 show the attitude-error curves of the
simulation test. The statistics of each algorithm’s attitude errors are shown in Tables 4 and 5.
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Table 3. The inertial measurement unit (IMU) parameters.

Parameters x-Axis y-Axis z-Axis

Gyroscope
Constant bias (◦/h) 0.01 0.01 0.01
Random bias (◦/h) 0.01 0.01 0.01

Update frequency (Hz) 200 200 200

Accelerometer
Constant bias (µg) 50 50 50
Random bias (µg) 50 50 50

Update frequency (Hz) 200 200 200
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Table 4. The error statistics of the OPREQ and REQUEST algorithms.

Items ρ = 0.1 ρ = 0.01 ρ = 0.001 Optimal ρ

Pitch (◦)
1–100 s

Mean 2.8338 × 10−3 2.8297 × 10−3 2.7804 × 10−3 2.8185 × 10−3

STD 2.8364 × 10−4 3.1746 × 10−4 2.4115 × 10−4 2.1242 × 10−4

101–200 s
Mean 2.8293 × 10−3 2.8277 × 10−3 2.8275 × 10−3 2.8514 × 10−3

STD 2.9023 × 10−4 3.0733 × 10−4 2.1463 × 10−4 2.0566 × 10−4

Roll (◦)
1–100 s

Mean −2.8081 × 10−3 −2.7974 × 10−3 −2.7896 × 10−3 −2.8051 × 10−3

STD 2.3238 × 10−4 2.3528 × 10−4 2.3058 × 10−4 2.4626 × 10−4

101–200 s
Mean −2.7770 × 10−3 −2.7665 × 10−3 −2.7594 × 10−3 −2.7169 × 10−3

STD 2.2319 × 10−4 2.2336 × 10−4 2.2184 × 10−4 2.2437 × 10−4

Yaw (◦)
1–100 s

Mean 0.1052 0.2550 0.4849 0.0681
STD 2.0690 2.7473 2.9716 1.4314

101–200 s
Mean 0.0348 0.0350 0.0345 0.0303
STD 0.0822 0.0645 8.7310 × 10−3 1.1250 × 10−3

Table 5. Error statistics of the OPREQ and OBA algorithms.

Items OBA OPREQ

Pitch (◦)
1–100 s

Mean 2.8284 × 10−3 2.8185 × 10−3

STD 2.1098 × 10−4 2.1242 × 10−4

101–200 s
Mean 2.8385 × 10−3 2.8514 × 10−3

STD 2.0841 × 10−4 2.0566 × 10−4

Roll (◦)
1–100 s

Mean −2.7945 × 10−3 −2.8051 × 10−3

STD 2.3130 × 10−4 2.4626 × 10−4

101–200 s
Mean −2.7622 × 10−3 −2.7169 × 10−3

STD 2.2221 × 10−4 2.2437 × 10−4

Yaw (◦)
1–100 s

Mean 0.0645 0.0681
STD 1.5307 1.4314

101–200 s
Mean 0.0320 0.0303
STD 4.0898 × 10−3 1.1250 × 10−3

Figure 5 shows the curve of the optimal gain ρ∗ during the whole coarse-alignment test with
the OPREQ algorithm. The optimal gain decreases gradually from the initial value 1 to 0.001 in 200 s.
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In this coarse-alignment simulation test, we chose, for comparison, three constant values for the gain
of the REQUEST algorithm: 0.1, 0.01, and 0.001.

Figure 6 contrasts the attitude errors of the OPREQ algorithm and several REQUEST algorithms.
The three subgraphs in Figure 6 represent the error of the pitch angle, the error of the roll angle, and
the error of the heading angle. Figure 6 clearly shows that the attitude errors of the horizontal angle
are very similar for several methods, approaching the accuracy limit. Several methods’ differences
are mainly reflected in the heading-angle error. The heading-angle error in Figure 6 shows that the
blue curve representing ρ = 0.001 converges slowly at the beginning of the simulation but that the
error curve is relatively smooth. While the convergence speed of the black curve (ρ = 0.1) is faster, the
curve’s amplitude is larger. The red curve is of the OPREQ algorithm. The value of the gain in the
OPREQ algorithm changes adaptively; this method not only exhibits the fastest convergence speed
in the initial stage but also reaches, with stability, the highest accuracy in the final phase. In order to
clearly compare the simulation results of several algorithms, we calculated the mean and variance of
several attitude errors in the first 100 s and in the second 100 s. The statistic results of the simulation
test are shown in Table 4.

