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Abstract: This work reports the applicability of a voltammetric sensor array able to quantify the
content of 2,4-dinitrophenol, 4-nitrophenol, and picric acid in artificial samples using the electronic
tongue (ET) principles. The ET is based on cyclic voltammetry signals, obtained from an array of
metal disk electrodes and a graphite epoxy composite electrode, compressed using discrete wavelet
transform with chemometric tools such as artificial neural networks (ANNs). ANNs were employed
to build the quantitative prediction model. In this manner, a set of standards based on a full factorial
design, ranging from 0 to 300 mg·L−1, was prepared to build the model; afterward, the model was
validated with a completely independent set of standards. The model successfully predicted the
concentration of the three considered phenols with a normalized root mean square error of 0.030 and
0.076 for the training and test subsets, respectively, and r ≥ 0.948.
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1. Introduction

The analysis of pollutants in wastewater, marine environments, and freshwater aquifers is of great
importance to assure that pollutant levels stay within acceptable values. Among the most dangerous
pollutants are nitrophenol compounds; these compounds are toxic inhibitors and of a persistent nature.
The origin of nitrophenol compounds in the environment is anthropogenic; they originate in the
degradation of dyes, pharmaceuticals, and pesticides. Among them, 4-nitrophenol is an especially
toxic degradation product of parathion (O,O-diethyl O-(4-nitrophenyl)) phosphorothioate, a pesticide
of extreme toxicity considered as hazardous waste and a high-priority toxic pollutant by the US
Environmental Protection Agency and the European Chemical Agency [1,2].

Nitrophenols have been found in industrial wastewaters and in freshwater reservoirs and are
present in the majority of marine environments. Traditional wastewaters and water purification plants
have difficulty eliminating these compounds, as they require specific treatments with long incubation
periods due to their high stability and solubility in water [3]. Hence, the development of sensors able
to quantify the nitrophenol content in freshwater, wastewater, or marine environments is important.

Electrochemical sensors provide an excellent tool for performing on-site analysis at a reasonably
cheap price with fast and robust results. Unfortunately, there are factors that hinder the applicability
of such sensors in real samples, e.g., matrix effects, interferents, and electrode fouling. Recent reported
works have approached the electrochemical detection of different nitrophenol compounds relying on
the surface modification of electrodes subsequently used in voltammetry; poly(p-aminobenzene
sulfonic acid) films [4], chitosan–ZnO nano-needles [5], and graphene oxide particles modified
with chitosan and cyclodextrine [6], among others [7], have been used for this purpose. However,
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the reported works only focus on the detection of 4-nitrophenol or on the quantification of nitrophenol
isomer mixtures. The work presented here will attempt to simultaneously quantify species having
multiple and different nitro-groups such as picric acid, 2,4-dinitrophenol, and 4-nitrophenol (Figure 1).
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plus chemometric tools, that forms the basis for ETs [14] is a simple way to tackle qualitative 
identification problems and quantitative determinations. Due to potential parallelisms with the 
human sense of taste [15], ETs have been extensively employed in the food and beverage field, with 
specific applications in wine analysis, such as the determination of its global characteristics, the 
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of three compounds with overlapped measurements. As shown in Figure 2, the use of cyclic 
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Figure 1. Chemical structures of picric acid, 2,4-dinitrophenol, and 4-nitrophenol.

In this context, the approach proposed is the use of an electronic tongue (ET) system [8]. ETs were
initially postulated in the early 1990s to overcome limitations of single sensor methodologies and to
make extensive use of sensor arrays and chemometric tools [9]. Since then, ETs have been used to
resolve individual pollutants present in complex samples [10,11] and to correct interference and/or
matrix effects in environmental determinations [12].

