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Abstract: Golay complementary waveforms can, in theory, yield radar returns of high range resolution
with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise
ratios can be achieved for static target detection, significant range sidelobes are generated by
target returns of nonzero Doppler causing unreliable detection. We consider signal processing
techniques using Golay complementary waveforms to improve radar detection performance in
scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on
an existing, so called, Binomial Design algorithm that alters the transmission order of Golay
complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced
illumination performance. The procedure applies one of three proposed waveform transmission
ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the
Binomial Design algorithm and one of the ordering algorithms. The computational complexity of
the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical
analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in
the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed.
Numerical simulations for the comparison of the performances of the Binomial Design algorithm
and the three ordering algorithms are presented for both fixed and randomized target locations.
The simulation results demonstrate that the proposed signal processing procedure has a better
detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of
multiple nonzero Doppler targets compared to existing methods.

Keywords: Golay complementary waveforms; Reed–Müller sequences; sidelobes suppression;
multiple nonzero Doppler targets; detection

1. Introduction

Advanced signal processing techniques have long been used for radar detection to improve
receiver signal-to-noise ratio (SNR) and target return range resolution. For example, by use of
matched filtering between the received signal and the transmitted waveform, the amplitude of output
will be accumulated at the target return delay bin [1], which is close to the ideal impulse response.
Waveforms that can generate impulse-like autocorrelation functions are of great interest in target
detection and localization. The linear frequency modulation (LFM)/chirp waveform is one of the most
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common of such waveforms in practice. Its simplicity of generation and high time-bandwidth product
make the LFM waveform an obvious choice [2]. Nevertheless, such LFM waveforms are well known
to conflate range and Doppler as indicated by their ambiguity function (AF), and their target detection
performance is limited by associated sidelobe issues. Researchers have addressed these problems
with LFM waveforms in the literature and some relatively recent representative works are briefly
described below. Santra et al. [3] use optimal matched illumination constant envelope waveforms
obtained via phase retrieval techniques to demonstrate superior resolution characteristics compared
with classical LFM waveforms employing optimal pulse compression. A tracking algorithm using a
particle filter that selects and configures LFM or a nonlinear frequency modulation waveform in the
transmitter is proposed by Sira et al. [4], for better detection of target and estimation of its current state.
Rasool et al. proposed a V-chirp waveform in [5], inspired by the echo-location method of bats, for a
significant enhancement of range and Doppler resolution, compared to LFM waveforms, with only
a slight loss of detection probability, and Zhu et al. [6] extends the waveform scheme to the double
V-chirp waveform, to suppress false targets and further enhance resolution in multiple target scenarios.
Other waveform design schemes in place of LFM waveforms, such as orthogonal frequency division
multiplexing (OFDM) and OFDM-chirp waveforms [7–10], or multiple-input multiple-output (MIMO)
radar design [11–14], and waveform libraries scheduling [15–17] can also be deployed to improve
detection and resolution performance of radar, but more complex waveform styles and hardware
structures are required for these approaches.

In addition to the approaches described above, phase coded waveforms described in [18]
are commonly used to achieve impulse-like autocorrelations. These use a biphase or polyphase
unimodular sequence to phase code a long transmission pulse, so that the autocorrelation function
of the coded waveform is controlled by the autocorrelation function of the unimodular sequence,
which provides tighter control of the autocorrelation (though possibly requiring more transmission
time) than conventional waveform schemes, and can be achieved easily in modern hardware systems.
Frank codes [19], Barker codes [20] and other kinds of polyphase sequences [21,22] have been widely
used in recent decades, though they are incapable of yielding an impulse aperiodic autocorrelation
through the transmission of a single phase coding sequence [23]. The idea of using complementary
sets of phase coding waveforms has been proposed many times. Predominantly Golay complementary
waveforms [24], or their variants, have been suggested. These special designed waveforms have the
property that the sum of their autocorrelation functions vanishes at all nonzero lags; thus, pairs of
Golay complementary waveforms achieve an impulse autocorrelation output without any sidelobes,
at least in theory. Numerous research publications have promoted this concept [23,25–30], but, as is
widely understood, standard Golay complementary waveforms suffer two disadvantages; firstly,
they have to be transmitted in pairs and those pairs have to completely separated on their return to
the receiver and, secondly, they are sensitive to the mismatch of Doppler. Significant range sidelobes
occur in nonzero Doppler lines in the AF.

To solve this problem, several schemes have been proposed by researchers. Calderbank et al. [31]
and Pezeshki et al. [23] observe that the transmission order of Golay complementary waveforms
significantly influences the range sidelobes level. They find that, by ordering the waveforms suitably,
the range sidelobes in the AF near zero-Doppler can be significanltly suppressed. Based on that
work, Dang et al. [32,33] proposed a Binomial Design (BD) algorithm that, in addition to re-ordering
the waveforms, applies weights to the matched filtering. This significantly expands the range
sidelobe blanking area around zero-Doppler in the AF and reduces target detection uncertainty.
In a parallel direction, Suvorova et al. [34,35] proposed an algorithm for determining the transmission
order of Golay complementary waveforms using Reed–Müller codes so that the range sidelobes
of AF in the region centered at a given (nonzero) target Doppler are minimized. On the other
hand, Levanon et al. [36] described the shortcoming of using Golay complementary waveforms and
suggested methods to mitigate some of them. They indicated that a poor performance can be observed
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in the AF if both the transmission order algorithm and receiving weighting approach are applied rather
than use only one of them.

