
sensors

Article

Accurate Natural Trail Detection Using
a Combination of a Deep Neural Network
and Dynamic Programming

Shyam Prasad Adhikari 1,† ID , Changju Yang 1,†, Krzysztof Slot 2 and Hyongsuk Kim 1,3,*
1 Division of Electronics Engineering, Chonbuk National University, Jeonju 567-54896, Korea;

all.shyam@gmail.com (S.P.A); ychangju@jbnu.ac.kr (C.J.Y)
2 Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22,

90-924 Lodz, Poland; krzysztof.slot@p.lodz.pl
3 Intelligent Robot Research Center of Chonbuk National University, Chonbuk National University,

Jeonju 567-54896, Korea
* Correspondence: hskim@jbnu.ac.kr; Tel.: +82-632-702-477
† Both authors contributed equally to this work.

Received: 18 October 2017; Accepted: 4 January 2018; Published: 10 January 2018

Abstract: This paper presents a vision sensor-based solution to the challenging problem of detecting
and following trails in highly unstructured natural environments like forests, rural areas and
mountains, using a combination of a deep neural network and dynamic programming. The deep
neural network (DNN) concept has recently emerged as a very effective tool for processing vision
sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image
patches into “trail” and “non-trail” categories, and reshaped to a fully convolutional architecture to
produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do
not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification,
and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find
an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail
detection for real-world trail datasets captured with a head mounted vision system are presented.

Keywords: deep neural networks; trail segmentation; trail following; dynamic programming

1. Introduction

Autonomous navigation in highly unstructured environments like man-made trails in forests or
mountains is an extremely challenging problem for robots. Humans can navigate through most off-road
trails with ease, however the infinite variations present in the natural environment, the absence of
structured pathways or distinct lane markings makes the problem of trail navigation extremely difficult
for robotic systems. A robotic system capable of autonomously navigating off-road environments
would become invaluable aid in several important applications, such as search-and-rescue missions,
wilderness monitoring and mapping etc.

The problem of road and lane detection in structured environments like paved roads and highways
has been studied extensively in the literature, and has been a crucial enabler towards the realization
of autonomous vehicles [1–6]. However, detecting trails in off-road environments like forests and
mountains which, at times, is challenging even for humans, is significantly more difficult for robots.
The problem of off-road trail detection has been approached primarily as a segmentation problem [7–9]
i.e., how to segment the trail region from surrounding areas. A simplified model of the trail is then fit to
the segmented image. Rasmussen et al. [8] used local appearance contrast visual cues and lidar-derived
shape cues to segment the trail from the surrounding areas, whereas Santana et al. [9] used image
conspicuity to compute a saliency map of an input image to detect the position of the trail.

Sensors 2018, 18, 178; doi:10.3390/s18010178 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8531-4599
http://dx.doi.org/10.3390/s18010178
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 178 2 of 13

Recently deep neural networks (DNNs) have been widely used for various vision-related
applications [10,11], and have produced state-of-the-art results in different tasks like object
detection and localization [12], image segmentation [13] and depth perception from monocular or
stereo images [14,15]. With a focus towards realizing self-driving vehicles, different researchers
have successfully applied DNNs for road and lane detection in highways and urban settings.
Huval et al. [16] used a variant of DNN for detecting the road and lanes for driving autonomously on
highways. Instead of detecting and recognizing objects like lanes, vehicle, pedestrians, etc. [17] used
a variant of DNN to map an input image to several driving indicators like distance to lane markings,
angle of vehicle with respect to the lane etc. which are fed to a controller for autonomous driving in
urban environment. Bojarskiet et al. [18] trained a DNN to directly map the raw pixels of an input image
to steering commands for autonomous driving in highway and urban settings. Although the task of
trail detection is related to the task of road (lane) detection, majority of methods developed for the latter
case rely heavily on road image models that involve several prior knowledge clues, such as presence of
expected road markings, road/lane geometry constraints or temporal consistency [5,19]. These priors
are utilized to cope with occlusions, shadows, under- and over-exposure or glare, i.e., factors that are
common in traffic situations, yet are not necessarily relevant for trail detection. Also, commonly used
image representations employ edges as one of the most useful features in road/lane detection [6],
however, as edges are poor texture descriptors, they are inappropriate for trail representation. Therefore,
even though deep convolutional neural networks have also been considered as a means for road
detection [20], due to important differences between the two considered tasks, obtained results are not
necessarily meaningful for the case of trail detection with DNN.

DNNs have also been used for autonomous navigation of robots in unstructured natural
environments like forest trails. Hadsell et al. [21] used a self-supervised DNN with a stereo module in
the loop to classify the terrain in front of the robot as ground or obstacle. The self-supervised learning
system used a stereo module that provided supervising class labels for learning a DNN. The class
label for each image patch was assigned using a series of heuristics depending on the ground, foot line
and the obstacle plane derived from the 3d point cloud. However, in natural environment the trail
and the surrounding areas can share the same height; a straightforward use of the 3d point cloud
information as supervising teacher for learning provides incorrect labels and hence incorrect learning
behavior of the DNN. Given an image of the trail as input Guisti et al. [22] used DNN as a supervised
classifier to output only the main direction of a trail compared to the viewing direction of a quadrotor.
Similar approach using DNN has been used by Nikolai et al. [23] to estimate the view orientation
along with the lateral offsets of a micro aerial vehicle with respect to the trail center. The work of both
Guisti et al. and Nikolai et al. estimate the instantaneous heading direction of the trail and do not
utilize the information present in the input image that could assist in planning the path for the local
segment of the trail visible at that instant.

In this paper we propose a two-stage pipeline using a combination of DNN and dynamic
programming to detect and follow trails in natural environments. In the first stage we train a supervised
patch-based DNN to classify each patch in the image as “trail” or “non-trail”, and produce a trail
segmentation map for the whole image. As trail and non-trail patches do not exhibit clearly defined
shapes or forms, the patch-based classifier is prone to misclassification, and the resultant trail
segmentation map is sub-optimal. In the second stage, dynamic programming is used on this
sub-optimal trail map to find an optimal trail. In addition to the instantaneous heading direction,
the proposed method also computes the local segment of the visible trail.

The rest of the paper is organized as follows: the proposed method for detecting a trail is presented
in Section 2 followed by the use of dynamic programming for trail following in Section 3. Experiments
conducted to validate the proposed method and the results obtained for real-world trail dataset are
presented in Section 4, and are followed by our conclusions in Section 5.

Sensors 2018, 18, 178 3 of 13

2. Patch-Based Deep Neural Network for Trail Segmentation

The proposed method to detect trail in a single image of highly unstructured natural environment
is presented in Figure 1.

Sensors 2018, 18, 178 3 of 14

2. Patch-Based Deep Neural Network for Trail Segmentation

The proposed method to detect trail in a single image of highly unstructured natural
environment is presented in Figure 1.

DEEP
NEURAL

NETWORK

DYNAMIC
PROGRAMMING

Input

Trail Map

Detected Trail

Figure 1. Natural trail detection system using a deep neural network (DNN) and dynamic
programming (DP). A DNN trained with supervised data maps the input image into trail and non-
trail areas. The starting and the goal point of the local segment are computed using the output from
the DNN. DP is then used on the trail map to obtain the local segment of the visible trail.