Table 4 clearly shows that the horizontal-angle errors of several algorithms all approach the
accuracy limit (0.0028

◦
and −0.0028

◦
), while the mean and standard deviation of the heading-angle

errors among these methods are markedly different. The mean of the heading-angle error in the
first 100 s is (optimal ρ) < (ρ = 0.1) < (ρ = 0.01) < (ρ = 0.001), while the standard deviation of
the heading-angle error in the last 100 s is (optimal ρ) < (ρ = 0.001) < (ρ = 0.01) < (ρ = 0.1).
Among the three REQUEST algorithms, the mean of the heading-angle error for ρ = 0.1 is the smallest.
That is because the filter puts a relatively large amount of weight on the new measurement, so that
this method converges fast at the beginning of the coarse alignment. The standard deviation of the
heading-angle error for ρ = 0.001 is the most optimal because a very low weight is given to the new
measurement. The OPREQ algorithm combines the advantages of several REQUEST methods, so that
the mean and the variance of the heading-angle error are inferior to those of the REQUEST algorithm
for the whole alignment process.

In this simulation test, we compared the OPREQ algorithm with the OBA algorithm in order to
verify the effectiveness of the former method in the coarse alignment. The heading-angle error in
Figure 7 shows that the convergence speed of the OPREQ algorithm is faster than that of the OBA
algorithm. Additionally, the heading-angle error of the OBA algorithm exhibits a relatively large
amplitude. In other words, the result of the OPREQ algorithm is more stable than that of the OBA
algorithm. This therefore confirms the advantages of the OPREQ algorithm for both convergence
speed and alignment stability. Table 5 shows the error statistics of the two algorithms.

As Table 5 clearly shows, the horizontal-angle errors of the two algorithms are relatively similar;
the emphasis should be placed on comparing the heading-angle errors. The standard deviation of
the OPREQ algorithm’s heading-angle error is inferior to that of the OBA algorithm for the whole
alignment process, which proves the OPREQ algorithm’s stability. Additionally, the alignment accuracy
of the OPREQ algorithm is higher than that of the OBA algorithm, because the former has a smaller
heading-angle error between 101 and 200 s.

5.3. Turntable Test

This subsection delineates how we used the turntable test on the swing base in order to verify how
feasible and reliable the OPREQ algorithm is in practical environments. We installed the equipment in
the turntable as shown in Figure 8. The three-axis turntable can achieve an angle precision of ±0.0001

◦
,

and the accuracy of the angular velocity is ±0.0005
◦
/s. In this test, we used the turntable output’s

angle data as the attitude reference because of the turntable’s high angle accuracy. We regarded the
outputs of the inner, intermediate, and outer frames as the vehicle’s reference angles in pitch, roll, and
yaw, respectively. The IMU used in the turntable test is an Optical fiber SINS, named FOSN, produced
by Chinese CASIC hospitals 33. The IMU was installed in the center of the turntable. As Figure 8
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shows, the IMU was mounted on a plate in the turntable’s inner frame. The n-frame of the turntable
was fixed, and the b-frame of the IMU changed with the rotation of the turntable. We calculated and
compensated both the installing and system errors prior to the turntable test. The IMU we used in this
test contained three mutually-orthogonal fiber-optic gyroscopes and three mutually-orthogonal quartz
accelerometers. The inertial sensors’ parameters are listed in Table 6.
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Table 6. The parameters of the inertial sensors.

Parameters Gyroscope Accelerometer

Measurement range −300 ∼ +300◦/s −20 ∼ +20 g
Repetitiveness-of-scale factor ≤ 50 ppm (1σ) < 3.5× 10−5 (1σ)

Constant bias < 0.02◦/h(1σ) < 5× 10−3 g (1σ)
Random bias < 0.005◦/

√
h < 5× 10−3 g (1σ)

Figure 9 shows the structure of the turntable test. On the one hand, the IMU outputs are
sent to the navigation computer via the serial port at a frequency of 200 Hz. On the other hand,
the time-synchronization signal sent by the IMU causes the turntable to transmit the reference attitude
to the navigation computer via a level conversion. The navigation computer saves the outputs of both
the IMU and the turntable simultaneously and utilizes the original data to obtain the coarse alignment
according to the proposed algorithm.
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The IMU motion parameters that we set for the turntable test are shown in Table 7. The geographic
latitude and longitude of the turntable were set to L = 32.057

◦
(N) and λ = 118.786

◦
(E), respectively.