While these methods provide significant improvements, further improvements are desirable
and possible. In Dang’s work, the improvement of SNR is only for targets with low Doppler. In the
presence of multiple targets with nonzero Doppler shifts, weak targets continue to be submerged
in the sidelobes from strong targets. In addition, the expansion of the range sidelobe blanking area
by the Binomial Design algorithm is at the expense of reduced Doppler resolution. In a similar way,
the results of Suvorova et al., while addressing this poor detection issue for a specific nonzero Doppler
target, only apply to a single Doppler value.

We propose a new signal processing procedure to enhance radar illumination performance of
multiple nonzero Doppler targets by applying a combination of the Reed–Müller code method of
Suvorova et al. and the Binomial Design algorithm of Dang et al. via a pointwise nonlinear procedure.
We assume that a radar tracking system is available to provide prior information of target locations
required in the proposed signal processing procedure. Numerical simulation results are presented to
demonstrate the effectiveness of the proposed procedure. The major contributions of this paper are
(1) to propose a novel signal processing procedure for the enhancement of detection and resolution
performance; (2) to provide three transmission order design algorithms for Golay complementary
waveforms under this procedure; and (3) to justify the effectiveness of the pointwise nonlinear
processor with respect to target detection in theoretical calculations and in Monte Carlo simulation.

The paper is organized as follows. In Section 2, we briefly introduce Golay complementary
waveforms and Reed–Müller codes as needed for this work. In Section 3, we first describe the
Binomial Design algorithm and present three ways to order the Golay complementary waveforms
using Reed–Müller sequences. A pointwise minimization procedure is then applied at the receiver
between one of three orderings of the waveforms and the Binomial Design algorithm to obtain the final
Delay–Doppler map. In Section 4, the computational complexities of all algorithms are analyzed and
the use of pointwise minimization is explained in terms of acceptable performance, in order to provide
a practical justification of the proposed algorithms. We also estimate regions in the Delay–Doppler
map in which there are significant range sidelobes, induced by the presence of targets, for each
of the three ordering algorithms, in an attempt to improve separation of nonzero Doppler targets.
Numerical simulations for both fixed and randomized target detection scenarios are presented in
Section 5, followed by the conclusions in Section 6.

2. Golay Complementary Waveforms in Reed–Müller Sequences

A pair of Golay complementary waveforms as considered in this work consists of two length L
unimodular binary sequences x(l) and y(l), also referred to as a Golay complementary pair (details on
the generation of Golay complementary pairs can be found in [24]). The chip interval of ±1 in a Golay
complementary pair is fixed here as Tc, so that the total time duration of each sequence in the pair
is LTc. The key defining feature of a Golay complementary pair is that, for k = −(L− 1), ..., (L− 1),
the autocorrelation satisfies

Cx(k) + Cy(k) = 2Lδ(k), (1)

where Cx(k) and Cy(k) are the autocorrelations of x(l) and y(l) at lag k, respectively, and δ(k) is the
Kronecker delta function. The width of the impulse interval of δ(k) is 2Tc, and this provides the
range resolution of Golay complementary waveforms after modulation on the carrier. Modulation
of a baseband pulse Ω(t) on each chip interval of the Golay complementary pair, the two sequences
become the following time domain waveforms:

x(t) = ∑L−1
l=0 x(l)Ω(t− lTc),

y(t) = ∑L−1
l=0 y(l)Ω(t− lTc),∫ Tc/2

−Tc/2 |Ω(t)|2dt = 1.

(2)
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Ideally, Ω(t) is a rectangular pulse, and this has been used in our simulations for simplicity, but, in
a real system, the rectangle pulse would typically be replaced by another pulse shape, such as a raised
cosine or Gaussian pulse to reduce the bandwidth requirement. A pulse train of Golay complementary
waveforms is specified by a sequence pair (P, Q), which determines the transmission order and the
weights on the received pulses; that is, the binary sequence P = {p(n)}N−1

n=0 determines whether x(t)
or y(t) is transmitted at pulse (n + 1), and the real sequence Q = {q(n)}N−1

n=0 provides the weights on
each pulse. The transmitted signal is then expressed as

zP(t) =
N−1

∑
n=0

p(n)x(t− nT) + (1− p(n))y(t− nT), (3)

where T is the pulse repetition interval (PRI), and N is the number of pulse. For example, the (n + 1)th
pulse in zP(t) is x(t), if p(n) = 1 and is y(t), if p(n) = 0. The alternating sequence P = {1, 0, 1, 0, ...}
is called the standard transmission order for Golay complementary waveforms. Bearing in mind the
weight sequence Q, the match filtering pulse train at the receiver is

zQ(t) =
N−1

∑
n=0

q(n)[p(n)x(t− nT) + (1− p(n))y(t− nT)]. (4)

Usually, Q is an all 1 sequence, but, in some cases (e.g., the Binomial Design algorithm described
in the next section), it may have values other than 1.

According to the definition in [1], the AF of a Golay complementary pair can be written as

χPQ(t, FD) =
∫ +∞

−∞
zP(s) exp(j2πFDs)z∗Q(t− s)ds, (5)

where the superscript “∗” denotes complex conjugation. Replacing the transmitted pulse train zP(t)
by the return from the target rP(t), gives χPQ(t, FD), which provides the delay and Doppler of targets
in a Delay–Doppler map [5,37].

