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Abstract: Studies have shown that about half of the injuries sustained during long-distance running
involve the knee. Cadence (steps per minute) has been identified as a factor that is strongly associated
with these running-related injuries, making it a worthwhile candidate for further study. As such,
it is critical for long-distance runners to minimize their risk of injury by running at an appropriate
running cadence. In this paper, we present the results of a study on the feasibility and usability of
RunningCoach, a mobile health (mHealth) system that remotely monitors running cadence levels of
runners in a continuous fashion, among other variables, and provides immediate feedback to runners
in an effort to help them optimize their running cadence.
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1. Introduction

Researchers have found that up to 79% of long-distance runners are expected to sustain a
running-related injury in the lower extremities [1]. Such injuries could potentially be avoided if
the long-distance runner runs within the boundaries of the recommended cadence throughout the
entire run. Findings have shown that optimal control over one’s cadence can aid the runner in reducing
the impact forces on joints [2], reducing muscle soreness and fatigue [3] and increasing efficiency
of oxygen use [4]; all of which reduce the possibility of injuries to the runner. Given the numerous
advantages of maintaining an optimal cadence throughout a run for long-distance runners, we are
interested in examining a mobile health (mHealth) solution to monitoring and coaching cadence for
long-distance runners, aimed at minimizing their risk of injury.

There are many commercial apps that are widely used by runners, including MapMyFitness,
Runtastic, Adidas miCoach, Nike+, RunKeeper and Endomondo [5–10]. The primary function of most
of these apps is to monitor the runner’s performance and to provide an interface for the runner to
view statistics related to her or his runs. Some of these apps allow the runner to import workout plans
that are aimed at motivating the runner and improving her or his performance. These apps, however,
do not address minimizing the risk of injury, which creates a gap in the technology that we attempt to
fill in this work.

To close this gap, we have designed an Android smartphone app, RunningCoach, to coach
long-distance runners. In this work, we define “long-distance runners” as individuals who every week:
(i) run for at least five kilometers (or three miles) in distance; or (ii) run at least one session that is one
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hour or longer in duration; which is the definition of the Association of Athletics Federations (IAAF).
RunningCoach is designed to monitor the runner’s cadence, among other parameters, and to coach her
or him based on the collected data. In this paper, we discuss the design and findings of a pilot study
that aimed to explore the feasibility and usability of this app. This is the first of a series of studies that
aim to refine the system and validate its efficacy regarding the reduction of injuries.

This paper extends on previous published work in [11]. Our previous paper was focused on
the design and implementation details of the system. In this paper, we describe a feasibility and
usability study for RunningCoach and report the findings of this study. Distinctly from the previously
published paper, the contributions of this paper are (i) presenting evidence for the feasibility and
usability of a coaching system based on remote monitoring for long-distance running; and (ii) reporting
on lessons learned that developers can rely on to build robust mobile coaching solutions for fitness
and health applications.

Concretely, we aim to understand the following factors related to the use of RunningCoach. First,
we study the battery consumption incurred by the app as a usability factor. Second, this work examines
general usability-related scenarios that are related to the robustness of the system, such as its ability to
recover from faults (e.g., server is down, lost internet connection, etc.). Third, we examine the accuracy
of the system in estimating the runner’s cadence, speed, and other variables, as perceived by the
runner. Fourth, we examine the privacy-related aspects of using this app and study the acceptability of
the users to this technology through a post-study questionnaire. Finally, we explore a possible analysis
relating cadence, speed and the gradient of elevation (in the path of the run) as a potential way to
assess injury-related performance, which is a gateway to future directions of this research effort.

The rest of the paper is organized as follows. In Section 2, we survey the literature on related
research. Subsequently in Section 3, we describe the study objectives and the study protocol.
In Section 4, we give a brief summary of the architecture and implementation of RunningCoach
before presenting and discussing the results of the study in Section 5. We finally close the paper in
Section 6 by reflecting on our conclusions and directions of future research.

2. Related Work

Injuries stemming from long-distance running are studied extensively in the literature. In addition,
there are many commercial products available in the market that aim to assist runners to avoid injuries
and to provide motivational support to lead a healthier lifestyle. These commercial products include
variety of smartphone apps, often paired with wearables or insoles, that measure fitness markers
such as energy expenditure, speed, distance, heart rate, and cadence (see the review of related fitness
trackers in [12] and apps in [11,13,14]).

In this section, we focus on reviewing scientific literature on (i) studies that utilize remote
monitoring systems for runners, (ii) studies that link running cadence to running-related injuries and
(iii) studies that explore the usability and feasibility of mHealth systems in the context of running.