However, the use of sensor arrays, especially when sensors are voltammetric, generates highly
complex data that cannot be treated by classical means; such data require previous pre-processing in
order to extract meaningful information and allow proper modeling. The more common chemometric
tools employed to process the chemical data are principal component analysis (PCA), partial least
squares (PLS), and artificial neural networks (ANNs) [13]. The resulting approach, a sensor array plus
chemometric tools, that forms the basis for ETs [14] is a simple way to tackle qualitative identification
problems and quantitative determinations. Due to potential parallelisms with the human sense of
taste [15], ETs have been extensively employed in the food and beverage field, with specific applications
in wine analysis, such as the determination of its global characteristics, the prediction of the score given
by an expert sensory panel, and the detection of adulterations [16–19]. Other application examples
include wastewater monitoring, explosive detection, and discrimination and quantification of phenol
isomers [20–22]. Using this methodology, it is possible to achieve the simultaneous quantification of
different species in a mixture while diminishing effects of potential interfering agents through the use
of chemometric data analysis techniques [23,24].

The proposed work performs a combined approach using electrochemical signals provided by a
sensor array and chemometric data treatment in order to perform the simultaneous determination of
three compounds with overlapped measurements. As shown in Figure 2, the use of cyclic voltammetry
responses obtained from an array of epoxy graphite electrode plus metal electrodes is the sensor
departure point. Discrete wavelet transform [25] was used to compress the data and to extract the
chemically relevant information from original voltammograms, and ANNs were finally employed
to build a response model to simultaneously predict the concentrations of picric acid, 4-nitrophenol,
and 2,4-dinitrophenol content in aqueous solution mixtures, being the three compounds analytes of
environmental concern.
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The reagents used in this work were analytical reagent grade and all solutions were prepared 
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nitrophenol were supplied by Sigma-Aldrich (St. Louis, MO, USA). KCl was supplied by Merck 
KGaA (Darmstadt, Germany). 
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The voltammetric ET was formed by an array of 4 sensors, plus a combined reference Ag/AgCl 
and Pt counter electrode (Ingold, PT4805-S7/120). The ET approach departs from the signals from an 
array of electrodes; in this work, we intended to obtain an easy deployable sensor array for on-site 
situations. Thus, a quatrielectrode with external counter and reference electrodes was proposed. One-
millimeter-diameter discs of platinum, silver, gold, and epoxy-graphite were used as working 
electrodes. The metal electrodes were fabricated from its metal wires, and the epoxy-graphite 
electrode was prepared from the known epoxy-graphite composite electrode [26] by mixing epoxy 
resin and carbon; afterwards, the electrodes were encased in inert epoxy resin (Epotek H77, Epoxy 
Technologies) using a PVC tube with a 6 mm inner diameter as the array body [27]. 

Electrochemical measurements were performed at room temperature (25 °C), using a 6-channel 
AUTOLAB PGSTAT20 (Ecochemie, The Netherlands) controlled through its GPES Multichannel 4.7 
software package. A complete cyclic voltammogram was recorded for each sample and for each 
electrode by cycling the potential between −1.0 V and +1.0 V vs. Ag/AgCl with a step potential of  
9 mV and a scan rate of 100 mV·s−1. 

In order to get stable voltammetric responses and ensure reproducible signals from the array 
during the study, the electrodes were cycled in a phosphate buffer solution on the beginning of each 
sample measurement until a stable response was obtained; an electrochemical cleaning step was 
performed between samples at +1.2 V for 40 s in a cell containing 20 mL of 50 mM saline solution  
(0.1 M KCl) at pH 10 [28]. Figure 3 schematizes the distribution of the training and test samples in the 
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2. Experimental

2.1. Reagents

The reagents used in this work were analytical reagent grade and all solutions were
prepared using deionized water from a Milli-Q purification system (Millipore, Billerica, MA, USA).
Potassium dihydrogenphosphate, potassium monohydrogenphosphate, picric acid, 2,4-dinitrophenol,
and 4-nitrophenol were supplied by Sigma-Aldrich (St. Louis, MO, USA). KCl was supplied by Merck
KGaA (Darmstadt, Germany).