The core idea is to train a DNN to classify the center pixel of each patch in the image as belonging
to trail or not, and obtain a coarse trail segmentation map. The starting point and endpoint for the
local segment of the visible trail in the input image are extracted using the resultant trail map and
dynamic programming is used on the sub-optimal segmentation map to find an optimal trail line for
the visible trail segment.

Detection of natural trails is a challenging problem due to wide variations in appearance of
natural environments, and at times there is no distinct demarcation between the trail and the
surrounding areas. It is practically not possible to collect and label a huge dataset that covers all the
variations present in natural trail and its surrounding environment. Therefore we restrict our
experiments to a subset of the IDSIA forest dataset available at [24]. However, we later show that the
proposed approach can be adopted to a completely different trail by fine tuning the DNN with a
small subset of data from the new environment.

2.1. Dataset

A subset of the IDSIA forest trail dataset was used to train and test the DNN. The IDSIA forest
trail dataset contains images of natural forest trail captured using different cameras and of varying
resolution − some are 752 × 480 whereas others are 1280 × 720. We resized all the images to 752 × 480
for our experiments. We use only a subset of the IDSIA dataset for our experiments, namely images
from the dataset numbered 001. The images in this folder are captured using three head-mounted
cameras oriented in different directions. Out of the images captured from the left, straight and right
facing cameras, we use only the images captured with the straight facing camera (from folder named
001/sc) because the trail is not visible in most of the images captured using the other two cameras.
The folder “001/sc” contains a total of 3424 images in its three subfolders named “001/sc/GOPR0050”,
“001/sc/GP010050” and 001/sc/GP020050”; each containing 1567, 1566 and 299 images, respectively.
Each subfolder contains images from different sections of the trail. Images from the subfolder
GOPR0050 were used for training and validation, whereas images from subfolder GP010050 and
GP020050 were used for testing the network. Several images from the dataset are shown in Figure 2.

The data to train the DNN was prepared by extracting 100 × 100 RGB image patches from the
trail images and manually labeling each patch as either “trail” or “non-trail”. Image patches assumed

Figure 1. Natural trail detection system using a deep neural network (DNN) and dynamic
programming (DP). A DNN trained with supervised data maps the input image into trail and non-trail
areas. The starting and the goal point of the local segment are computed using the output from the
DNN. DP is then used on the trail map to obtain the local segment of the visible trail.

The core idea is to train a DNN to classify the center pixel of each patch in the image as belonging
to trail or not, and obtain a coarse trail segmentation map. The starting point and endpoint for the
local segment of the visible trail in the input image are extracted using the resultant trail map and
dynamic programming is used on the sub-optimal segmentation map to find an optimal trail line for
the visible trail segment.

Detection of natural trails is a challenging problem due to wide variations in appearance of natural
environments, and at times there is no distinct demarcation between the trail and the surrounding
areas. It is practically not possible to collect and label a huge dataset that covers all the variations
present in natural trail and its surrounding environment. Therefore we restrict our experiments to
a subset of the IDSIA forest dataset available at [24]. However, we later show that the proposed
approach can be adopted to a completely different trail by fine tuning the DNN with a small subset of
data from the new environment.

2.1. Dataset

A subset of the IDSIA forest trail dataset was used to train and test the DNN. The IDSIA forest
trail dataset contains images of natural forest trail captured using different cameras and of varying
resolution − some are 752 × 480 whereas others are 1280 × 720. We resized all the images to
752 × 480 for our experiments. We use only a subset of the IDSIA dataset for our experiments,
namely images from the dataset numbered 001. The images in this folder are captured using three
head-mounted cameras oriented in different directions. Out of the images captured from the left,
straight and right facing cameras, we use only the images captured with the straight facing camera
(from folder named 001/sc) because the trail is not visible in most of the images captured using the
other two cameras. The folder “001/sc” contains a total of 3424 images in its three subfolders named
“001/sc/GOPR0050”, “001/sc/GP010050” and 001/sc/GP020050”; each containing 1567, 1566 and
299 images, respectively. Each subfolder contains images from different sections of the trail. Images
from the subfolder GOPR0050 were used for training and validation, whereas images from subfolder
GP010050 and GP020050 were used for testing the network. Several images from the dataset are shown
in Figure 2.

Sensors 2018, 18, 178 4 of 13

The data to train the DNN was prepared by extracting 100 × 100 RGB image patches from the
trail images and manually labeling each patch as either “trail” or “non-trail”. Image patches assumed
appropriate for hiking were labeled as trail, whereas patches from surrounding areas were labeled
as non-trail. Some of the extracted patches from “trail” and the surrounding “non-trail” regions are
shown Figure 2b,c, respectively.

Sensors 2018, 18, 178 4 of 14

appropriate for hiking were labeled as trail, whereas patches from surrounding areas were labeled
as non-trail. Some of the extracted patches from “trail” and the surrounding “non-trail” regions are
shown Figures 2b,c, respectively.

(a)

(b) (c)

Figure 2. (a) Examples of trail images from the IDSIA dataset used for our experiment. The dataset to
train deep neural network consists of 100 × 100 RGB patches for the trail and non-trail areas; (b) “Trail”
patches are extracted from the regions where hikers would walk, but without any distinct boundary
or markings; (c) “Non-trail” patches are extracted from other surrounding areas in the image.

A total of 68,942 patches were extracted from the training folder GOPR0050, out of which 14,936
were trail patches whereas 54,006 were non-trail patches from surrounding areas. 90% of the image
patches were used for training the network and the remaining 10% were set aside for validation. The
data was augmented during runtime by generating random crops of size 80 × 80 from the original
100 × 100 patches and their corresponding horizontal mirrors. Similarly, a total of 88,060 (17,440
“trail” and 70620 “non-trail”) patches extracted from the folders GP010050 and GP020050 were used
for testing the DNN. The number of patches in the trail and non-trail categories is un-balanced in the
training as well as the test set. As the trail occupies a smaller area in the image compared to the
surrounding areas, the ratio of the trail to non-trail patches in the data reflects the actual ratio of
patches that are expected to be present in natural trail images.

2.2. Deep Neural Network for Image Patch Classification

A deep neural network is composed of a series of non-linear processing layers stacked on top of
each other. Typical layers present in DNN are convolutional, pooling, fully connected and non-linear
activation layers. The convolutional layer operates on the local volumes of data through
convolutional kernels also called filters to extract feature representations. The pooling layer
progressively reduces the spatial size of the feature maps, by pooling maximum activations (in case
of max pooling) from non-overlapping regions in the feature maps. This reduces the amount of
parameters and computation in the network. The DNN is then trained to map the inputs to their
corresponding targets using gradient-descent based learning rules.

2.2.1. Deep Neural Network Architecture

Theoretical guidelines for optimizing deep convolutional network architectures for a given task
realization are still missing. Therefore, the approach adopted for this purpose is to experiment with
different structures that implement various intuitions. For example, a need for providing a sufficient
capacity for correct representation of underlying complex data structures, through ensuring a
sufficient amount of filters, amount of scaling steps and organization of a fully connected layer, was

Figure 2. (a) Examples of trail images from the IDSIA dataset used for our experiment. The dataset to
train deep neural network consists of 100 × 100 RGB patches for the trail and non-trail areas; (b) “Trail”
patches are extracted from the regions where hikers would walk, but without any distinct boundary or
markings; (c) “Non-trail” patches are extracted from other surrounding areas in the image.