2.1. Monitoring Systems for Runners

Researchers have studied the effectiveness of various features present in remote monitoring
systems for runners. Boratto et al. studied the effectiveness of u4fit, a human-in-the-loop remote
monitoring system linking runners with professional fitness coaches to enhance runner safety and
engagement [15]. Similarly, Vos et al. describe the design process and evaluation of Inspirun,
a smartphone application for recreational runners [16]. Both papers emphasize the importance of
personalized running experience and coaching. Both u4fit and Inspirun track heart rate, running
speed, and GPS coordinates to keep track of the runs and to determined the intensity of the training.
Given an intensity profile and training results, u4fit relies on a human fitness coach to provide feedback
on compliance with the personalized training regimen. On the other hand, Inspirun relies on the
smartphone application itself to provide coaching feedback. u4fit is aimed at improving and sustaining
runner motivation, while Inspirun is designed to help recreational runners set new performance-related
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goals. The authors, however, do not report on any quantitative results in their publications. Unlike u4fit
or Inspirun, our efforts are focused on minimizing injuries in a specific subpopulation of runners,
i.e., long-distance runners. Moreover, in RunningCoach, the training regimen is focused on cadence,
which has been reported as one of the factors associated with injury and performance.

Our long-term goal, which we aim to achieve after a series of further studies, is to develop a
recommendation algorithm that outputs an optimal cadence level for an individual runner, based on
her or his physical parameters (e.g., age, gender, height and weight), data from previous runs
(e.g., performance, heart rate, etc.) and other factors related to injuries.

2.2. Taxonomy of Running Cadence

Up to 79% of long-distance runners are expected to sustain a running-related injury within a
six month period, most commonly located at the knee [1,17]. Patellofemoral pain syndrome (PFPS)
was observed as the most frequent issue encountered in running injuries out of the 26 most common
running injuries [18]. PFPS is a condition that causes severe to mild knee pain, which often starts due
to a dramatic change in the training regimen [19]. In addition to this reason, numerous biomechanical
risk factors can contribute to causing PFPS. These factors include kinematic abnormalities, patellar
maltracking, overuse, and excessive compressive stresses on the patellofemoral joint cartilage [20–24].
Running as an activity generates much larger cartilage stress at the patellofemoral joint as compared
to other everyday activities [25,26]. A clear way forward to mitigate PFPS would be to find a method
to reduce the magnitude of the patellofemoral joint force during running. By running at 5% to 10%
above one’s preferred cadence has been shown to be beneficial in reducing pain, increasing training
ability in runners with PFPS and minimizing the risk of injury to the patellofemoral joint. For instance,
Lenhart et al. report a decrease of 14% in peak patellofemoral joint force as a result of a 10% increase
in cadence relative to the preferred cadence level [27]. Heiderscheit et al. report a significant decrease
in the absorbed mechanical energy at the knee as a result of 5% to 10% increase in cadence relative
to the runner’s preferred cadence level [2]. These reductions in peak patellofemoral joint force and
absorbed mechanical energy may reduce the risk of running-related knee injuries [2,27].

The importance of optimizing one’s cadence as a long-distance runner is twofold. First,
subtly increasing and optimizing cadence during a run assists runners with preventing common
running-related injuries [2]. From an injury-prevention standpoint, this enables both professional and
hobbyist long-distance runners to continue running. Second, optimizing and maintaining a consistent
cadence throughout a run enables long-distance runners to conserve energy and as such enhance
performance [28,29]. Unlike novice long-distance runners, advanced long-distance runners avoid
deviations from their optimal cadence when they are in a fatigued state as such deviations lead to an
increased energy cost [30–32].

Given the numerous benefits of optimizing cadence for long-distance runners, many mHealth
technologies were created to meet this need. In order to provide effective feedback on running
cadence, many have studied the relationship between music and setting the running cadence through
auditory-motor synchronization [33,34]. These studies provide evidence of the ability of music to affect
the running cadence and ultimately improve performance [33] and reduce injuries [2,34].

2.3. Feasibility and Usability of mHealth Systems

In spite of findings that show that a lack of focus on usability and feasibility issues for
mHealth systems would lead to an increase in overall costs and delays in successful implementation,
few mHealth interventions have explained the attributes that contribute to their success and the
aspects that have led to failed implementations [35–37]. A 2013 systematic review of mHealth
literature by Fiordelli et al. identified that only 14% of the studies reported on user assessment
of the technology [38].



Sensors 2018, 18, 175 4 of 20

Through post-study questionnaires in the first user study, Vos et al. managed to surface issues
with Inspirun on the accuracy of speed measurements which were later addressed in the third release
of Inspirun [16].

In mHealth, understanding the privacy preferences of users and their acceptability of the
technology is a determining factor in its success and adoption due to the amount of sensitive data
typically collected by the apps. Very few studies, however, report on the privacy-related aspects of the
mHealth systems they adopt [13,39].

3. Materials and Methods

3.1. Study Objectives

The short-term objective of the study is to assess the feasibility and usability of RunningCoach,
a mobile health (mHealth) remote coaching system for long-distance runners which aims to optimize
their running cadence. We are particularly interested in understanding (i) how long-distance runners
interact with RunningCoach; (ii) how long-distance runners perceive the accuracy of the data collected
by RunningCoach; and (iii) what running-related analyses can be performed with the collected data
to provide further insights into the system and runner’s performance. These immediate objectives
are set for the purpose of guiding the future iterations of the study. Understanding the interactions of
the user with the system, and investigating any potential usability issues with the system allow us to
address those issues in the future. Moreover, exploring potential running-related analyses helps us
devise hypotheses, that can be validated in future studies.