First order Reed–Müller codes RM(1, N) have been used to code the transmission order of Golay
complementary waveforms. Suitable assignment of the transmission order using Reed–Müller codes
suppresses the range sidelobes of AF at a Doppler shift of interest [34]. These first order Reed–Müller
codes can be generated by a Walsh matrix of order 2M, denoted by W2M , where N = 2M(M, N ∈ N).
If the designed parameter of pulse number N < N0 < 2M+1, then we should use the first N pulses for
the following optimal transmission order selection criterion:

W2m+1 =

[
W2m W2m

W2m −W2m

]
, m = 0, 1, ..., M− 1, (6)

where W20 = 1.
After a pointwise operation (W2M + 1)/2 to the Walsh matrix, each row (or column, since the

Walsh matrix is symmetric) of the output matrix denotes a transmission order of the Golay
complementary waveforms, or, in other words, denotes a P sequence. The resulting binary Walsh
matrix provides a transmission order library and, for a fixed Doppler of interest in the AF, we can
choose the optimal row to determine transmission to achieve the lowest range sidelobes near that
Doppler bin [34]. Notice that, since both x(l) and y(l) contain the same energy, the transmission
energies of the pulse trains ordered by each row of the Walsh matrix are the same. The criterion for
optimal transmission order selection is described next.
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Let FD represent the target Doppler measured in Hz, and note that it can also be represented
in phase [1], that is θ1 = FD(2πT), where the unit is rad. If θ1 /∈ [0, 2π]rad, then θ1 mod ±2π until
θ1 ∈ [0, 2π]rad. Next, we construct a binary sequence [aM, aM−1, ..., a1], starting with a1:

ab =

{
1, if θb ∈ [0, π/2] ∪ [3π/2, 2π] rad,

0, otherwise.
(7)

From b = 2, we replace θb = 2θb−1 to calculate ab, b = 2, ..., M according to Equation (7). Note that
θb should be “modded” into [0, 2π] rad. Repeat the above process until θM is reached and then the row
index x is calculated:

x =
M

∑
b=1

2b−1ab. (8)

The optimal transmission order of the Golay complementary waveforms that minimizes range
sidelobes on the θ1-Doppler line is represented by the (x + 1)th row of the Walsh matrix. A schematic
is given in Figure 1 to illustrate the selected row for θ1.

Figure 1. The schematic figure of the selected row in Walsh matrix for a given Doppler value.

3. The Proposed Signal Processing Procedure

We now briefly describe the Binomial Design algorithm proposed in [32,33], in which a standard
Golay complementary waveform sequence is transmitted, but weights are assigned to the received
pulses. In parallel to this process, another independent Golay complementary waveform sequence is
transmitted according to the order determined by one of three proposed transmission order algorithms
described in the follow sub-sections. A pointwise nonlinear procedure is then applied to combine the
Delay–Doppler maps from the two processes to obtain the final Delay–Doppler map. A schematic of this
signal processing procedure is shown in Figure 2, where R is the number of generated Delay–Doppler
maps for each ordering algorithm. We will then discuss each algorithm in detail. This signal processing
procedure is expected to further reduce range sidelobes along given Doppler lines. Note that the
Dopplers of the targets are required in Algorithms 2 and 3, and it may be estimated, for example,
from the output of a Doppler (for instance, continuous wave) radar, or by a tracker prediction (such as
a Kalman filter) from past detections [38]. Sections 2.3.3 and 2.3.4 in [39] provide an example to
show a method in detail for the estimation of the time delay (for range sidelobe regions estimation in
Section IV) as well as the Doppler shifts of the targets under Golay complementary waveforms.

Figure 2. The schematic figure of the proposed signal processing procedure.
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3.1. Binomial Design Algorithm

In this algorithm, the P sequence represents the standard transmission order of
Golay complementary waveforms and the Q sequence satisfies {q(n)}N−1

n=0 = α{Cn
N−1}

N−1
n=0 ,

where α = N/ ∑N−1
n=0 Cn

N−1 is a normalizing factor. Figure 3 shows the flowchart of the Binomial Design
algorithm, where the returns of the transmitted Golay complementary waveforms are processed by a
matched filter where the filtering is a done by a copy of the transmitted pulse sequence weighted by
the Q sequence. Then, χBD(t, FD) represents the Delay–Doppler map obtained through the Binomial
Design algorithm. As to this algorithm, lower order terms in the Taylor Series of the χBD(t, FD)

(expanded according to the Doppler FD) at FD = 0 are killed, and this has the effect of reducing
sidelobes close to the zero-Doppler line. Increasing the number of terms in the Taylor Series that are
nulled by this process will also increases the width of the sidelobe blanking area in the AF. The use of
N pulses for this algorithm provides N − 2 zeros in the Taylor Series, which yields a sidelobe blanking
area (that is at less than −90 dB), approximately [−π, π] (radians), in the AF when N = 16 [32].
Note that larger N will result in a better match filtering performance, which increases the magnitude
difference between the mainlobe and sidelobes shown in the AF and thus expands the sidelobe
blanking area. However, as mentioned in Section 1, this algorithm gives inferior Doppler resolution.
In addition, it is clear that the Binomial Design algorithm transmits and receives the same waveform
energy as the standard Golay complementary waveforms. As indicated in [1], from Moyal’s identity,
the AF has an energy only dependent on the energy of the waveform, which means the algorithm
actually achieves a significant range sidelobe blanking area by pushing range sidelobes energy into
other (hopefully, uninteresting) areas in the Delay–Doppler map. Clearly, raising the magnitude of
range sidelobes in the area where target is presented may lead to target miss detection, so that, if
another weak target falls in the sidelobes of a strong target, a missed detection of the weak target may
occur. Figure 4 provides a deeper understanding to the difference between the Golay complementary
waveforms based on standard transmission order and Binomial Design algorithm (the parameters
setting of this figure are described in Section 5). The drawbacks of the Binomial Design algorithm can
be addressed by the signal processing procedure proposed in this work.

Figure 3. Signal processing structure of the Binomial Design algorithm.