A total of 68,942 patches were extracted from the training folder GOPR0050, out of which 14,936 were
trail patches whereas 54,006 were non-trail patches from surrounding areas. 90% of the image patches
were used for training the network and the remaining 10% were set aside for validation. The data was
augmented during runtime by generating random crops of size 80× 80 from the original 100× 100 patches
and their corresponding horizontal mirrors. Similarly, a total of 88,060 (17,440 “trail” and 70620 “non-trail”)
patches extracted from the folders GP010050 and GP020050 were used for testing the DNN. The number of
patches in the trail and non-trail categories is un-balanced in the training as well as the test set. As the trail
occupies a smaller area in the image compared to the surrounding areas, the ratio of the trail to non-trail
patches in the data reflects the actual ratio of patches that are expected to be present in natural trail images.

2.2. Deep Neural Network for Image Patch Classification

A deep neural network is composed of a series of non-linear processing layers stacked on top of
each other. Typical layers present in DNN are convolutional, pooling, fully connected and non-linear
activation layers. The convolutional layer operates on the local volumes of data through convolutional
kernels also called filters to extract feature representations. The pooling layer progressively reduces
the spatial size of the feature maps, by pooling maximum activations (in case of max pooling) from
non-overlapping regions in the feature maps. This reduces the amount of parameters and computation
in the network. The DNN is then trained to map the inputs to their corresponding targets using
gradient-descent based learning rules.

2.2.1. Deep Neural Network Architecture

Theoretical guidelines for optimizing deep convolutional network architectures for a given task
realization are still missing. Therefore, the approach adopted for this purpose is to experiment with

Sensors 2018, 18, 178 5 of 13

different structures that implement various intuitions. For example, a need for providing a sufficient
capacity for correct representation of underlying complex data structures, through ensuring a sufficient
amount of filters, amount of scaling steps and organization of a fully connected layer, was at the core
of development of AlexNet [11] and ZF Net [25]. Enforcing the same detail of analysis at different
scales (the same size of filters at different layers) was a novelty introduced in VGG Net [26]. Reducing
complexity of a task to be learned by different layers underlies a concept of incremental learning,
proposed in Residual Nets [27].

Natural trails are textural image objects of large variability and diverse structures. Therefore,
machine learning becomes clearly an appropriate paradigm for implementing a trail detection
algorithm. On the other hand, trail variability and diversity makes it quite difficult to point any
particular, preferable network’s architecture for the task realization. As a result, of several possible
candidates, the well-known AlexNet DNN model, which is relatively simple and proved successful in
recognizing a wide variety of image objects, has been adopted for the presented research.

A deep neural network, as shown in Figure 3, of architecture similar to the flagship AlexNet is
used for training our patch classifier to discriminate between the trail and non-trail patches. The DNN
consists of eight layers in which the first five layers are convolutional layers followed by three fully
connected layers and a softmax function at the output. The input to the DNN is an 80 × 80 RGB
color image patch. Max pooling is used after the first, third, fourth and fifth convolutional layers to
reduce the spatial size of the feature maps. The neurons in the fully connected (FC) layers receive
inputs from all the units in the previous layer and the last FC layer is followed by a softmax function.
Given an input image patch, the network outputs two real valued numbers between [0, 1], that can
be interpreted as the normalized class probability of the image patch belonging to the “trail” or the
surrounding “non-trail” areas.

Sensors 2018, 18, 178 5 of 14

at the core of development of AlexNet [11] and ZF Net [25]. Enforcing the same detail of analysis at
different scales (the same size of filters at different layers) was a novelty introduced in VGG Net [26].
Reducing complexity of a task to be learned by different layers underlies a concept of incremental
learning, proposed in Residual Nets [27].

Natural trails are textural image objects of large variability and diverse structures. Therefore,
machine learning becomes clearly an appropriate paradigm for implementing a trail detection
algorithm. On the other hand, trail variability and diversity makes it quite difficult to point any
particular, preferable network’s architecture for the task realization. As a result, of several possible
candidates, the well-known AlexNet DNN model, which is relatively simple and proved successful
in recognizing a wide variety of image objects, has been adopted for the presented research.

A deep neural network, as shown in Figure 3, of architecture similar to the flagship AlexNet is
used for training our patch classifier to discriminate between the trail and non-trail patches. The DNN
consists of eight layers in which the first five layers are convolutional layers followed by three fully
connected layers and a softmax function at the output. The input to the DNN is an 80 × 80 RGB color
image patch. Max pooling is used after the first, third, fourth and fifth convolutional layers to reduce
the spatial size of the feature maps. The neurons in the fully connected (FC) layers receive inputs
from all the units in the previous layer and the last FC layer is followed by a softmax function. Given
an input image patch, the network outputs two real valued numbers between [0, 1], that can be
interpreted as the normalized class probability of the image patch belonging to the “trail” or the
surrounding “non-trail” areas.

10 203

10
0

Conv
Pool

Conv FC

30 40

FC

SoftMax40 2
Conv
Pool

50

Conv
Pool Conv

Pool

FC

Figure 3. Deep Neural Network architecture. The network is composed of five convolutional layers
and three fully connected (FC) layers, with a Softmax classifier on top. The input to the network is a
RGB color image patch of size 80 × 80 pixels. The network outputs two numbers corresponding to the
probability of the input patch belonging to the trail and non-trail area, respectively.

2.2.2. Deep Neural Network Training

The parameters, , of the network are initialized using the Xavier [28] initialization method. The
output of the deep convolutional neural network can be interpreted as the model for the conditional
distribution over the two classes. The training criterion adopted to maximize the probability of the
true category in the training data,D , or equivalently to minimize the negative log-likelihood loss, is
the following:

| |
() ()

0
(,) log((| ,))

D
i i

i
l D P Y y x 



   (1)

where () ()(| ,)i iP Y y x  is the probability that the input data x(i) belongs to its true class y(i). The
network was trained in Theano [29] on a GTX 980 GPU using the Adam [30] method with a fixed
learning rate of 0.0001 and mini-batch size of 128. Dropout (with p = 0.5) was used in the two
penultimate fully connected layers and L2 regularization ( = 0.0001) was implemented to prevent
over-fitting.

Figure 3. Deep Neural Network architecture. The network is composed of five convolutional layers
and three fully connected (FC) layers, with a Softmax classifier on top. The input to the network is
a RGB color image patch of size 80 × 80 pixels. The network outputs two numbers corresponding to
the probability of the input patch belonging to the trail and non-trail area, respectively.

2.2.2. Deep Neural Network Training

The parameters, θ, of the network are initialized using the Xavier [28] initialization method.
The output of the deep convolutional neural network can be interpreted as the model for the conditional
distribution over the two classes. The training criterion adopted to maximize the probability of the
true category in the training data, D, or equivalently to minimize the negative log-likelihood loss, is
the following:

l(θ, D) = −
|D|

∑
i=0

log(P(Y = y(i)|x(i), θ)) (1)

where P(Y = y(i)|x(i), θ) is the probability that the input data x(i) belongs to its true class y(i).
The network was trained in Theano [29] on a GTX 980 GPU using the Adam [30] method with
a fixed learning rate of 0.0001 and mini-batch size of 128. Dropout (with p = 0.5) was used in the
two penultimate fully connected layers and L2 regularization (λ = 0.0001) was implemented to
prevent over-fitting.