The long-term objective of our research is to achieve personalized coaching for an individual
runner that will be integrated in the proposed telemonitoring system. We envision this coaching
system to include the ability to take advantage of the anthropometric parameters of each individual,
the individual’s previous performance, and other factors related to injuries in order to devise a training
regimen that is tailored to that individual. Ultimately, this personalized training regimen shall provide
recommendations to the runner regarding cadence and speed, depending on the specific consecutive
day of training and the previously-collected running data.

In order to achieve these objectives, we have designed a series of user studies, which are approved
by the Institutional Review Board at University of California, Berkeley. In this paper, we describe
the design and findings of the first study in this series, which is concerned with the feasibility and
acceptability of such telemonitoring technology.

3.2. Training Regimen

In order to guide the runners to improve their running cadence, the system has to provide a
training regimen tailored to each subject. Before establishing the plan for improving the runner’s
cadence, the system has to establish the runner’s baseline cadence. Note that the different runners
may have different levels of experience and different body types. As such, a single and fixed
training regimen may not be generalizable to all runners. Therefore, RunningCoach collects two
types of information from the runner in order to set her or his personalized training regimen. First,
RunningCoach collects information about the runner’s physical parameters. The collected physical
parameters in the app include age, gender, height, weight, and leg length as measured from the hip
joint to the ground (Figure 1a). Second, RunningCoach sets the desired cadence improvement curve,
by collecting information about the runner’s baseline, target cadence and the length of the proposed
training regimen. In the current version of RunningCoach, all of the aforementioned parameters are
manually set by the runner.

In future iterations of the app, a recommended training regimen will be determined by collecting
data over a small set of consecutive runs and comparing runner’s own baseline with similar runners.
Similar runners will be identified using the provided physical parameters and their baseline data.
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(a) (b) (c)

Figure 1. (a) A screenshot depicting the physique profile screen; (b) a screenshot depicting an
exponential cadence training regimen; and (c) a screenshot depicting a linear training regimen [11].

After the runner provides her or his physical parameters, a default training regimen is suggested.
This training regimen consists of a starting cadence level (baseline), a target cadence level, the length
of the training regimen, and the steepness of the cadence improvement curve. The default length of
the training regimen is 90 days, which can be altered by the subject. The reason for selecting 90 days
as a default value was to maintain the length of the training regimen with the length of the study.
The family of parametric cadence training regimens adopted by RunningCoach follows an exponential
improvement curve, as follows.

C(d) =
CN · eαN − C0

eαN − 1
− C0 − CN

e−αN − 1
· e−αd, (1)

In Equation (1), C(d) denotes the suggested cadence on day d. C0 denotes the baseline cadence
of the runner, where CN denotes the target cadence. The parameter α controls the steepness of the
personalized training regimen (larger values imply steeper improvements) and N denotes the length
of the training regimen in days. By setting values for C0, N, CN and α, a training regimen is established
that guides the runner to achieve the target cadence level CN within N days.

The family of training regimens described in Equation (1) is the solution of the function
C(d) = A + B · e−αd with initial conditions C(0) = C0 and C(N) = CN . Moreover, as α approaches
0, the training regimen described in Equation (1) approaches a training regimen with a linear
improvement curve. Concretely, limα→0 C(d) = C0 +

CN−C0
N · d. This claim is formally shown in [40].

The reasoning behind devising training regimens with gradual improvements in cadence is to minimize
the risk of injury due to sudden changes in the runner’s training routine. In addition, the exponential
training regimen allows for larger increases around the baseline and then levels off towards the higher
target cadence to prevent over-training.

Examples of the training regimens are depicted in Figure 1b,c, where Figure 1b shows a training
regimen with exponential improvements in cadence (α > 0) and Figure 1c shows a training regimen
with a linear improvement curve of cadence (α→ 0).

As stated earlier, in the current version of RunningCoach, the cadence training regimen settings
are manually set by the runner. Eventually, we aim to develop an algorithm that would recommend,
to each runner, her or his ideal cadence level (CN), and a personalized improvement steepness curve (α),
that are based on her or his physique profile depicted in Figure 1a as well as data from her or his
previous runs. In addition, we aim to use heart rate data to dynamically alter the training regimen
for the runner in a way that is sensitive to the runner’s physical ability. In order to achieve this
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goal, we aim to use the data collected in this study (and the future iterations of this study) to train
a recommendation algorithm in a way that mimics the true improvement trajectories of the runners.
Further studies are needed to validate the efficacy of such a recommendation algorithm. More details
about the adopted training regimen can be found in [11,40].

3.3. Study Protocol

3.3.1. Screening and Recruitment

Members of the University of California Berkeley community were sought for participation in
this study. Potential participants were screened according to two criteria. First, participation was only
allowed to those who are current long-distance runners. This requirement was placed in an effort to
not subject the study participants to the risks of running, if they do not regularly run (e.g., injury).
By limiting participation in the study to those who regularly run long distances, we are taking measures
to minimize the risks of participation in the study. For screening purposes, we use the definition of
“long-distance runner” that is used by the International Association of Athletics Federations (IAAF),
which states the following:

A long-distance runner is someone who every week (i) runs for at least 5 km (or 3 miles) in
distance; or (ii) runs at least one session that is 1 h or longer in duration.