2.2. Electronic Tongue

The voltammetric ET was formed by an array of 4 sensors, plus a combined reference Ag/AgCl
and Pt counter electrode (Ingold, PT4805-S7/120). The ET approach departs from the signals from an
array of electrodes; in this work, we intended to obtain an easy deployable sensor array for on-site
situations. Thus, a quatrielectrode with external counter and reference electrodes was proposed.
One-millimeter-diameter discs of platinum, silver, gold, and epoxy-graphite were used as working
electrodes. The metal electrodes were fabricated from its metal wires, and the epoxy-graphite electrode
was prepared from the known epoxy-graphite composite electrode [26] by mixing epoxy resin and
carbon; afterwards, the electrodes were encased in inert epoxy resin (Epotek H77, Epoxy Technologies)
using a PVC tube with a 6 mm inner diameter as the array body [27].

Electrochemical measurements were performed at room temperature (25 ◦C), using a 6-channel
AUTOLAB PGSTAT20 (Ecochemie, the Netherlands) controlled through its GPES Multichannel
4.7 software package. A complete cyclic voltammogram was recorded for each sample and for
each electrode by cycling the potential between −1.0 V and +1.0 V vs. Ag/AgCl with a step potential
of 9 mV and a scan rate of 100 mV·s−1.

In order to get stable voltammetric responses and ensure reproducible signals from the array
during the study, the electrodes were cycled in a phosphate buffer solution on the beginning of each
sample measurement until a stable response was obtained; an electrochemical cleaning step was
performed between samples at +1.2 V for 40 s in a cell containing 20 mL of 50 mM saline solution
(0.1 M KCl) at pH 10 [28]. Figure 3 schematizes the distribution of the training and test samples in the
three analytes considered.
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training time, avoids redundancy in the input data, and allows for a model with better generalization 
ability [13]. 

The compression of the voltammograms was achieved by means of discrete wavelet transform 
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2.3. Sample Preparation

The first step in the construction of the artificial neural network is the response model definition
of the training and test subsets. In this case, the chosen experimental design for the train subset was a
complete 33 factorial design (27 samples) [29]; meanwhile, the validation of the constructed model was
done with an external test set (12 samples), these were distributed randomly within the experimental
domain (0 to 300 mg·mL−1 for each nitrophenol).

Samples were prepared in buffer (50 mM phosphate buffer solution at pH 6.5 and 50 mM KCl).
Fresh stock solutions of nitrophenols were prepared the same day of the measurements.

2.4. Data Processing

The main objective of the first processing step is to simplify the input signal (4 sensors × 1784
current values at different potentials) without losing relevant chemical information; this step reduces
training time, avoids redundancy in the input data, and allows for a model with better generalization
ability [13].

The compression of the voltammograms was achieved by means of discrete wavelet transform [25]:
each voltammetric vector was compressed using Daubechies 3 mother wavelet and a 4th decomposition
level. In this manner, the 1784 currents per sample were compressed to 132 coefficients per sample,
achieving a 94.2% compression ratio. Figure 4 shows the reconstructed voltammetric signals for
different compression levels.

The statistical treatment and data analysis was performed using routines written by the authors
using MATLAB 2016b (MathWorks, Natick, MA, USA) employing its Neural Network and Statistical
Toolboxes add-ons; Sigmaplot (Systat Software Inc., San Jose, CA, USA) was used to graphically
represent and analyze the results.
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3. Results and Discussion

3.1. Voltammetric Array Response

Voltammograms for each of the electrodes towards individual compounds were firstly evaluated
to ensure that the generated signals are different enough and the obtained data is sufficiently rich to be
the starting point for a multivariate calibration model.

Therefore, following the conditions described in Section 2.2, individual stock solutions of
50 µg·mL−1 ppm of picric acid, 4-nitrophenol, and 2,4-dinitrophenol were analyzed (Figure 5).
As a general trend, and as already reported in the literature [30,31], two processes were observed:
the reduction of each nitrophenol group to its hydroxoamino form and the reversible redox oxidation
of the hydroxoamino group to the nitrosophenol. In addition, slightly different signals were obtained
for the different nitrophenol compounds, a necessary condition for an ET study.