Sensors 2018, 18, 178 6 of 13

2.3. Fully Convolutional Neural Network for Trail Map Generation

The deep neural network shown in Figure 3 takes fixed-size image patch as input and outputs
two scores for the center pixel belonging to trail or non-trail category, respectively. The fully connected
layers of the DNN can only process fixed sized inputs, whereas the convolutional layers allow for
processing of arbitrary sized inputs. Since, neurons in both the convolutional and fully connected
layers compute the dot product of the input with the layer parameters it is always possible to convert
the fully connected layer into a convolutional layer. In order to make the network work for images
of arbitrary size, the three fully connected layers at the trailing end of the DNN are converted to
convolutional layers by introducing appropriate rearrangements. The resulting Fully Convolutional
Network (FCN) [31] hence obtained is shown in Figure 4.

Sensors 2018, 18, 178 6 of 14

2.3. Fully Convolutional Neural Network for Trail Map Generation

The deep neural network shown in Figure 3 takes fixed-size image patch as input and outputs
two scores for the center pixel belonging to trail or non-trail category, respectively. The fully
connected layers of the DNN can only process fixed sized inputs, whereas the convolutional layers
allow for processing of arbitrary sized inputs. Since, neurons in both the convolutional and fully
connected layers compute the dot product of the input with the layer parameters it is always possible
to convert the fully connected layer into a convolutional layer. In order to make the network work
for images of arbitrary size, the three fully connected layers at the trailing end of the DNN are
converted to convolutional layers by introducing appropriate rearrangements. The resulting Fully
Convolutional Network (FCN) [31] hence obtained is shown in Figure 4.

10 203

Conv
Pool

Conv

30 40

Conv
Pool

ConvConv

50 100 240

Conv
Pool Conv

Pool Conv

Figure 4. Fully Convolutional Neural Network (FCN) corresponding to the DNN shown in Figure 3.
The FCN is obtained by converting the last three fully connected (FC) layers of the DNN to
convolutional layers by reshaping the FC layers. The network can process arbitrary sized input
images and the output of the network are two score maps corresponding to the trail and the non-trail
category, respectively. Given an RGB input of size 480 × 752, the network outputs two feature maps
of size 26 × 43 pixels each. Each point in the output map represents the normalized probability of the
corresponding image patch belonging to one of the considered categories.

The FCN can process arbitrary sized input images and outputs two score maps corresponding
to the trail and the non-trail category, respectively. The required trail segmentation map is the output
map corresponding to the trail class. Each point in this map represents a score for the corresponding
image patch in the input image belonging to a trail. The segmentation map of the trail obtained using
the above mentioned patch wise classification is noisy. Hence a post processing step is employed on
the trail map by using morphological opening to filter out possible small spurious regions and make
the trail map smoother. Results of the trail segmentation for some of the images from the test set are
shown in Figure 5.

Figure 5. Trail segmentation using DNN. (Top row) Some representative images (resized to 240 × 376)
from the test set. (Bottom row) The trail maps obtained using the proposed pipeline are overlaid (26
× 43 maps are up-sampled to 240 × 376) on the corresponding test images. The probabilities that points
belong to a trail are coded with intensity of the red component, and a weighted sum with the image
pixels is computed.

Figure 4. Fully Convolutional Neural Network (FCN) corresponding to the DNN shown in Figure 3.
The FCN is obtained by converting the last three fully connected (FC) layers of the DNN to
convolutional layers by reshaping the FC layers. The network can process arbitrary sized input
images and the output of the network are two score maps corresponding to the trail and the non-trail
category, respectively. Given an RGB input of size 480 × 752, the network outputs two feature maps of
size 26 × 43 pixels each. Each point in the output map represents the normalized probability of the
corresponding image patch belonging to one of the considered categories.

The FCN can process arbitrary sized input images and outputs two score maps corresponding to
the trail and the non-trail category, respectively. The required trail segmentation map is the output
map corresponding to the trail class. Each point in this map represents a score for the corresponding
image patch in the input image belonging to a trail. The segmentation map of the trail obtained using
the above mentioned patch wise classification is noisy. Hence a post processing step is employed on
the trail map by using morphological opening to filter out possible small spurious regions and make
the trail map smoother. Results of the trail segmentation for some of the images from the test set are
shown in Figure 5.

Sensors 2018, 18, 178 6 of 14

2.3. Fully Convolutional Neural Network for Trail Map Generation

The deep neural network shown in Figure 3 takes fixed-size image patch as input and outputs
two scores for the center pixel belonging to trail or non-trail category, respectively. The fully
connected layers of the DNN can only process fixed sized inputs, whereas the convolutional layers
allow for processing of arbitrary sized inputs. Since, neurons in both the convolutional and fully
connected layers compute the dot product of the input with the layer parameters it is always possible
to convert the fully connected layer into a convolutional layer. In order to make the network work
for images of arbitrary size, the three fully connected layers at the trailing end of the DNN are
converted to convolutional layers by introducing appropriate rearrangements. The resulting Fully
Convolutional Network (FCN) [31] hence obtained is shown in Figure 4.

10 203

Conv
Pool

Conv

30 40

Conv
Pool

ConvConv

50 100 240

Conv
Pool Conv

Pool Conv

Figure 4. Fully Convolutional Neural Network (FCN) corresponding to the DNN shown in Figure 3.
The FCN is obtained by converting the last three fully connected (FC) layers of the DNN to
convolutional layers by reshaping the FC layers. The network can process arbitrary sized input
images and the output of the network are two score maps corresponding to the trail and the non-trail
category, respectively. Given an RGB input of size 480 × 752, the network outputs two feature maps
of size 26 × 43 pixels each. Each point in the output map represents the normalized probability of the
corresponding image patch belonging to one of the considered categories.

The FCN can process arbitrary sized input images and outputs two score maps corresponding
to the trail and the non-trail category, respectively. The required trail segmentation map is the output
map corresponding to the trail class. Each point in this map represents a score for the corresponding
image patch in the input image belonging to a trail. The segmentation map of the trail obtained using
the above mentioned patch wise classification is noisy. Hence a post processing step is employed on
the trail map by using morphological opening to filter out possible small spurious regions and make
the trail map smoother. Results of the trail segmentation for some of the images from the test set are
shown in Figure 5.

Figure 5. Trail segmentation using DNN. (Top row) Some representative images (resized to 240 × 376)
from the test set. (Bottom row) The trail maps obtained using the proposed pipeline are overlaid (26
× 43 maps are up-sampled to 240 × 376) on the corresponding test images. The probabilities that points
belong to a trail are coded with intensity of the red component, and a weighted sum with the image
pixels is computed.

Figure 5. Trail segmentation using DNN. (Top row) Some representative images (resized to 240 × 376)
from the test set. (Bottom row) The trail maps obtained using the proposed pipeline are overlaid
(26 × 43 maps are up-sampled to 240 × 376) on the corresponding test images. The probabilities that
points belong to a trail are coded with intensity of the red component, and a weighted sum with the
image pixels is computed.