The second screening criterion limited participation to subjects who owned an Android
smartphone running Android 4.3 (Jelly Bean MR2) or newer. This requirement allowed us to better
assess acceptability and usability qualities of the proposed system, by requesting that participants use
their own smartphones for the purposes of the study. In turn, any feasibility or usability issues arising
from using an unfamiliar smartphone, if it were to be provided by the study, are thus eliminated.

After the screening of each candidate subject, the researcher administering the process obtained
her or his consent for participation in the study. After the consent process, the researcher conducted the
initial set up procedure for the subject. This procedure entailed providing the subject with a Jarv Run
heart rate chest strap monitor [41]. Afterwards, the RunningCoach app was installed on the subject’s
smartphone and paired with the heart rate monitor. Subsequently, the subjects were instructed on the
proper way of using the system by providing instructions specific to pre-, during, and post-running use
(e.g., how to wear the heart rate chest strap, where to secure the phone during the run, etc.). Finally, the
researcher demonstrated the use of the RunningCoach app and its features to the subject. The subjects
were encouraged to ask any questions related to the system or the protocol.

In total, six subjects were recruited for the study. The study spanned from February 2017 to July
2017. The subject demographics and physical parameters are summarized in Table 1.

Table 1. The demographics of the recruited subjects.

Subject Identifier Gender Age (years) Weight (kg) Height (cm)

s28ikk Male 23 67 183
i989kje Female 24 60 168
w32jbl Female 24 70 178
b01k1o Female 25 55 165
p542ok Male 25 72.5 177
j83bbl Male 26 72.5 185

3.3.2. Study Procedures

During the main part of the study, the subjects were asked to secure the phone on their body in a
comfortable area (e.g., on the shoulder or on the hip) during their routine runs with the RunningCoach
app. In addition, the subjects were asked to wear the heart rate chest strap that was provided
to them, which connects to the app via Bluetooth and sends the data in real time. The subjects
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were not specifically asked to use the app during each run but rather to use it on their own terms.
The reason subjects were not instructed to use the app during each run is that some recruited subjects
are competitive runners who preferred to use a smartphone only during a part of their weekly
training routine.

During each run, the app collects information about the runners’ estimated energy expenditure,
cadence, speed, heart rate from the chest strap, and total distance covered. In addition to these
estimates, the app collects the following two variables: (i) whether or not the screen light is on;
and (ii) the battery level. Before and after each run, the app collects single estimates of the heart
rate using two different vision algorithms, one from a video of the subject’s face and another from
a video of the subject’s index finger [11]. These algorithms were previously only validated under
controlled conditions. Since an external heart monitor was used in the study, we used this opportunity
to get an insight on the usability of the implemented heart rate measurement algorithms in the field.
Note that this was not a controlled validation and should therefore be treated as exploratory only.
Table 2 summarizes the types of data collected before, during and after the run.

Table 2. The data types collected about every run.

Data Type Source of Estimation Collection Frequency

Energy expenditure Accelerometer. Every 60 s.
Cadence Accelerometer. Every 15 s.

Speed GPS. Every 5 s.
Heart rate External sensor (chest strap). Every 1 s.
Heart rate Video of the runner’s face. Once before the run and once after the run.
Heart rate Video of the runner’s index finger. Once before the run and once after the run.

Distance covered GPS. Every 5 s.
Screen light Android API. Every 30 s.

Battery consumption Android API. Every 60 s.

After each run, subjects were asked to fill a post-run survey inquiring about the run. The questions
asked in the post-run survey were: (i) “How tired were you on a scale of 1-5 where 3 is your typical
level of fatigue after long runs prior to using the app, 5 is very tired and 1 is least tired?” (ii) “After
viewing your run data, were any of the measurements inaccurate to the best of your assessment?
(Choose all that apply from Speed, Cadence, Heart Rate, Energy Expenditure, Distance);” (iii) ‘‘If
you selected any of the choices in the previous question, please explain;” and (iv) “Please provide
any other comments regarding your experience using the app.” Figure 2a depicts an example screen
showing some of the run statistics after the run, and Figure 2b depicts an example of a question
from the post-run survey as displayed in the app. The post-run survey provides information about
(i) the perceived accuracy of the system; (ii) the usability of the system; and (iii) how hard the training
regimen is pushing the runners in terms of performance. The post-run questions about the perceived
accuracy of the app’s collected data are shown to the subject after the run statistics are presented
(e.g., Figure 2a).

In the process of designing the post-run survey, the 1 to 5 scale of fatigue was selected for the
following reasons. The adopted scale is a reduced version of rating-of-fatigue (ROF), which is a
10-point scale designed to measure level of fatigue [42]. Other seemingly relevant measures have been
studied in the sports literature, including Borg’s perceived exertion scale [43]. Borg’s scale is not a
good fit for our purposes because it is designed to capture subjective exertion. Some researchers argue
that perceived exertion, the subjective experience of how hard a physical task feels, is different from
perceived fatigue and should not be used to measure perceived fatigue levels [42]. Moreover, Borg’s
scale is designed to follow the heart rate of the subject by multiplying it by 10. Since we are collecting
heart rate data, Borg’s score would not provide additional information, and therefore, a reduced
fatigue scale that is similar to ROF was selected for our purposes.
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(a) (b)

Figure 2. (a) A screen showing some of the run-statistics after a run; and (b) an example of a question
in the post-run survey [11].