3.2. Algorithm 1

Previous discussion describes how the approach of Suvorova et al. [34] actually uses a finite
library of transmission orders to cover all (quantized) Doppler values in the Delay–Doppler map.
The Golay complementary waveform ordering by each row of the Walsh matrix minimizes the range
sidelobes with respect to a particular Doppler bin. Increasing the number of pulses N lead to smaller
Doppler bins and reduced magnitude of range sidelobes. The best performance can be expected, then,
if we transmit the Golay complementary waveforms using every row of the Walsh matrix in parallel
and combine the processing results somehow; this is termed Algorithm 1. As we will discuss later,
one way to combine multiple processing results is to use a pointwise minimization. Nevertheless,
Algorithm 1 needs to transmit N series of Golay complementary waveforms pulse trains, and each
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pulse train contains N pulses with a different transmission order. It will output N Delay–Doppler
maps to the ensuing nonlinear processing. Let R in Figure 2 be equal to N, then Figure 2 represents
the processing structure of Algorithm 1, and we denote χ11(t, FD) ∼ χ1N(t, FD) as the Delay–Doppler
maps obtained through Algorithm 1.
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Figure 4. The AF of Golay complementary waveforms based on (a) standard transmission order;
(b) Binomial Design algorithm (the unit of colorbar is dB).

3.3. Algorithm 2

While Algorithm 1 suppresses the range sidelobes for a Delay–Doppler map by transmitting
Golay complementary waveforms in all orders given by rows of the Walsh matrix, it also yields the
longest transmission time and maximum computational complexity in the three ordering algorithms
(detailed discussion can be seen in Section 4). This complexity can be reduced by transmitting only the
rows which correspond to those Doppler shifts of the underlying targets, and this is called Algorithm 2.
Figure 2 represents the processing structure of Algorithm 2 when R = H, where H is the number of
targets with different Doppler, and we write χ21(t, FD) ∼ χ2H(t, FD) for the Delay–Doppler maps
obtained through Algorithm 2. If the number of targets with different Doppler values is not less than
the total number of rows of the Walsh matrix, i.e., H > N, Algorithm 2 is identical to Algorithm 1.

3.4. Algorithm 3

Algorithm 3 uses a weighted mean Doppler from the Doppler shifts of all targets presented in
the Delay–Doppler map to select the optimal row of the Walsh matrix for the transmission order of
Golay complementary waveforms. Obviously, this algorithm attempts to strike a balance between
computational complexity of the algorithm and range sidelobe suppression performance. The weighted
mean Doppler for all targets presented is calculated as

f̄d =


∑H

h=1 fdh
H , if all Ah are the same,

∑H
h=1 (1−Ah) fdh
∑H

h=1 (1−Ah)
, otherwise.

(9)

where Ah and fdh
are the normalized magnitude and the Doppler of the hth target, respectively,

and h = 1, 2, ..., H. The optimal transmission order in the library that achieves the best sidelobe
suppression performance is selected according to f̄d. Let R in Figure 2 be equal to 1, then Figure 2
represents processing structure of Algorithm 3, and we write χ3 f̄d

(t, FD) for the Delay–Doppler map
obtained using Algorithm 3. Since it involves a trade-off of sidelobe suppression performance and
computational complexity, Algorithm 3 is more computationally efficient than Algorithms 1 and 2 but
with a higher false-alarm rate compared with the other two algorithms.
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3.5. Pointwise Minimization

As mentioned earlier, the Binomial Design algorithm achieves significantly lower range sidelobes
for targets near zero-Doppler by considerably sacrificing Doppler resolution. On the other hand,
the three ordering algorithms achieve better Doppler resolution performance compared to the
Binomial Design algorithm, though they yield a smaller sidelobe blanking area. We propose, then,
to use a pointwise minimization procedure to combine the outputs from the two independent
processes, taking advantage of both the Binomial Design algorithm and one of the ordering algorithms.
The operation is mathematically expressed as follows:

χ1(t, FD) =min[χ11(t, FD), ..., χ1u(t, FD), ...,

χ1N(t, FD), χBD(t, FD)],
(10)

χ2(t, FD) =min[χ21(t, FD), ..., χ2h(t, FD), ...,

χ2H(t, FD), χBD(t, FD)],
(11)

χ3(t, FD) = min[χ3 f̄d
(t, FD), χBD(t, FD)], (12)

where χ1(t, FD), χ2(t, FD) and χ3(t, FD) are the final output Delay–Doppler map of Algorithms 1–3,
respectively. The proposed pointwise minimization can also be studied in Figure 2. Based on the
assumption that targets are presented at a constant delay and Doppler during radar illumination, the
location and magnitude of corresponding targets will be the same in all the Delay–Doppler maps of
each algorithm, while sidelobes are different in each map. After the pointwise minimization, the point
in the final Delay–Doppler map that represents the target retains a high magnitude while all other
points are significantly reduced. This results in the expansion of range sidelobe blanking area and the
preservation of Doppler resolution. In practical experiments, however, or even simulations, the location
of targets may be offset in each Delay–Doppler map because of micro-motion or the overlap influence
of range sidelobes and noise, which leads to the fluctuating of effective target magnitude. It is certain
that if the offset of target location is too large, the pointwise minimization may also blank the target.
In the next section, we will further discuss the effectiveness of the pointwise minimization, and provide
a quantitative analysis on the tolerable location offset region of the target in the Delay–Doppler map
that can continue to achieve an acceptable performance. In addition, the statistical simulation results
under the Swerling II target detection presented in Section 5 is also deemed an effective justification of
this nonlinear operation.

4. Analysis of the Proposed Signal Processing Procedure

Here, we analyze the performance of the proposed signal processing procedure for radar detection
using Golay complementary waveforms in the four algorithms above. Firstly, the computational
complexity of the Binomial Design algorithm and the proposed three ordering algorithms described in
the last section are examined; we then study the condition at which the pointwise minimization can
yield acceptable performance; thirdly, a method to estimate the areas in the Delay–Doppler map taken
by range sidelobes based on knowledge of presented target is described.