Sensors 2018, 18, 178 7 of 13

2.4. Starting Point and Terminal Row of the Trail

In our experiments we only consider the case where the images are captured with a camera facing
straight towards the trail. Once the trail has been segmented from the surrounding areas, we strive to find
the starting point and a row of an image where a trail vanishes (referred from now on as a ‘terminal row’) of
the local segment of the trail visible in the input without imposing any constraints on a camera position
with respect to a trail. The starting point of a trail is determined by computing the center-of-mass of the
segmentation map at the bottom row, and the terminal row is the first upper row containing the trail points.
Dynamic programming is then used on the trail probability map to find the trail line originating from the
starting point towards the terminal row.

3. Dynamic Programming for Trail Line Detection

Dynamic programming (DP) is a global optimization method for computing the optimal path between
two nodes that is based on the Bellman’s local optimality principle [32]. In our case, we consider each pixel
in the trail probability map as a node of a corresponding search graph in order to find a trail line from the
starting point to the terminal row. Dynamic programming consists of two phases that gets executed in order
to find the lowest-cost path. In the first phase, the minimum cost of visiting any of the graph nodes from the
terminal row nodes is computed using a recurrent formula of the general form:

c∗ij = min
k,l

{
c∗kl + dkl−>ij + dij

}
(2)

where dkl→ij denotes the cost of transition from node kl to node ij, dij is the cost associated with node ij and
c∗kl is the minimum cost computed for all the valid predecessors of the node ij. In the second phase of the
algorithm the lowest cost path originating at the starting point towards the terminal row is back-tracked.

The complement of the trail probability map obtained from the FCN is used to initialize the node
cost of each node. Only transitions from five of node’s nearest predecessors, as shown in Figure 6,
are considered valid. The transition cost dkl→ij is empirically assigned as [0.2, 0.1, 0, 0.1, and 0.2] to
penalize the transitions from distant neighbors thus favoring low-curvature trails.

Sensors 2018, 18, 178 7 of 14

2.4. Starting Point and Terminal Row of the Trail

In our experiments we only consider the case where the images are captured with a camera
facing straight towards the trail. Once the trail has been segmented from the surrounding areas, we
strive to find the starting point and a row of an image where a trail vanishes (referred from now on
as a ‘terminal row’) of the local segment of the trail visible in the input without imposing any
constraints on a camera position with respect to a trail. The starting point of a trail is determined by
computing the center-of-mass of the segmentation map at the bottom row, and the terminal row is
the first upper row containing the trail points. Dynamic programming is then used on the trail
probability map to find the trail line originating from the starting point towards the terminal row.

3. Dynamic Programming for Trail Line Detection

Dynamic programming (DP) is a global optimization method for computing the optimal path
between two nodes that is based on the Bellman’s local optimality principle [32]. In our case, we
consider each pixel in the trail probability map as a node of a corresponding search graph in order to
find a trail line from the starting point to the terminal row. Dynamic programming consists of two
phases that gets executed in order to find the lowest-cost path. In the first phase, the minimum cost
of visiting any of the graph nodes from the terminal row nodes is computed using a recurrent formula
of the general form:

* *

,
minij kl kl ij ijk l

c c d d   (2)

where dklij denotes the cost of transition from node kl to node ij, dij is the cost associated with node ij
and ܿ௞௟∗ is the minimum cost computed for all the valid predecessors of the node ij. In the second
phase of the algorithm the lowest cost path originating at the starting point towards the terminal row
is back-tracked.

The complement of the trail probability map obtained from the FCN is used to initialize the node
cost of each node. Only transitions from five of node’s nearest predecessors, as shown in Figure 6, are
considered valid. The transition cost dklij is empirically assigned as [0.2, 0.1, 0, 0.1, and 0.2] to penalize
the transitions from distant neighbors thus favoring low-curvature trails.

i,j

i-1, j-2 i-1, j-1 i-1, j i-1, j+1 i-1, j+2 k,l= { (i-1,j-2), (i-1,j-1),(i-1,j),(i-1,j+1),(i-1,j+2) }

dkl->ij = {0.2, 0.1, 0, 0.1, 0.2}0.2
0.1

0.2
0.1

Figure 6. Transition to the node (i,j) is allowed only from its nearest five predecessors {k,l}. The cost
of transition dklij from its predecessors is assigned empirically as [0.2, 0.1, 0, 0.1, 0.2].

The trail line is computed after backtracking the lowest cost path from the starting point towards
the terminal row. A position on the terminal row where the trail terminates gives the endpoint of a
local trail segment.

Figure 7. Trail detection using the proposed method. The trail detected by dynamic programming
(blue color), the smoother version produced by fitting a second order polynomial (green color), and
the local trail segment annotated by a human observer (red color) are superimposed on the test image.

Figure 6. Transition to the node (i,j) is allowed only from its nearest five predecessors {k,l}. The cost of
transition dkl→ij from its predecessors is assigned empirically as [0.2, 0.1, 0, 0.1, 0.2].

The trail line is computed after backtracking the lowest cost path from the starting point towards
the terminal row. A position on the terminal row where the trail terminates gives the endpoint of a local
trail segment.

Sensors 2018, 18, 178 7 of 14

2.4. Starting Point and Terminal Row of the Trail

In our experiments we only consider the case where the images are captured with a camera
facing straight towards the trail. Once the trail has been segmented from the surrounding areas, we
strive to find the starting point and a row of an image where a trail vanishes (referred from now on
as a ‘terminal row’) of the local segment of the trail visible in the input without imposing any
constraints on a camera position with respect to a trail. The starting point of a trail is determined by
computing the center-of-mass of the segmentation map at the bottom row, and the terminal row is
the first upper row containing the trail points. Dynamic programming is then used on the trail
probability map to find the trail line originating from the starting point towards the terminal row.

3. Dynamic Programming for Trail Line Detection

Dynamic programming (DP) is a global optimization method for computing the optimal path
between two nodes that is based on the Bellman’s local optimality principle [32]. In our case, we
consider each pixel in the trail probability map as a node of a corresponding search graph in order to
find a trail line from the starting point to the terminal row. Dynamic programming consists of two
phases that gets executed in order to find the lowest-cost path. In the first phase, the minimum cost
of visiting any of the graph nodes from the terminal row nodes is computed using a recurrent formula
of the general form:

* *

,
minij kl kl ij ijk l

c c d d   (2)

where dklij denotes the cost of transition from node kl to node ij, dij is the cost associated with node ij
and ܿ௞௟∗ is the minimum cost computed for all the valid predecessors of the node ij. In the second
phase of the algorithm the lowest cost path originating at the starting point towards the terminal row
is back-tracked.