Figure 5. Cont.
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Figure 5. Cyclic voltammograms of picric acid (green), 2,4-dinitrophenol (black), and 4-nitrophenol
(red), 50 µg·mL−1 individual solutions with (A) Ag electrode; (B) epoxy graphite electrode;
(C) gold electrode; and (D) platinum electrode.

Once it was confirmed that the different electrodes presented a differentiated electrochemical
behavior towards the different nitrophenols under study, allowing for the differentiation of the three
nitrophenols considered, the next step was the design of the proper ANN model architecture.

3.2. ANN Model Design

Once the data from the different subsets was collected, the voltammograms were compressed by
use of DWT (compression details already determined), and the reduced dataset was fed to the different
ANN models. For this, the next step was to choose the adequate ANN architecture; the habitual
protocol to decide the details of an ANN configuration is trial-and-error given the complexity of an
ANN and the number of parameters involved (learning strategy, learning parameters, number of
layers, number of neurons in the hidden layer, transfer functions used, etc.) [32].

As already mentioned, the training subset samples were used to build the ANN models, and the
performance of those models was estimated from the prediction of the analyte concentrations in the
test subset samples. As the test subset is an external set that does not intervene in the modeling
process, the goodness of fitting values for this subset is an unbiased parameter to evaluate the
modeling performance.

After the compression of the obtained responses, the corresponding ANN configuration details
were defined. First, it is needed to define which topology is necessary: the number of neurons in
the input layer was equal to the number of DWT coefficients and the number of output neurons
is determined by the number of compounds to be quantified. Hence, once the numbers of input
and output neurons are defined, the number of neurons in the hidden layer and the type of transfer
functions that will operate in the hidden and output layers need to be optimized. Normally, the use of
a single hidden layer is sufficient to model common situations in analytical chemistry. All of these
configuration parameters are optimized based on acquired experience working with ANNs and on a
trial and error procedure, where the configuration that leads to the best performance is the one that is
chosen [33].

The performance for each generated model was then evaluated with the external test subset by
using the predictive abilities of the built model to predict concentrations of the nitrophenols present in
the samples.

The main parameter used to evaluate the performance of the different models was the NRMSE
(normalized root mean square error). The NRMSE is calculated for each of the configurations
(a combination of hidden and output transfer functions and the number of neurons in the hidden layer)
according to Equation (1), where Xexpected is the theoretical concentration of the sample, Xpredicted is
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the predicted concentration, j is the number of analytes considered, N the number of samples, and cmax

is the maximum concentration.

NRMSE =

√
∑i(xexpected−xpredicted)

2

j·N−1

cmax
(1)

Thus, the best topology will be the one that gives the lowest NRMSE value. As can be observed in
Figure 6, by plotting the total NRMSE versus the number of neurons, for all combinations assayed,
this allows us to easily compare the performance of the models. Moreover, it clearly shows that
purelin–purelin combination is the one with the lowest NRMSE. The plot also allows us to select the
best number of neurons to use in the hidden layer, in this case architectures between 3 and 10 neurons
in its hidden layer, seem to procure equivalent results.

Figure 6. Normalized root mean square error (NRMSE) obtained for each transfer function combination
and neurons in the hidden layer.

However, the total NRMSE is not the only parameter evaluated. Comparison graphs of obtained
vs. expected concentrations for the three quantified nitrophenols were built in order to visualize the
predictive ability of the ANN model, separately for the training and the testing subsets, and its best
linear fitting line was calculated. Afterwards, the best configuration could be selected taking into
account the best results for NRMSE as well as the slope, intercept, and correlation coefficient values
(considering that these should provide values as close as possible to ideal values of 1.0, 0.0, and 1.0 in
that order).