4.1. Computational Complexity Comparison

Derived from the definition in Equation (5), the AF under the Binomial Design algorithm is given
by Equation (13),
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χBD(t, FD) =
∫ +∞

−∞
zPBD(s) exp(j2πFDs)z∗QBD

(t− s)ds

=
L−1

∑
k=−L+1

N−1

∑
n=0

qBD(n) exp(j2πFDnT)

× [pBD(n)x(t− nT)x∗(t− nT)

+ (1− pBD(n))y(t− nT)y∗(t− nT)]

=
L−1

∑
k=−L+1

N−1

∑
n=0

qBD(n) exp(j2πFDnT)

× [pBD(n)Cx(k) + (1− pBD(n))Cy(k)]

×Ω(t− kTc − nT)Ω∗(t− kTc − nT)

=
1
2

L−1

∑
k=−L+1

[Cx(k) + Cy(k)]
N−1

∑
n=0

qBD(n)

× exp(j2πFDnT)CΩ(t− kTc − nT)

− 1
2

L−1

∑
k=−L+1

[Cx(k)− Cy(k)]
N−1

∑
n=0

(−1)pBD(n)

× qBD(n) exp(j2πFDnT)CΩ(t− kTc − nT),

(13)

where pBD(n) and qBD(n) represent the (n + 1)th values of the P and Q sequences for the Binomial
Design algorithm, CΩ(t) is the autocorrelation of Ω(t). As expressed in Equation (1), the first term in
the final line of calculation of χBD(t, FD) does not contain any range sidelobes and controls the peak in
the AF; in other words, it is the main contributing factor to the target information in the Delay–Doppler
map. The second term generates the range sidelobes in the AF, with energy controlled by the values of
pBD(n) and qBD(n).

The computational complexity of an algorithm is the number of elementary arithmetic operations
in the algorithm computation. The computational complexity of χBD(t, FD) can be divided into three
parts. The first is the calculation of Cx(k) and Cy(k), resulting in a computational complexity of 2L− 1
for each. The second part is the calculation of exp(j2πFDnT)CΩ(t− kTc− nT). With X and Y sampling
points along time the delay and Doppler axes respectively, the computational complexity is (2X− 1)Y.
The third part is the summation over N pulses, which yields a multiplier to the computational
complexity of N times. The total computational complexity for the Binomial Design algorithm is, then,
(4L− 2) + (2X− 1)YN.

Similarly, for Algorithm 1, we have

χ1u(t, FD) =
1
2

L−1

∑
k=−L+1

[Cx(k) + Cy(k)]
N−1

∑
n=0

q1u(n)

× exp (j2πFDnT)CΩ(t− kTc − nT)

− 1
2

L−1

∑
k=−L+1

[Cx(k)− Cy(k)]
N−1

∑
n=0

(−1)p1u (n)

× q1u(n) exp(j2πFDnT)CΩ(t− kTc − nT),

(14)

where {p1u(n)}N−1
n=0 and {q1u(n)}N−1

n=0 represent the P and Q sequences of χ1u(t, FD), the subscript “u”
signifying the uth Delay–Doppler map. In a similar manner, the expressions for Algorithms 2 and 3 are
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χ2h(t, FD) =
1
2

L−1

∑
k=−L+1

[Cx(k) + Cy(k)]
N−1

∑
n=0

q2h(n)

× exp(j2πFDnT)CΩ(t− kTc − nT)

− 1
2

L−1

∑
k=−L+1

[Cx(k)− Cy(k)]
N−1

∑
n=0

(−1)p2h
(n)

× q2h(n) exp(j2πFDnT)CΩ(t− kTc − nT)

(15)

and

χ3 f̄d
(t, FD) =

1
2

L−1

∑
k=−L+1

[Cx(k) + Cy(k)]
N−1

∑
n=0

q3 f̄d
(n)

× exp(j2πFDnT)CΩ(t− kTc − nT)

− 1
2

L−1

∑
k=−L+1

[Cx(k)− Cy(k)]
N−1

∑
n=0

(−1)
p3 f̄d

(n)

× q3 f̄d
(n) exp(j2πFDnT)CΩ(t− kTc − nT).

(16)

Note that the subscript “h” in Equation (15) indicates the hth Delay–Doppler map in Algorithm 2,
and “ f̄d” in Equation (16) denotes the Delay–Doppler map in Algorithm 3 based on the weighted mean
Doppler f̄d. Clearly, χ1u(t, FD), χ2h(t, FD) and χ3 f̄d

(t, FD) are of the same computational complexity
as χBD(t, FD).

Based on the signal processing procedures in Figure 2, the comparison of computational complexity
of the algorithms is presented in Table 1. For each of the three algorithms, XY is the computational
complexity of the pointwise minimization. Table 1 indicates that the total computational complexity
of Algorithms 1–3 are about (N + 1)×, (H + 1)× and 2× compared to that of the Binomial Design
algorithm, respectively.

Table 1. Comparison of the computational complexity.

Algorithm Total Computational Complexity

Binomial Design Algorithm (4L− 2) + (2X− 1)YN
Algorithm 1 (N + 1)[(4L− 2) + (2X− 1)YN] + XY
Algorithm 2 (H + 1)[(4L− 2) + (2X− 1)YN] + XY
Algorithm 3 2[(4L− 2) + (2X− 1)YN] + XY

4.2. Performance Analysis of the Pointwise Minimization

The pointwise minimization in the proposed signal processing procedure is an information
loss process. After the pointwise minimization, whether signals carrying target information remain
present in the Delay–Doppler map is of concern. As mentioned earlier, we assume that the underlying
targets remain in the scene at constant delay and Doppler during the entire radar illumination period.
This means that, if a target return is present in one of the Delay–Doppler maps, it will also appear in
all other Delay–Doppler maps. The following causes of uncertainty can cause errors in the precise
location and signal magnitude of the target:

1. target return fluctuations because of target micro-motion (as modelled by the Swerling II
target model);

2. the presence of range sidelobes, many of which have strong magnitude and may give rise to
false targets.