The complement of the trail probability map obtained from the FCN is used to initialize the node
cost of each node. Only transitions from five of node’s nearest predecessors, as shown in Figure 6, are
considered valid. The transition cost dklij is empirically assigned as [0.2, 0.1, 0, 0.1, and 0.2] to penalize
the transitions from distant neighbors thus favoring low-curvature trails.

i,j

i-1, j-2 i-1, j-1 i-1, j i-1, j+1 i-1, j+2 k,l= { (i-1,j-2), (i-1,j-1),(i-1,j),(i-1,j+1),(i-1,j+2) }

dkl->ij = {0.2, 0.1, 0, 0.1, 0.2}0.2
0.1

0.2
0.1

Figure 6. Transition to the node (i,j) is allowed only from its nearest five predecessors {k,l}. The cost
of transition dklij from its predecessors is assigned empirically as [0.2, 0.1, 0, 0.1, 0.2].

The trail line is computed after backtracking the lowest cost path from the starting point towards
the terminal row. A position on the terminal row where the trail terminates gives the endpoint of a
local trail segment.

Figure 7. Trail detection using the proposed method. The trail detected by dynamic programming
(blue color), the smoother version produced by fitting a second order polynomial (green color), and
the local trail segment annotated by a human observer (red color) are superimposed on the test image.

Figure 7. Trail detection using the proposed method. The trail detected by dynamic programming
(blue color), the smoother version produced by fitting a second order polynomial (green color), and the
local trail segment annotated by a human observer (red color) are superimposed on the test image.

The trail generated by DP is a coarse estimate of the trail line which at time seems unrealistic.
As natural trails have low curvature, they can be coarsely approximated with e.g., low order polynomials.

Sensors 2018, 18, 178 8 of 13

We assumed that 2nd order polynomial are fit to the points generated by DP to obtain a more realistic
trail, as shown in Figure 7.

4. Experiments and Results

4.1. Performance of the Patch-Based Trail Classifier

The performance of the patch-based DNN to classify trail and non-trail patches was evaluated on
the testing set defined in Section 2.1. The accuracy of the patch based classifier on the testing set is
87.91%, and the confusion matrix is given in Table 1. The receiver operating characteristic (ROC) curve
of the DNN is shown in Figure 8 where the area under the curve (AUC) is measured as 0.857.

Table 1. Confusion matrix of the Deep Neural Network.

Predicted (→) Actual (↓) Trail Non-Trail

Trail 11,357 6082
Non-Trail 4562 66,059

Sensors 2018, 18, 178 8 of 14

The trail generated by DP is a coarse estimate of the trail line which at time seems unrealistic.
As natural trails have low curvature, they can be coarsely approximated with e.g., low order
polynomials. We assumed that 2nd order polynomial are fit to the points generated by DP to obtain
a more realistic trail, as shown in Figure 7.

4. Experiments and Results

4.1. Performance of the Patch-Based Trail Classifier

The performance of the patch-based DNN to classify trail and non-trail patches was evaluated
on the testing set defined in Section 2.1. The accuracy of the patch based classifier on the testing set
is 87.91%, and the confusion matrix is given in Table 1. The receiver operating characteristic (ROC)
curve of the DNN is shown in Figure 8 where the area under the curve (AUC) is measured as 0.857.

Table 1. Confusion matrix of the Deep Neural Network.

Predicted (→) Actual (↓) Trail Non-Trail
Trail 11,357 6082

Non-Trail 4562 66,059

Figure 8. Receiver operating characteristic (ROC) curve of the DNN.

4.2. Performance of the Trail Detection System

In order to compute the accuracy of the proposed system, 294 trail images were sampled from
the test subfolder GP010050 at a regular interval of five images. A human annotator was asked to
mark the local trail segment visible in each of the 294 images. Examples of human marked trail
segment is shown in red color in Figure 7. The error between the human annotated (starting, end)
point and the corresponding points computed using the proposed system was calculated. The
histogram of errors in determining the starting point horizontal coordinate (we assume starting point
is at the bottom row) is as shown in Figure 9a. The distribution of errors (Δx, Δy) produced by the
proposed method in determining the endpoint of the local trail is as shown in Figure 9b, and the error
histograms corresponding to the x and y component of the endpoint are shown in Figures 9c,d,
respectively.

Figure 8. Receiver operating characteristic (ROC) curve of the DNN.

4.2. Performance of the Trail Detection System

In order to compute the accuracy of the proposed system, 294 trail images were sampled from the
test subfolder GP010050 at a regular interval of five images. A human annotator was asked to mark
the local trail segment visible in each of the 294 images. Examples of human marked trail segment
is shown in red color in Figure 7. The error between the human annotated (starting, end) point and
the corresponding points computed using the proposed system was calculated. The histogram of
errors in determining the starting point horizontal coordinate (we assume starting point is at the
bottom row) is as shown in Figure 9a. The distribution of errors (∆x, ∆y) produced by the proposed
method in determining the endpoint of the local trail is as shown in Figure 9b, and the error histograms
corresponding to the x and y component of the endpoint are shown in Figure 9c,d, respectively.

Sensors 2018, 18, 178 9 of 13
Sensors 2018, 18, 178 9 of 14

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

 Absolute value of errors (Δx)

Co
un

t(%
)

-250 -200 -150 -100 -50 0 50 100 150 200
-150

-100

-50

0

50

100

Proposed method

 Column error (Δx)

 R
ow

 e
rro

r (
Δy

)

(a) (b)

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

 Absolute value of errors (Δx)

 C
ou

nt
(%

)

5 15 25 35 45 55 65 75 85 95 105 115 125 135
0

5

10

15

20

25

30

35

40

 Absolute value of errors (Δy)

Co
un

t (
%)

(c) (d)

Figure 9. Performance of the proposed method. (a) Histogram of errors in determining the starting
point; (b) The distribution of errors (Δx, Δy) in determining the endpoint; (c) Histogram of errors
corresponding to the x component (Δx) and; (d) the y component (Δy) in determining the endpoint of
the local trail segment.

The overall accuracy of the proposed system was measured by computing the average deviation
between the detected curve and the ground truth trail curve. The average pixel deviation between
these two curves is computed using:

1 1

nN L
d g
i i

n i
deviation mean x x

 

  
  

  
 (3)

where N is the number of images under test, Ln is the length of ground truth trail curve and xg and xd
are the column coordinates of the ground truth and the detected trail curves; respectively. The length
of the detected trail curve is made equal to that of the ground truth curve either by extrapolation
(when its length is shorter than the ground truth length) or by clamping (when its length is longer
than the ground truth length).

We also measured the internal variance of human performance in the task of trail detection. We
prepared another set of ground truth trail curves (for same 294 trail images) using a separate human
annotator and computed the average deviation between the curves annotated by the two different
annotators. The average deviation between the ground truth trail curves and the curve detected using
the proposed method is presented in Table 2.

In addition we also compare the performance of the proposed method to a modified shape
template based method of [7]. We implemented a modified version of the trail detection method of
[7], where we consider the output of our FCN as the most likely segmentation of the trail, instead of
generating the same by grouping super-pixels. A best fitting triangle was then found by computing
the shape score as suggested in [7]. The performance of this method is summarized in Table 2.

Figure 9. Performance of the proposed method. (a) Histogram of errors in determining the starting
point; (b) The distribution of errors (∆x, ∆y) in determining the endpoint; (c) Histogram of errors
corresponding to the x component (∆x) and; (d) the y component (∆y) in determining the endpoint of
the local trail segment.