Subjects were asked to perform the aforementioned procedure for a period of 3 months. By the
end of that period, the subjects answered an exit acceptability and privacy survey about the system
and the study.

4. System Design

The architecture and implementation of the system, which are based on the Berkeley
Telemonitoring framework [44], are described in [11]. For completeness, we briefly discuss them
in this section; for more details, we refer the reader to [11,39,44].

4.1. RunningCoach App

The purpose of the RunningCoach app is to serve as the remote monitoring node. As such,
it collects data about each run, including energy expenditure, cadence, speed, heart rate, and distance
covered. In addition, the app administers the surveys after each run. Figure 3 depicts various screens
from the RunningCoach app. Concretely, Figure 3a depicts the home screen of the app, listing previous
runs; Figure 3b,c depict two screens shown during the run, presenting the runner’s cadence and
speed, respectively.

Finally, the app delivers the real-time feedback to the runners regarding their cadence and/or
speed levels (depending on the settings). If the cadence or speed are outside of a preset range around
the target values of the day, according to the training regimen, the phone provides haptic feedback
(vibration) and auditory cues (beeping) to the runner. The vibration and beeping patterns depend
on whether the runner is higher than the target value or lower than it, allowing the runner to adjust
accordingly. This preset range can be set by the subject in the app, with a default value of 10% (around
the target cadence or speed).
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(a) (b) (c)

Figure 3. (a) A screenshot of the home screen of RunningCoach, summarizing the past runs; (b) a
screenshot from the app during a run showing the cadence significantly lower than its target value
(outside the 10% range of the target cadence); and (c) a screenshot from the app during the run showing
the speed within acceptable range of its target value (within 10% of the target speed) [11].

4.2. Backend

The RunningCoach server backend is written in Java and uses the Berkeley Telemonitoring
framework as well. To communicate with the client nodes, the backend uses the Tele-Interfacing (TI)
protocol with Transport Layer Security (TLS), as described in [44]. The backend receives the data
from the client nodes in the form of data jobs, unpacks the jobs back into encapsulators using job
handlers (conforming to the Berkeley Telemonitoring framework) and stores the data in a MySQL
database. Each data job is attached to a subject identifier that is uniquely set to each runner in the app.
The identifiers are used to identify the source of the data (Table 1). The subject identifier is stored in
the database along with the corresponding data.

4.3. Dashboard

In addition to the backend, we designed a dashboard that provides a way to visualize the data
about the runs. The dashboard can be accessed on the web using a browser. Figure 4 depicts an
example plot of cadence data for three different runs by three different subjects. In the runs reported
in Figure 4, runner s28ikk reported holding the phone in his hand during run 11, contrary to the
instructions given to the subjects to place the smartphone around the hip or on the shoulder during
the run. In all of the runs in the figure, we observe that the runners stopped momentarily, which
is corroborated by the other data variables (e.g., speed, GPS, etc.). This explains the seemingly low
cadence readings in these figures. These issues will be discussed further in Section 5.

The paths of the runs can also be visualized with a colored overlay, representing the recorded
values from various data sources, such as cadence, speed, or heart-rate. For example, the dashboard
can provide a plot of the path of the run with the color from green to red indicating the value of
cadence (range: zero to 200), as depicted in Figure 5.
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Figure 4. An example plot from the dashboard, depicting the estimated cadence during runs 11, 22 and
26 by subjects s28ikk, p542ok and i989kje, respectively [11].

Figure 5. An example plot of the path of run 47 by subject p542ok.

5. Results and Discussion

5.1. General Statistics

The six subject enrolled in this study used the app to collect data of a total of 22 runs amounting
to more than 22.5 h of data. In Figure 6a, we present the durations of the runs for the different subjects.
In addition, Figure 6b depicts the total distances traveled during each run for the different subjects.
Finally, Figure 7a presents the deviation of the runner from his or her target cadence for the run
in question. Note that in some runs, the subjects elected to disable GPS data collection, and those
runs were omitted from Figure 6b, which is why the number of runs per runner is different in the
different plots.
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We note that for the majority of runs, runners were running at a cadence lower than the
recommended cadence for the run, signaling the need for more personalized training regimens
as stated in our long-term goals. Moreover, we note that the auditory and haptic feedback is provided
whenever the cadence is more than 10% off the target value for the run, for a period of 30 s or longer.
Therefore, runs that had a deviation in cadence within a 10% window of the target cadence level
should be considered as ones that met the target cadence. Moreover, runner s28ikk reported running
with the phone in his hand. As will be detailed in Section 5.3.2, this violates the design assumptions
of the cadence estimation algorithm, which explains the large deviation from the target cadence for
that runner.

In order to provide contextual perspective, we present the self-reported levels of fatigue after
each run by the different subjects in Figure 7b.
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Figure 6. (a) The durations of the different runs as observed in each subject (N = 22); and (b) the total
distances of the different runs as observed in each subject (N = 20).
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Figure 7. (a) The deviation of the average cadence from the target cadence for each run, expressed in
percentage points (N = 22); and (b) subject-reported level of fatigue after each run. A value of three
represents the level of fatigue reported after an average run; a value of one is least fatigued; and value
five is most fatigued after an average run (N = 22).