We wish to understand the conditions under which target detection from the Delay–Doppler
map can be guaranteed in the presence of these uncertainties. We focus, first, on the first problem,
i.e., target return fluctuations. The second problem is covered in the next sub-section. We define a
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statistically minimal region, called the “tolerable location offset region (TLOR)” denoted by O, so that
target returns under the Swerling II model will overlap across all Delay–Doppler maps sufficiently for
the pointwise minimization process to retain detection. A threshold can be found to achieve a very
high detection probability of a target if the target return falls into the TLOR.

As an example, we plot the AFs of the Binomial Design algorithm and the three ordering
algorithms and compare their delay and Doppler mainlobes in Figure 5, where parameters used
for the plots are given in Section 5. Recall that, in practice, this procedure works in the context of a
tracker, where prior information is available about the location of targets.

From Figure 5, the following observations can be made:

1. The three ordering algorithms have much lower range sidelobes and higher Doppler resolutions
than Binomial Design algorithm.

2. The results of Figure 5c,d are the same in the single target situation. Note that Algorithm 2
will perform better than Algorithm 3 in multiple Doppler targets case, at the cost of a higher
computational complexity.

To ensure that the target signal remains in the Delay–Doppler map after the pointwise
minimization, we consider the worst case that the magnitude of the target signal may be reduced,
but the magnitude of range sidelobes remains at the same level as before the pointwise minimization.
We should find a TLOR O centered at the ground truth location of target signal such that the following
inequality holds:

χ(t, FD)|(t,FD)∈O

max
(t,FD)∈Sd

χ(t, FD)
> 1, (17)

where Sd signifies the areas that contain significant range sidelobes (assumed known in our simulation),
thresholded at a magnitude DL (throughout the simulations in our work, we set DL = −90 dB),
(t, FD) ∈ O represents an arbitrary point in TLOR, or, in other words, one of the possible locations of
the target signal after the pointwise minimization, and χ(t, FD)|(t,FD)∈O signifies the signal magnitude
at that point. Inequality (17) claims that target in O will still be detected since its magnitude is larger
than the maximum magnitude of the range sidelobes after the pointwise minimization. In practice,
it may lose the target if its signal is only a little larger than the maximum magnitude of the range
sidelobes because of the influence of noise, and so we limit the target signal to be at least 3 dB larger
than the maximum range sidelobe level in the simulation to guarantee the detection of the target.

We use the results in Figure 5 to illustrate the TLOR O. Firstly, the largest range sidelobe
magnitudes for the Binomial Design algorithm and the three ordering algorithms are found to be
−13.8446 dB, −49.0167 dB, −23.5377 dB and −23.5377 dB, respectively. Secondly, each of these values
(plus 3dB) is used as a cut off threshold for TLOR in the delay and Doppler mainlobes under each
of the algorithms as indicated in Figure 5e,f. The TLOR generates an ellipse centered at the ground
truth location of the target signal with different values of delay and Doppler semi-axes listed in Table 2.
In Figure 6, we further illustrate TLOR Oi, i = BD, 1, 2, 3 for each of algorithms. Our simulation in
Section 5 indicates that, under the Swerling II model, the underlying target signal after pointwise
minimization will fall in the corresponding TLOR.

In summary, we conclude this analysis by making the following remarks:

1. O is defined by Equation (17) as a TLOR in the Delay–Doppler map centered at the ground
truth location of the target signal, with size determined by the boundary of delay and Doppler
mainlobes and the maximum magnitude of range sidelobes. The target signal in TLOR remains
present after the pointwise minimization.

2. In the presence of multiple nonzero Doppler targets, Sd and O can be partially overlapped.
However, as long as the target magnitude at O is at least 3 dB larger than the maximum magnitude
of sidelobes, the pointwise minimization will not lose the target.

3. If the maximum magnitude of sidelobes is less than the targets’ mainlobes, the TLOR can be
approximated by the boundary of the mainlobes.
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4. In practice, the previously estimated target location obtained from a tracker is used to replace the
ground truth location as the center of O.

5. We note that the determination of the TLOR in the above simulations is based on knowledge
of target location, magnitude and sidelobe level. These are hard to find in a realistic situation.
These simulations are used to illustrate the tolerance of the pointwise minimization to fluctuations
of in target returns, and to do performance analysis. Determination of actual sidelobe and sidelobe
regions in practice still needs further study.
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Figure 5. The AFs of (a) Binomial Design algorithm; (b) Algorithm 1; (c) Algorithm 2;
(d) Algorithm 3; and the comparisons of (e) delay mainlobes/zero-Doppler cross section; and (f) Doppler
mainlobes/zero-delay cross section (the unit of colorbar is dB).
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Table 2. Comparisons of the tolerable location offset region.

Algorithm TLOR Value of Delay Semi Axis (µs) Value of Doppler Semi Axis (rad)

Binomial Design Algorithm OBD TBD = 0.072 DBD = 0.5783
Algorithm 1 O1 T1 = 0.09 D1 = 0.1988
Algorithm 2 O2 T2 = 0.09 D2 = 0.1804
Algorithm 3 O3 T3 = 0.09 D3 = 0.1804

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−7

Doppler(rad)

D
el

ay
(s

ec
)

 

 

O
BD

O
1

O
2

O
3

D
2

and D
3

D
BD

T
BD

D
1

T
2
  and T

3
T

1

Figure 6. Illustration of the TLOR Oi, i = BD, 1, 2, 3. under corresponding algorithms. Each (Ti, Di)

defines the TLOR under the Algorithm i.