The overall accuracy of the proposed system was measured by computing the average deviation
between the detected curve and the ground truth trail curve. The average pixel deviation between
these two curves is computed using:

deviation = mean

{
N

∑
n=1

Ln

∑
i=1

∣∣∣xd
i − xg

i

∣∣∣} (3)

where N is the number of images under test, Ln is the length of ground truth trail curve and xg and xd

are the column coordinates of the ground truth and the detected trail curves; respectively. The length
of the detected trail curve is made equal to that of the ground truth curve either by extrapolation
(when its length is shorter than the ground truth length) or by clamping (when its length is longer
than the ground truth length).

We also measured the internal variance of human performance in the task of trail detection.
We prepared another set of ground truth trail curves (for same 294 trail images) using a separate
human annotator and computed the average deviation between the curves annotated by the two
different annotators. The average deviation between the ground truth trail curves and the curve
detected using the proposed method is presented in Table 2.

Sensors 2018, 18, 178 10 of 13

Table 2. Mean pixel deviation between two trail curves.

Comparison Mean Pixel Deviation

Human1-Human2 9.45
Human1-proposed method 22.7
Human2-proposed method 25.28
Human1-shape_guided [7] 25.68
Human2-shape_guided [7] 27.85

In addition we also compare the performance of the proposed method to a modified shape
template based method of [7]. We implemented a modified version of the trail detection method
of [7], where we consider the output of our FCN as the most likely segmentation of the trail, instead of
generating the same by grouping super-pixels. A best fitting triangle was then found by computing
the shape score as suggested in [7]. The performance of this method is summarized in Table 2.

The average deviation of 9.45 pixels between the trail curves annotated by two human annotators
shows the subjective nature of the task and the challenges involved due to ambiguity between trail
and non-trail areas in natural environment. The mean deviation of the proposed method averaged
over the pixel deviations with the two human annotators is 23.99 pixels, whereas the average deviation
for the shape guided method of [7] is worse at 26.76 pixels.

For an input image of size 752 × 480, the overall system runs at 1 frame per second on a Intel(R)
Core(TM) i7-6700K CPU 4.00 GHz (8 cores) equipped with an NVIDIA GTX980 GPU. The computations
of DNN are performed on the GPU, whereas dynamic programming is implemented only on the CPU.
For our unoptimized implementation, we note that 98% of the total computation time is utilized by
dynamic programming. The test efficiency can be increased by a factor of four by applying dynamic
programming to a down-sampled (by 2) trail-probability map without any increase in the mean pixel
deviation of the resultant trail.

4.3. Detecting Trail in New Environment

A disadvantage of learning-based systems is that the learning process requires a huge amount of
training data. When a limited amount of training data is available, the learned system may not generalize
well to scenarios not covered in the training dataset. For the application considered in this work, it is
practically not possible to collect and label a huge dataset covering all the variations present in natural
trails and its surrounding environment. However, a DNN trained on other similar tasks can be adapted
to generalize to a new environment by fine tuning with a small amount of training data from the new
environment. In this section we adapt the DNN already trained on the IDSIA dataset to detect trails on our
new set of trail data. The new data was collected from a hiking trail near the city of Jeonju, South-Korea
with a hand-held camcorder. The trail had varying elevation profiles and passed through light temperate
deciduous forest. The images, shown in Figure 11, were captured during winter and the trail was covered
with dried leaves making it completely different from the data used in Section 2.1. Only a fraction of the
available data was used to adapt the DNN to this new environment. 10 random frames from a section of the
trail were sampled and a total of 5038 patches of 100× 100 pixels each were extracted from these images.
1536 patches belonged to the “trail” whereas 3502 patches belonged to the surrounding “non-trail” areas.
90% of the data was used for fine tuning the DNN and the remaining 10% was set aside for validation.
Similarly, a total of 14,900 (5748 “trail” and 9152 “non-trail”) patches were extracted for testing the DNN.
The parameters of this DNN already trained on the IDSIA dataset were adapted to the new trail by
fine-tuning the parameters of the last two fully-connected layers only while keeping other layer parameters
fixed. The confusion matrix of the DNN trained on IDSIA data and the DNN fine-tuned with the new trail
data are given in Tables 3 and 4, respectively. The accuracy of the DNN on the new testing set before fine
tuning is 74.50%, whereas after fine-tuning the accuracy is increased to 90.67%. The ROC curves of network
trained on the IDSIA dataset, the network trained on the new data only, and the network trained on IDSIA
and fine-tuned on the new data are as shown in Figure 10.

Sensors 2018, 18, 178 11 of 13

Table 3. Confusion matrix of the Deep Neural Network trained on the IDSIA data.

Predicted (→) Actual(↓) Trail Non-Trail

Trail 3776 1972
Non-Trail 1827 7325

Table 4. Confusion matrix of the Deep Neural Network fine–tuned with our data.

Predicted (→) Actual (↓) Trail Non-Trail

Trail 4872 876
Non-Trail 514 8638

Sensors 2018, 18, 178 11 of 14

Table 4. Confusion matrix of the Deep Neural Network fine–tuned with our data.

Predicted (→) Actual (↓) Trail Non-Trail
Trail 4872 876

Non-Trail 514 8638

Figure 10. Receiver operating characteristic (ROC) curves of the network trained the IDSIA dataset,
the network trained on the new data only, and the network trained on IDSIA and fine-tuned on the
new data.

(a)

(b)

(d)

(c)

Figure 11. Results of trail segmentation in new environment. (a) Sample images from new trail; (b)
Trail map generated by the (b) DNN trained on IDSIA dataset; (c) DNN trained on the small dataset
from the new environment; (d) DNN trained on IDSIA dataset and fine-tuned with data from the new
environment.

Figure 10. Receiver operating characteristic (ROC) curves of the network trained the IDSIA dataset,
the network trained on the new data only, and the network trained on IDSIA and fine-tuned on the
new data.

Sensors 2018, 18, 178 11 of 14

Table 4. Confusion matrix of the Deep Neural Network fine–tuned with our data.

Predicted (→) Actual (↓) Trail Non-Trail
Trail 4872 876

Non-Trail 514 8638

Figure 10. Receiver operating characteristic (ROC) curves of the network trained the IDSIA dataset,
the network trained on the new data only, and the network trained on IDSIA and fine-tuned on the
new data.

(a)

(b)

(d)

(c)

Figure 11. Results of trail segmentation in new environment. (a) Sample images from new trail; (b)
Trail map generated by the (b) DNN trained on IDSIA dataset; (c) DNN trained on the small dataset
from the new environment; (d) DNN trained on IDSIA dataset and fine-tuned with data from the new
environment.

Figure 11. Results of trail segmentation in new environment. (a) Sample images from new trail; (b) Trail
map generated by the (b) DNN trained on IDSIA dataset; (c) DNN trained on the small dataset from the
new environment; (d) DNN trained on IDSIA dataset and fine-tuned with data from the new environment.

Sensors 2018, 18, 178 12 of 13

From Figure 10, it may seem that training only on the smaller new dataset is sufficient and fine
tuning is not required, however this observation is misleading due to the limited amount of samples
in the test set. A closer look at the qualitative results of trail segmentation, as shown in Figure 11,
produced by the corresponding FCN’s on whole images reveal that the network trained only on the
small dataset doesn’t generalize well and the fine-tuned network produces better segmentation maps.