5.2. Usability

5.2.1. Battery

Optimizing battery consumption is key to adoption of smartphone-based telemonitoring
applications [39,45]. In this study, the subjects did not report any usability issues regarding battery
consumption. However, as described earlier, battery levels were collected during every run (once
a minute). From these data, we calculate the amount of battery that is consumed during each run.
Note that the battery consumption captures the total battery consumption of the smartphone, not just
of our app. Since the different runs are different in duration, we normalize this consumption by time,
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in order to get a measure of “battery percentage consumed per hour”. These results are depicted
in Figure 8a.

We note that different subjects have different battery consumption profiles, which may be caused
by one or a combination of the following factors. First, different phones have different battery
consumption profiles; and the phones used in this study were not provided by us and therefore are
heterogeneous. Second, battery consumption depends on factors that are external to RunningCoach,
such as listening to music and whether the music is streamed or played locally. Third, battery
consumption profiles depend on the carrier and the strength of cellular coverage [46]. However, the
data provide evidence that RunningCoach alone is not very burdensome on battery and can consume
as low as 5% battery/h. This is even true for subject b01k1o, who manifests high battery consumption
patterns in general. In one run, RunningCoach consumed less than 5% battery/h, which can be
explained by the factors listed above.
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Figure 8. (a) The amount of battery consumption (in %) per hour during the different runs by the
different subjects (N = 22); and (b) the perceived accuracy of the collected data by the runners
(N = 22).

5.2.2. General Usability

We now turn to general usability issues as reported by the subjects. First, there were two instances
where extreme fault-tolerance was tested during the study. In one instance, a subject reported that the
phone’s operating system malfunctioned in the middle of a run; but when the phone was restarted
after the run, the app resumed its operation from the previous state. In this instance, the data before
the crash were not lost, even though they were not submitted to the server prior to the crash.

In another instance, the server was down for a prolonged period of time, during which several
runs were taken by the different subjects. Because of the built-in fault-tolerance mechanisms in the
Berkeley Telemonitoring framework, no data were lost during the server downtime. The app was
able to recover all the data and send them to the server once the server was back online. It is worth
reporting that one subject uninstalled the app manually before the server was restarted; which caused
the data not yet sent to the server to be lost. These incidents validate the fault-tolerance implementation
described in [44].

Besides the aforementioned issues, we further summarize general usability reports made by the
study subjects in Table 3.
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Table 3. Summary of usability reports by the subjects.

Usability Issue Description

Equipment Subject b01k1o complained that the heart rate chest strap caused skin
irritation. The subject was asked to stop using the strap immediately in
order to limit the risk of harm. The strap itself was later tested and no
fault in it was found.

Screen light Data from the screen light sensor shows that subject i989kje regularly
checked the app’s interface to view his or her running parameters such
as cadence, speed, distance, time and heart rate throughout the run (the
screen was turned on more than 80% of the time during subject i989kje’s
runs). All other runners ran generally with the screen turned off, only
using the haptic vibration and auditory cues as the primary means of
feedback (the screen was turned off more than 80% of the time during
their runs).

User Experience Subject i989kje provided a usability feedback in the app regarding the
speed and cadence estimates, stating “I stopped a few times during the
run and the app did not take it into account”. The data corroborate
the feedback by the subject, which seems to have stopped on multiple
occasions as can be seen from Figure 4 (run 26). It is worth noting that the
app provides an option to pause the current run, which the subject did
not use in this instance. Moreover, multiple subjects suggested that speed
should be presented in units of mins/mile rather than miles/h

5.3. Perceived Accuracy

As part of the routine post-run surveys, we inquired about the perceived levels of accuracy of
the collected data. Concretely, we asked the subjects: “After viewing your run data, were any of the
measurements inaccurate to the best of your assessment? (Choose all that apply from Speed, Cadence,
Heart Rate, Energy Expenditure, Distance)”. The responses to this question are presented in Figure 8b.
As follow-up to this question, the subjects were also asked to provide additional information when
they thought any measurements were inaccurate.

Energy expenditure was not perceived as inaccurate by the runners. A possible explanation to
this is that it is difficult for people to gauge their own energy expenditure during physical activity.
For distance, one subject reported: “if you’re counting total miles traveled, then it should be closer
to 5, but if you’re just counting miles run, that’s maybe accurate.” The measured distance (from GPS
data) during this particular run was 3.72 miles, which reflects the total miles traveled. After carefully
reviewing the data, it seems that the run monitoring was not started until the runner was in the middle
of the run. We concluded this because the runner always took the same route, except in this run where
the monitoring started from a middle point in that route (which accounts for the difference in mileage).
In the following sections, we discuss in more detail the perceived accuracy for the heart rate and
cadence measurements.