As aforementioned, there are also a number of existing methods under Golay complementary
waveforms for range sidelobe suppression. In Figure 7, we plot the results generated by some
representative methods for a comparison. Figure 7a is the result of standard transmission order with
no receiving weights (which is identical to the Figure 4a); Figure 7b demonstrates the result of using
the Prouhet–Thue–Morse (PTM) Design algorithm shown in [23]; Figure 7c shows the AF of using
a Hamming amplitude weighting [36] to the Golay complementary waveforms, and it has a similar
performance as the Binomial Design algorithm (shown in Figure 4b) in that it sacrifices the Doppler
resolution for a larger sidelobe blanking area. Figure 7d shows the result for applying both PTM
Design algorithm and Hamming amplitude weighting. Clearly, the performance is poorer than that by
just using one of them. It is worth mentioning that the approaches proposed in this work are different
from all the methods in Figure 7, and their AFs given in Figure 5b–d suggest an improved performance
over these comparison methods.

4.3. Estimation of Significant Range Sidelobe Regions in Delay–Doppler Map

Estimation of the significant range sidelobe regions in the Delay–Doppler map for given targets
arising from the processing of Golay complementary waveforms is an important factor in the
separation of targets from sidelobes. In our following simulations, we still set the sidelobe threshold at
DL = −90 dB. Since the three ordering algorithms can be implemented in parallel with the Binomial
Design algorithm, followed by a pointwise minimization (See Figure 2), the range sidelobe areas in the
output Delay–Doppler maps will be the same as the Binomial Design algorithm for all the three of the
ordering algorithms (an example can be seen in Figure 5), so we only need to consider the Binomial
Design algorithm to estimate the range sidelobes in the output Delay–Doppler map.

As shown in Figure 5a, the length of sidelobe areas along the Delay axis is [−LTc, LTc],
a consequence of matched filtering in the time domain. However, finding the length of sidelobe
areas along the Doppler axis is non-trivial. For a given pulse number N, the size of the thresholded
range sidelobes is clearly a function of the threshold DL. In Figure 5 and the following Figure 8,
only range sidelobes larger than DL = −90 dB are displayed at their original magnitudes. All range
sidelobes less than this are displayed as −90 dB. A larger DL clearly yields a wider range sidelobe
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blanking area, which shrinks the thresholded regions in the Delay–Doppler map. Nevertheless,
the following method can be adopted to estimate the length of sidelobe areas along the Doppler axis.
Assuming that the length of sidelobe areas along the Doppler axis is [−2π,− f0] ∪ [ f0, 2π]rad in the
AF, then the value of f0 satisfies the following condition:

f0 = arg max
FD∈[−2π,2π]

{χBD(:, FD)} < DL. (18)
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Figure 7. The AFs of some representative existing waveform design methods for Golay complementary
waveforms (the unit of colorbar is dB). (a) Standard transmission order; (b) PTM Design algorithm;
(c) Hamming amplitude weighting; (d) both PTM Design algorithm and Hamming amplitude
weighting applied.

Inequality (18) indicates that the magnitudes along the Doppler boundary f0 are less than DL.
For example, the sidelobe areas in Figure 5a when DL = −90 dB is expressed as

[−6.4, 6.4]µs× [−2π,−1.783] ∪ [1.783, 2π] rad.

These areas are illustrated using red rectangles in Figure 5a. In the presence of multiple nonzero
Doppler targets, sidelobe areas are also influenced by target locations in the Delay–Doppler map
(again, a tracker is needed to estimate target locations). Assuming the estimated location of the hth
target in the Delay–Doppler map is (τh, fdh

), then the sidelobe areas are given by

H⋃
h=1

{[τh − LTc, τh + LTc]× [−2π, fdh
− f0] ∪ [ fdh

+ f0, 2π]}. (19)
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In summary, regarding the estimation of the thresholded (at DL) range sidelobe regions for a
specified algorithm, it is required to know estimated target locations (as given by a tracker) (τh, fdh

),
number of pulses L and chip interval Tc in the Golay complementary waveforms as well as the
threshold DL.
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Figure 8. The output Delay–Doppler maps of (a) Binomial Design algorithm; (b) Algorithm 1;
(c) Algorithm 2; (d) Algorithm 3 in the particular set target detection scene; and the comparisons
of Doppler cross sections of the weak targets (e) Target 4; (f) Target 5 for Binomial Design algorithm
and Algorithm 3 (the unit of colorbar is dB).

5. Numerical Simulations and Discussion

In this section, we present numerical simulations to demonstrate the effectiveness of the proposed
three ordering algorithms and verify the analytical results. The global simulation parameters are as
follows. We assume that the radar carrier frequency is fc = 1 GHz, bandwidth is B = 50 MHz,
sampling rate is fs = 2B, PRI is T = 50 µs, number of pulses N = 25 = 32. For the Golay
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complementary waveforms, the number of chips is L = 64 with values ±1 and the chip interval
is Tc = 0.1µs. Each chip has fs × Tc = 10 sampling points.

5.1. Simulation under a Fixed Scenario

The fixed scenario contains five targets, three strong targets (Targets 1–3) with normalized signal
magnitudes 0 dB and 2 weak targets (Target 4∼5) at −20 dB, as shown in Figure 9.
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Figure 9. Illustration of target signal magnitudes and locations in the Delay–Doppler map for the
fixed scenario.

The locations of these targets in the Delay–Doppler map are listed in Table 3.

Table 3. Locations of the simulated targets.