The whole coarse alignment of this turntable test lasted for 300 s. The results of the turntable test are
shown in Figures 10 and 11. Figure 10 compares the alignment errors of several REQUEST methods
with the OPREQ algorithms, including the pitch angle, roll angle, and yaw angle. Meanwhile, the mean
and standard deviations of the attitude errors in the different alignment stages were calculated as
shown in Table 8. Additionally, Figure 11 shows a comparison of the attitude-error curves of the
OBA and OPREQ algorithms, and Table 9 lists the statistical data of the attitude errors for those
two algorithms.

Table 7. The parameters of the swing model in the turntable test.

Items Pitch (θ) Roll (γ) Yaw (ψ)

Amplitude (◦) 3 3 2
Frequency (Hz) 0.15 0.2 0.125
Initial phase (◦) 0 0 0

Swaying center (◦) 2 −2 135Sensors 2018, 18, 239  15 of 17 
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Figure 10. Alignment-error curves of the REQUEST and OPREQ algorithms.
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Figure 10 shows that the OPREQ algorithm’s convergence speed is faster than several REQUEST
algorithms and that its alignment accuracy is the most optimal. In addition, the error statistics in
Table 8, especially those in the later stage of the alignment process, show that the mean and standard
deviations of the attitude errors for the OPREQ algorithm are inferior to those of any other algorithms.

Table 8. The error statistics of the REQUEST and OPREQ algorithms.

Items ρ = 0.1 ρ = 0.01 ρ = 0.001 Optimal ρ

Pitch (◦)
101–200 s

Mean −0.0162 −0.0163 −0.0176 −0.0167
STD 6.8578 × 10−3 4.6358 × 10−3 4.6175 × 10−3 4.6189 × 10−3

201–300 s
Mean −0.0160 −0.0161 −0.0172 −0.0166
STD 7.0828 × 10−3 4.1655 × 10−3 4.1284 × 10−3 4.1243 × 10−3

Roll (◦)
101–200 s

Mean −2.3349 × 10−3 −2.3849 × 10−3 −4.1816 × 10−3 −3.0617 × 10−3

STD 8.9051 × 10−3 6.1719 × 10−3 6.1717 × 10−3 6.1656 × 10−3

201–300 s
Mean −2.4220 × 10−3 −2.5351 × 10−3 −3.9452 × 10−3 −3.3058 × 10−3

STD 8.5237 × 10−3 5.3127 × 10−3 5.3100 × 10−3 5.3035 × 10−3

Yaw (◦)
101–200 s

Mean 0.0233 0.0141 −0.3962 −0.1304
STD 1.3732 0.0399 0.1262 0.0551

201–300 s
Mean 0.0903 0.0724 −0.1262 −0.0218
STD 0.8655 0.0219 0.0471 0.0183

Figure 11 shows that the OPREQ algorithm’s convergence velocity is faster than that of the OBA
algorithm and that its alignment accuracy is also higher. The error statistics shown in Table 9 further
confirm the validity of the OPREQ algorithm. The result of the turntable test shows that the OPREQ
algorithm performs well in a practical system.

Table 9. The error statistics of the OBA and OPREQ algorithms.

Items OBA OPREQ

Pitch (◦)
101–200 s

Mean −0.0164 −0.0167
STD 4.6734 × 10−3 4.6189 × 10−3

201–300 s
Mean −0.0163 −0.0166
STD 4.1922 × 10−3 4.1243 × 10−3

Roll (◦)
101–200 s

Mean −2.4783 × 10−3 −3.0617 × 10−3

STD 6.2884 × 10−3 6.1656 × 10−3

201–300 s
Mean −2.6563 × 10−3 −3.3058 × 10−3

STD 5.3849 × 10−3 5.3035 × 10−3

Yaw (◦)
101–200 s

Mean −0.0200 −0.1304
STD 0.0699 0.0551

201–300 s
Mean 0.0467 −0.0219
STD 0.0263 0.0183

6. Conclusions

In this paper, we proposed, based on the OPREQ algorithm, a coarse-alignment method for the
inertial frame. We began by introducing the principle of the coarse alignment of the inertial frame.
Then, we deduced the OPREQ algorithm for the attitude determination, which can adaptively change
the gain in order to filter the observation noise. Given that it was possible to sum up the coarse
alignment of the inertial frame as the solution of a constant-attitude matrix, we were able to utilize the
OPREQ algorithm to solve the coarse alignment on the swing base. Finally, we carried out simulation
and physical experiments in order to verify how the proposed algorithms performed. The results of
the corresponding tests showed that the convergence velocity and alignment accuracy of the proposed
algorithm are better than those of the OBA and REQUEST algorithms. The method presented in this
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paper has a particularly high application value for the coarse alignment on the swing base. In a future
study, we will aim to apply this method to the coarse alignment on the moving base.
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