5.3.1. Heart Rate

We note that the heart-rate measurements were deemed to be the least accurate in our system.
According to the responses of the follow-up questions in the post-run survey, the subjects found
the pre- and post-run single heart-rate measurements using the computer vision algorithms to be
inaccurate. This discontent can be explained by the fact that these algorithms were mainly tested in
a controlled lab environment, and failed to perform at the same level when taken in uncontrolled
settings. For example, on different occasions, subject p542ok responded to the follow-up questions
with “I am not at 70 bpm immediately after a run [(referring to the vision-based estimates)]”, “face and
finger[-based estimates] are way off as usual”, (they were lower than 55 bpm) “finger[-based estimates]
is still way too low after the run” and “finger heart rate after run was 45”. In the first instance reported
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above, the heart-rate chest strap did indeed record 70 bpm at the end of the run. In all other instances
when the subject complained about the accuracy of the vision-based heart-rate estimates, the heart-rate
chest strap recorded values that were significantly higher than the vision-based ones. No feedback
was given regarding the accuracy of the chest heart-rate strap.

On one occasion, the same subject took video-based heart rate estimates without actually running.
The subject did not report any perceived inaccuracy in the estimates, which were 61 bpm and 62 bpm
for the finger-video-based and face-video-based estimates, respectively. Other subjects did not provide
textual feedback regarding the accuracy of the heart-rate measurements.

5.3.2. Cadence

The subjects’ responses to the follow-up question provided valuable insight as to why they
perceived certain cadence measurements as inaccurate. These reasons are sometimes explained by
improper use of the system. For example, as a follow-up to choosing “cadence” as inaccurate in the
survey, one subject responded: “Cadence too low; possibly because I held phone in hand”. The cadence
algorithm was designed to work around the hip area or on the shoulder, which explains why during
this run the average cadence of the runner was as low as 72 steps/min.

In another example, a subject reported that “My measured cadence was also lower than
expected—I was mostly running on beat to songs that had 150+ bpm”. The measured cadence
of the run is depicted in Figure 9b. The average cadence of the run was 111 steps/min, which includes
the segments in the beginning of the run as well as some segments when the runner slowed down
(or perhaps momentarily stopped running). After excluding these data points, the average increased
to 124 steps/min, which is still lower than the subject’s self-reported cadence of 150 steps/min. For
reference, Figure 9a depicts the speed during the same run, which shows that the runner would slow
down in many instances. One potential reason for those momentary slow-downs is the urban path
that the runner selected, which is corroborated by the run’s GPS data (the path passed through many
street intersections).
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Figure 9. (a) The estimated speed (m/s) during run 54 by subject b01k1o; and (b) the estimated cadence
(steps/min) during run 54 by subject b01k1o.

5.4. Acceptability

In Figure 10 we present the results of the acceptability portion of the post-study questionnaire.
It is worth noting that the study subjects’ acceptability of this technology is lower than the acceptability
reported in other telemonitoring applications such as in congestive heart failure (CHF) [46,47]. This can
be attributed to multiple factors. First, some subjects voiced preference for using a monitoring device
with a smaller form factor than a smartphone for this application. For example, one subject stated:
“I’m a big fan of using running watches instead of phone apps because the form factor is much more
comfortable. That’s the main reason I was so negative about using a phone-based athletic trainer”.
In that regard, we note that the Berkeley Telemonitoring framework supports general Android devices,
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not only Android smartphones. Therefore, an Android smart watch application can be implemented
using the same framework, averting the form factor challenge. Second, people may be more likely to
tolerate certain drawbacks in a technology if they perceive a higher utility and value in it. As such, the
higher levels of acceptability in CHF telemonitoring and intervention (e.g., [46]) may be attributed to the
potentially higher perceived utility and value of the technology to the subjects in that application [47].

Figure 10. The results from the acceptability portion of the post-study questionnaire (N = 6).
SD = “strongly disagree”, D = “disagree”, N = “neutral”, A = “agree” and SA =“strongly agree” [47].

Another aspect of the post-study questionnaire focused on the privacy aspects of the technology,
as perceived by the subjects. In that portion of the questionnaire, the subjects were asked the following
set of questions. “Sometimes the smartphone might automatically record, or ask you to report, specific
kinds of information about your health or behavior, such as your weight, your mood, or your blood
pressure. The following questions will help us understand how comfortable you are with the idea
of other people knowing these things about you”. In Figure 11 we present the subjects’ responses
indicating their levels of comfort in sharing data about their (i) weight; (ii) level of physical activity;
(iii) exact physical location at any point in time; (iv) heart-beat rate; (v) types of physical activity they
do; and (vi) mood at any point in time, with: (i) doctors and nurses who provide them healthcare;
(ii) researchers who study athletic training technology; (iii) public health professionals who study
the effects of exercise and athleticism; (iv) insurance companies that set their health insurance prices;
and (v) close family members who care about their health [47].

In particular, the data provide an indication that the subjects’ level of comfort in sharing data
about their fitness, GPS, health and mood with technology researchers is comparable to sharing
those variables with their family and physicians [47]. In contrast, the subjects were noticeably less
comfortable sharing these variables with their health insurance companies, suggesting that they are
not privacy indifferent. These two observations combined suggest that the provided technology is
at an acceptable level from a privacy point of view. In addition to the ethical reasons for designing
privacy-aware data-collection systems, these findings are of great significance because they have direct
implications on the adoption of these systems [39].

We note that the privacy acceptability levels are similarly high to those reported in the other
applications such as CHF [46,47].
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Figure 11. The responses to the privacy portion of the post-study questionnaire about the subjects’
comfort levels sharing different data variables with different parties (N = 6) [47].