Targets Delay Doppler

Target 1 τ1 = 12.4µs fd1 = 1.3 rad
Target 2 τ2 = 16.6µs fd2 = −0.7 rad
Target 3 τ3 = 16.6µs fd3 = −1.1 rad
Target 4 τ4 = 20µs fd4 = 2.2 rad
Target 5 τ5 = 9.4µs fd5 = −1.8 rad

While other targets can be resolved in both delay and Doppler differences, Targets 2 and 3 can
only be distinguished by their Doppler values. These targets are simulated using a Swerling II target
model with parameter σ2 = 0.3 [40]. We also set a maximum 10% fluctuation of each delay and
Doppler, relative to the original values from pulse to pulse. The radar returns at the receiver are
contaminated by a complex Gaussian zero-mean white noise E ∼ CN (0, 1) with mean magnitude of
−10 dB (i.e., SNR = 10 dB).

The simulation results of the Binomial Design algorithm, and Algorithms 1–3 are shown in
Figure 8. It is observed in Figure 8a that the Binomial Design algorithm has a poor target detection
performance in the presence of multiple nonzero Doppler targets. The two weak targets are both
masked by the sidelobes of strong targets and are undetectable. In addition, Targets 2 and 3 are
not separated because of the low Doppler resolution of this algorithm. On the other hand, in the
Delay–Doppler maps of the three ordering algorithms shown in Figure 8b–d, Targets 2 and 3 can be
visually separated.

Figure 8e,f show the Doppler cross sections of the two weak targets, Targets 4 and 5, using the
Binomial Design algorithm and using Algorithm 3 (since these two targets will clearly be seen using
Algorithms 1 and 2, it is not necessary to put these Doppler cross sections in the figures). The weak
targets are almost undetectable using the Binomial Design algorithm. On the other hand, a fairly
arbitrary threshold of −30 dB based on our simulations is set, which enables easier detection of weak
targets using Algorithm 3 because of high SNR.
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5.2. Simulation under a Randomized Scenario

This simulation is intended to statistically compare the detection performances of the algorithms
and demonstrate the effectiveness of the proposed signal processing procedures. Without loss
of generality, the targets are set to be uniformly distributed in the map and based on the
Swerling II model.

The simulation is designed in the following four cases:

1. Two targets are presented in random locations, with one strong target and one weak target;
2. Three targets are presented in random locations, with one strong target and two weak targets;
3. Four targets are presented in random locations, with two strong targets and two weak targets;
4. Five targets are presented in random locations, with three strong targets and two weak targets.

The signal magnitudes of strong target and weak target remain at 0 dB and −20 dB, respectively.
To analyze the detection performance, without loss generality, we use the signal magnitude of the
weakest target as the threshold (since during the simulations we exactly know the amplitude and
location of all targets) to do the following statistical target detection simulations for each algorithm;
this guarantees that in our simulations all the true targets are detected, but false targets are also detected
because of the presence of range sidelobes that exceed the threshold. In practice, correct thresholding
needs further study. One thousand Monte Carlo runs for each of cases mentioned above are carried
out. Note that in these particular simulations we detect every target by comparison with values in a
small Doppler interval around its ground truth Doppler, with the length of this Doppler interval set
according to the variance of target Doppler estimation through the online tracking system.

The following four measures are used to compare the performances of the four algorithms.

1. Average false-alarm sidelobe occupation ratio in the Delay–Doppler map. We calculate the
average ratio of areas of range sidelobes that exceed the threshold and cause false-alarm detection
with respect to the entire Delay–Doppler map over all 1000 runs. The simulation result is shown
in Figure 10a.

2. Average magnitude level of false-alarm sidelobes. We compute the average magnitude of the
sidelobes that have caused false detections over all 1000 runs. Simulation results are shown
in Figure 10b.

3. Number of correct detection times. A correct detection means that all the targets are successfully
detected and that there is no false target in a single run. The results of simulations are shown
in Figure 10c.

4. Average number of false targets: This is the number of false targets appearing in the
Delay–Doppler map averaged over all the runs where false target occurs. Results are shown
in Figure 10d.

Discussion:

• The results shown in Figure 10 indicate that proposed three ordering algorithms have an improved
performance compared to the Binomial Design algorithm in terms of the performance measures
described above. Algorithm 1 has the best performance among the four algorithms, followed by
Algorithm 2, Algorithm 3 and the Binomial Design algorithm.

• The results also verify the effectiveness of the pointwise minimization from a statistical viewpoint.
• As the number of targets presented in the Delay–Doppler map increases, the performance of all

algorithms deteriorates and the performance differences between algorithms becomes increasingly
significant. Evidently, an increase of range sidelobes in the Delay–Doppler map as the consequence
of the presence of more targets causes more false targets.

• The calculation complexity comparison of Binomial Design algorithm, and Algorithms 1–3 in this
particular statistical simulation case is 1:33:6:2.
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Figure 10. Statistical simulation results of (a) average false-alarm sidelobes occupation ratio in the
Delay–Doppler map; (b) average energy level of false-alarm sidelobes; (c) correct detection times;
(d) average false targets number for the four algorithms.

6. Conclusions

This paper describes a signal processing procedure for detection of multiple nonzero Doppler
targets with a radar using Golay complementary waveforms in Reed–Müller sequences. In addition to
use of the existing Binomial Design algorithm for altering the transmission waveform order, we also
employ one of the three transmission order design algorithms running in parallel. A pointwise
minimization is then used to combine the outputs. Algorithmic computational complexities are
analyzed and the performance of pointwise minimization is justified in the sense of tolerable location
offset region. The delineation of the areas in the Delay–Doppler map occupied by significant range
sidelobes for each of the three ordering algorithms are also discussed. Numerical simulation results
in both fixed and randomized target scenarios are presented to demonstrate the effectiveness of the
proposed signal processing procedure.
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