After the evaluation of different topologies tested (90 different configurations in total), the finally
selected ANN architecture was formed by an input layer of 136 neurons (4 sensors × 33 DWT coeffs.),
a hidden layer with 7 neurons and purelin transfer function, and an output layer with 3 neurons
and purelin transfer function. With this configuration it is possible to simultaneously determine the
concentration of the ternary mixture of nitrophenols, picric acid, 2,4-nitrophenol, and 2-nitrophenol.
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As mentioned, comparison graphs of obtained vs. expected concentrations for the training and
testing subsets, separately for each nitrophenol considered, were built to evaluate the predictive
ability of the ANN model (see Figure 7). Both subsets provided a satisfactory linear trend, with fitted
comparison lines having its parameters very close to the theoretical ones: slope and intercept equal to
1.0 and 0.0, respectively. As normally observed in practice, the training subset had the lowest NRMSE
and better correlation coefficients (r ≥ 0.998), clearly improving the test subset (r ≥ 0.948); this was
an expected difference as the training subset was the one employed to construct and select different
model configurations, so the model was tailored to fit the training data, and the test subset was only
used to evaluate the performance in the predictive capabilities of the model as an external subset of
samples. The detailed results, described in Table 1, show satisfactory results for the test subset as the
global NRSME for the three nitrophenols, which is as low as 0.076.
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Table 1. Results of the fitted regression curves for obtained vs. expected values, for the training
and testing subsets of samples and the three considered nitrophenols (intervals calculated at the 95%
confidence level).

Set Analyte r Slope Intercept
(mg·L−1) NRMSE Total

NRMSE

Training Set
picric acid 0.998 0.959 ± 0.027 6.3 ± 5.2 0.032

0.0302,4-dinitrophenol 0.998 0.961 ± 0.027 5.8 ± 10.4 0.032
4-nitrophenol 0.998 0.952 ± 0.021 7.1 ± 4.0 0.029

Testing Set
picric acid 0.983 0.983 ± 0.161 4.6 ± 26.0 0.073

0.0762,4-dinitrophenol 0.948 1.012 ± 0.222 6.7 ± 30.2 0.087
4-nitrophenol 0.973 1.013 ± 0.160 4.4 ± 26.0 0.073

NRMSE: normalized root mean square error.

To verify the correctness of the approach, a detailed numeric comparison of obtained vs. expected
concentrations was performed, as summarized in Table 2. In there, the obtained values are listed
together with those deduced from a classical single current measuring approach, a situation that will
produce large errors if overlapping voltammetric signals occur, as it happens in this case. As can
be seen in Table 2, the performance of the ET system clearly outweighs the single sensor approach,
yielding values much closer to the theoretical ones, especially in the resolution of highly overlapped
signals such as picric acid.
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Table 2. Compound concentrations found using the graphite epoxy composite electrode (single sensor
approach) and the ET model for 5 water samples.

Sample
Expected Concentration

(µg·mL−1)
Single Sensor Concentration

(µg·mL−1)
ET Concentration

(µg·mL−1)

picric
acid

2,4-dinitro-
phenol

4-nitro-
phenol

picric
acid

2,4-dinitro-
phenol

4-nitro-
phenol

picric
acid

2,4-dinitro-
phenol

4-nitro-
phenol

1 102 186 107 275 151 110 109 210 81
2 11.1 244 141 392 222 26 12.9 219 139
3 265 9.9 131 208 67 8.1 245 11.7 163
4 204 138 187 362 196 73 187 132 227
5 81 157 42 270 148 49 84 205 40

4. Conclusions

The presented work has shown the combination of a voltammetric array of four sensors with
advanced chemometric processing, wavelet transform, and artificial neural networks to simultaneously
quantify the concentrations of picric acid, 4-nitrophenol, and 2,4-dinitrophenol in aqueous solutions
allowing for the resolution of complex mixtures with high overlapping peaks from different
compounds. This study case clearly illustrates one of the capabilities of ET systems—the possibility of
determining certain analyte counterbalancing any interfering species—but their response needed to
be modeled.

The ET strategy allowed for the resolution of overlapping peaks and therefore the quantification of
individual concentrations of nitrophenols; definitively, this consists in a very simple methodology that
translates the complexity from the reactivity component or sensor component to the data treatment area,
a field with increasing possibilities. This fact combined with the advantages of electrochemical sensors
for on-field analysis results in a promising tool that could substitute the classical time-consuming
methods, i.e., HPLC methodologies, and hopefully provide wastewater and water purification plants
with a quick monitoring tool for these hazardous chemicals.
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