5. Conclusions

The presented research has shown that deep neural networks combined with dynamic programming
can be successfully applied for trail detection in natural environments. The adopted strategy of training a
conventional deep neural network on small, fixed-size image chunks, followed by reshaping the network to
fully convolutional architecture, capable of detailed analysis of arbitrary-sized images, proved to produce
sub-optimal trail segmentation maps. Also, it has been shown that the network can be fine-tuned
for recognizing novel, distinct subcategories of trails based on relatively small new training datasets.
Introduction of dynamic programming on the sub-optimal segmentation maps resulted in achieving higher
level trail approximations than using fixed shape templates for the trail.

The proposed method worked on single image inputs without incorporating any temporal information.
However, in real world trail detection applications executed on ground-based or aerial robots, addition
of temporal information could increase trail detection and trail tracking performance in several aspects.
For example, confronting analysis results among consecutive frames can lead to reducing segmentation
errors, and available, previous trail approximation results could speed up the forthcoming procedures.

Acknowledgments: This research was supported by the Korea Research Fellowship Program funded by the
Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2015H1D3A1062316).

Author Contributions: Shyam Prasad Adhikari and Changju Yang conceived and designed the experiments;
Changju Yang prepared the data and Shyam Prasad Adhikari performed the experiments; Krzysztof Slot gave
important comments in organizing the paper and revised the writing; Hyongsuk Kim directed the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chiu, K.Y.; Lin, S.-F. Lane detection using color-based segmentation. In Proceedings of the IEEE Intelligent
Vehicles Symposium, Las Vegas, NV, USA, 6–8 June 2005.

2. Kong, H.; Audibert, J.Y.; Ponce, J. General road detection from a single image. IEEE Trans. Image Process.
2010, 19, 2211–2220. [CrossRef] [PubMed]

3. Dahlkamp, H.; Kaehler, A.; Stavens, D.; Thrun, S.; Bradski, G.R. Self-supervised Monocular Road Detection
in Desert Terrain. In Robotics: Science and Systems; The MIT Press: Cambridge, MA, USA, 2006; Volume 38.

4. Yenikaya, S.; Yenikaya, G.; Düven, E. Keeping the vehicle on the road: A survey on on-road lane detection
systems. ACM Comput. Surv. 2013, 46, 2. [CrossRef]

5. McCall, J.C.; Trivedi, M.M. Video-based lane estimation and tracking for driver assistance: Survey, system,
and evaluation. IEEE Trans. Intell. Transp. Syst. 2006, 7, 20–37. [CrossRef]

6. Hillel, A.B.; Lerner, R.; Levi, D.; Raz, G. Recent progress in road and lane detection: A survey. Mach. Vis. Appl.
2014, 25, 727–745. [CrossRef]

7. Rasmussen, C.; Scott, D. Shape-guided superpixel grouping for trail detection and tracking. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008.

8. Rasmussen, C.; Lu, Y.; Kocamaz, M. Appearance contrast for fast, robust trail-following. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009.

9. Santana, P.; Correia, L.; Mendonça, R.; Alves, N.; Barata, J. Tracking natural trails with swarm-based visual
saliency. J. Field Robot. 2013, 30, 64–86. [CrossRef]

10. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2012;
pp. 1097–1105.

http://dx.doi.org/10.1109/TIP.2010.2045715
http://www.ncbi.nlm.nih.gov/pubmed/20371404
http://dx.doi.org/10.1145/2522968.2522970
http://dx.doi.org/10.1109/TITS.2006.869595
http://dx.doi.org/10.1007/s00138-011-0404-2
http://dx.doi.org/10.1002/rob.21423
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442

Sensors 2018, 18, 178 13 of 13

12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA,
2015; pp. 91–99.

13. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528.

14. Garg, R.; Gustavo, C.; Reid, I. Unsupervised CNN for single view depth estimation: Geometry to the
rescue. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; pp. 740–756.

15. Flynn, J.; Neulander, I.; Philbin, J.; Snavely, N. DeepStereo: Learning to predict new views from the
world’s imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 27–30 June 2016; pp. 5515–5524.

16. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.;
Migimatsu, T.; Cheng-Yue, R.; et al. An empirical evaluation of deep learning on highway driving. arXiv, 2015.

17. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. Deepdriving: Learning affordance for direct perception in
autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015; pp. 2722–2730.

18. Bojarski, M.; Davide, D.D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.;
Muller, U.; Zhang, J.; et al. End to End Learning for Self-Driving Cars. arXiv, 2016.

19. Yuan, Y.; Jiang, Z.; Wang, Q. Video-based road detection via online structural learning. Neurocomputing 2015,
168, 336–347. [CrossRef]

20. Wang, Q.; Gao, J.; Yuan, Y. Embedding Structured Contour and Location Prior in Siamesed Fully
Convolutional Networks for Road Detection. IEEE Trans. Intell. Transp. Syst. 2017. [CrossRef]

21. Hadsell, R.; Sermanet, P.; Ben, J.; Erkan, A.; Scoffier, M.; Kavukcuoglu, K.; Muller, U.; LeCun, Y. Learning
long-range vision for autonomous off-road driving. J. Field Rob. 2009, 26, 120–144. [CrossRef]

22. Giusti, A.; Guzzi, J.; Cireşan, D.C.; He, F.L.; Rodríguez, J.P.; Fontana, F.; Faessler, M.; Forster, C.;
Schmidhuber, J.; Di Caro, G.; et al. A machine learning approach to visual perception of forest trails
for mobile robots. IEEE Robot. Autom. Lett. 2016, 1, 661–667. [CrossRef]

23. Smolyanskiy, N.; Kamenev, A.; Smith, J.; Birchfield, S. Toward Low-Flying Autonomous MAV Trail
Navigation using Deep Neural Networks for Environmental Awareness. arXiv, 2017.

24. A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots. Available online:
http://people.idsia.ch/~guzzi/DataSet.html (accessed on 5 January 2018).

25. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 770–778.

28. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
Sardinia, Italy, 13–15 May 2010; pp. 249–256.

29. Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.;
Bengio, Y. Theano: A CPU and GPU Math Expression Compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), Austin, TX, USA, 28 June–3 July 2010.

30. Kingma, D.; Adam, J.B. Adam: A method for stochastic optimization. arXiv, 2014.
31. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
32. Bellman, R. Dynamic Programming; Courier Corporation: North Chelmsford, MA, USA, 2013.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2015.05.092
http://dx.doi.org/10.1109/TITS.2017.2749964
http://dx.doi.org/10.1002/rob.20276
http://dx.doi.org/10.1109/LRA.2015.2509024
http://people.idsia.ch/~guzzi/DataSet.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Patch-Based Deep Neural Network for Trail Segmentation
	Dataset
	Deep Neural Network for Image Patch Classification
	Deep Neural Network Architecture
	Deep Neural Network Training

	Fully Convolutional Neural Network for Trail Map Generation
	Starting Point and Terminal Row of the Trail

	Dynamic Programming for Trail Line Detection
	Experiments and Results
	Performance of the Patch-Based Trail Classifier
	Performance of the Trail Detection System
	Detecting Trail in New Environment

	Conclusions
	References