5.5. Elevation, Cadence and Speed

It is interesting to understand whether runner’s speed or cadence change as a result in elevation
changes during the run. That is, we ask whether cadence or speed drop as a result of running uphill
and whether they increase as a result of running downhill, relative to the cadence and speed during
running on a flat surface. This type of analysis can be beneficial in analyzing the performance of
each runner for each run. In order to perform this analysis, we split each run into segments of one
minute each. Each segment was defined as “running uphill” if the net change in elevation is at least
+2 m. Each segment was defined as “running downhill” if the net change in elevation is at most −2 m.
All other segments were marked as running on flat surface. In order to estimate elevation for each
data point, we used the Digital Terrain Elevation Data (DTED) maps from the United States Geological
Survey (USGS) [48] to estimate the elevation of each GPS data point during the run.

During each run and for each surface type (uphill, flat and downhill), we explored the distribution
of cadence and speed. It is ideal if the speed and cadence remained unaffected due to terrain elevation
changes. The data indicate that, for most runners, cadence is less affected by terrain elevation changes
than speed. Figure 12 displays this analysis for two runs by two different runners. In run 50, there
seems to be a noticeable change in speed due to terrain elevation changes; however, cadence is less
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affected. In run 52, there is a smaller effect of terrain elevation changes on both speed and cadence,
indicating a more consistent pace during the run (which is desired). This type of running performance
analysis is possible with the type of data collected by RunningCoach. One can envision this analysis as
a source of intervention to help the runner minimize injuries, although further longitudinal studies are
necessary to validate this claim.
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Figure 12. The relationship between elevation changes (ascending/descending), cadence and speed
for runs 50 and 52 by subjects i989kje and b01k1o, respectively.

5.6. Limitations of the Study

The presented study has several limitations. First, the number of subjects in the study (sample
size) is small. While all recruited subjects are considered long-distance runners per definition, their
training regimens in total distances traveled per run were quite diverse. Some subjects were in general
not users of smartphone apps for running, therefore their expectations and responses may have been
different than of the subjects who are users of such applications on a more regular basis. Since the goal
of this study was to assess the feasibility and the usability of the developed telemonitoring framework,
less emphasis was given on the rigid study protocol that would perhaps result in larger number of
collected runs during the three months. The study instead aimed to investigate how often the runners
would use RunningCoach app during their runs and what type of information can be extracted from
the collected data. A sample of the results was presented in this paper. To evaluate in more detail
the running performance of individual runners and their changes over time, given the feedback on
the cadence, the subjects in future studies will be required to perform certain number of runs per
week. Such data collection across larger pool of subjects would provide the data needed to achieve the
long-term goal of this research, i.e., to tune the training models to individual runner’s physique and to
evaluate the efficacy and potential benefits of such training for prevention of injuries.

Furthermore, feedback from the users indicated that the large form factor of the smartphone may
not be as convenient for long-distance runners due to the mounting inconvenience and additional
weight. The use of a smartphone for casual monitoring of daily activities may be preferred over
wearable devices as people tend to carry their smartphone throughout the day. On the other hand,
to measure the athletic performance, wearable sensors may be more convenient. As the Berkeley
Telemonitoring framework is compatible with any Android device, the future iterations of this system
may include the use of a smart watch or other wearable technology.
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6. Conclusion

Studies suggest that optimizing cadence is an important factor in reducing the risk of sustaining a
running-related injury and in improving overall running performance. In this work, we presented
a feasibility study utilizing an mHealth solution to long-distance running cadence-based coaching,
called RunningCoach. Future versions of the system will include a music player that selects music
with beats that are on the desired cadence for the day. The feedback from the subjects in this study will
also be incorporated in the next version of the system.

Based on the findings of the study, there are early signs of satisfaction from a usability and
perceived accuracy point of view, with one exception. The video-based heart rate estimates were
perceived as inaccurate in this study. As such, the study findings indicate that there is a need for
tools that systematically assess the accuracy of sensory estimates and guide the estimation algorithms
accordingly. For example, the algorithms for estimating cadence would be different when the phone
is secured on the hip versus when the phone is held by the runner in her or his hand. In these cases,
it is the responsibility of the system to employ the correct estimation algorithm by detecting the
conditions under which the system is being used. More generally, the study findings suggest that audit
mechanisms need to be developed and employed for each estimation algorithm, in order to ensure,
verify and quantify the accuracy of its outputs.

One important usability issue to be studied in the future is the motivation of runners to use
this and similar mHealth technologies for tracking their runs. There is clearly an interest of (novice)
runners to improve cadence for performance gains as is evident from a number of apps that provide
feedback through music or otherwise [5–10]. However, the evidence for the motivation of using apps
for injury prevention is to the best of our knowledge limited. There are several behavioral factors,
specific to runners [49], that influence their attitudes towards the level of training and higher risk of
injuries. As noted by [50], injury-preventive actions that require behavior modification need to take
into account that runners’ perceived susceptibility to sport has multiple predictors, including previous
experiences, neuroticism and obsessive passion. Mobile applications for runners thus provide an
opportunity to address injury prevention through individualized feedback and various motivational
mechanisms, which were out of the scope of this pilot study.
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