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Abstract: A considerable amount of research has focused on monitoring structural damage using
Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is
important to note the challenges and unresolved problems that disqualify currently developed
monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI)
technique, has shown its potential to overcome remaining problems and challenges. Unfortunately,
the recently developed neural network algorithms have not shown significant improvements in
the accuracy of rate and the required processing time. In order to fill this gap in advanced neural
networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for
improving the structural damage detection via: (1) Savitzky-Golay (SG) filter, using both first and
second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP
Network (SFAN). Those three methods were employed to analyze the EMI data experimentally
obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches.
In this present study, the damage scenarios were simulated by attaching a small metallic nut at three
different positions in the aluminum plate. We found that the proposed method achieves a hit rate of
more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore,
this approach results in an improvement of 93% when considering the best case scenario.

Keywords: SHM; electromechanical impedance; fuzzy ARTMAP network; probabilistic neural
network; artificial intelligence; Euclidean distance; piezoelectricity; pattern recognition

1. Introduction

Structural integrity monitoring using Non-Destructive Evaluation (NDE) methods have become
more popular in recent years as they can be applied to a wider range of applications. Expensive and
critical infrastructures must be monitored to achieve their designed lifetime and avoid premature
failures [1]. To monitoring the conditions of infrastructure, NDE methods have been created,
which are based on different techniques, such as: acoustic emission, Eddy current, radiography,
thermography, shearography, Lamb waves, and electromechanical impedance [2]. Many mechanical,
civil, and aerospace engineering structures are subjected to severe environmental conditions and
different types of loads. Over the years, these structures suffer from degradation and can be damaged
without prior warning. A strict preventive maintenance process can prevent major damage and ensure
the smooth operation of the infrastructure. However, this process significantly increases the operating
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costs of infrastructure. For this reason, Structural Health Monitoring (SHM) techniques have been
extensively studied to increase safety and reduce maintenance costs.

Electromechanical Impedance (EMI) and Lamb waves techniques have been widely used in
recent years for SHM research [3-12]. Both methodologies require the knowledge of the response
signals of the undamaged structure. This response is called the baseline, which is used as a reference
for the identification of possible structural damage through the comparison of responses under
normal and unknown operational conditions. Historically, signal analysis was usually carried out
through multivariate analysis, sensor data fusion, and machine learning approaches [13]. Recently,
the nearest neighbor algorithm, which is a machine learning approach, has been proposed to
analyze data obtained from PZT (Lead Zirconate Titanate) sensors to investigate different types
of damage: such as breaks, corrosion, cracks, impact damage, delamination, disunity, and breaking of
fibers [14]. The above-mentioned earlier method was based on guided waves. Related to the subject
of damage identification in SHM systems using the EMI technique, other suitable methods have
been introduced and explored in previous studies [10,12]. Recently, researchers proposed a method to
identify crack-length-related resonances in acoustic emission waveforms for monitoring structural
health [15]. They conducted several experiments based on the fatigue analysis in order to obtain the
acoustic waveforms based on Acoustic Emission (AE). The AE waveforms were analyzed and classified
into three types based on the similar nature in both the time and frequency domains. The results
confirmed that the local crack resonance phenomenon was due to the interaction between the AE
waveform and fatigue crack, with this phenomenon related to the crack length.

The EMI principle was first applied to SHM systems in 1994 [16]. Subsequently, several SHM
systems on EMI have been developed and used in a variety of applications. Recently Baptista et al. [17]
conducted an experimental study of effects of temperature on the electrical impedance of the PZT
sensors used in the EMI technique. In another study, Castro et al. investigated the feasibility of using
low-cost piezoelectric sensors to identify partial discharges in the mineral insulating oil of power
transformers [18]. In a recent study, Kim and Park [19] proposed a novel method for estimation of
the early age strength of concrete by introducing an artificial neural network algorithm to process
the dynamic response measurements of concrete structures. They used both electromechanical
impedances and guided ultrasonic waves signals, which were obtained from an embedded piezoelectric
sensor module. In this sense, Hoshyarmanesh et al. [20] proposed a low-cost, compact, and portable
transceiver for exploring periodic structural health monitoring of a rotary structure using the EMI
technique. The authors highlighted that the compactness of the proposed system is an essential
requirement for rotary structures when compared with bulky, heavy, and expensive impedance
analyzers. The authors also claimed that their system is time-efficient, although they did not provide
any reference value for comparison. More advances in the identification of structural damage based
on the EMI can be found in previous studies [20-25].

Methods based on Neural Networks (NN) have been widely proposed in the context of SHM
applications [19,26-28]. Recently, new classes of artificial networks, such as Probabilistic Neural
Network (PNN) and Fuzzy ARTMAP Network (FAN), have been proposed based on their considerable
performances, such as improved accuracy rates and reduced time consumption. More details of the
methods based on PNN and FAN being applied to identify structural damage in SHM systems can
be found in references [10-12,29-31] and references [32,33], respectively. Ali et al. [34] highlighted
that the application of the Simplified Fuzzy ARTMAP Network (SFAN) in large-scale systems or
online-based methods has significantly enhanced the accuracy of predictions and reduced processing
times. They have shown that SFAN has the best performance in terms of training/testing speed when
compared to the Back-Propagation network. De Oliveira and Inman [35] proposed a method based on
SFAN, which they applied to structural damage assessment in composite structures using the EMI.
In the same context, they [36] presented a comparative analysis of SFAN and PNN for identifying
structural damage growth. The authors have used the EMI in the time-domain to address analysis
in terms of the influence of certain SFAN setup parameters. As a result, they showed that SFAN
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parameters have a substantial influence on the SFAN performance. Hence, they proposed a method
for choosing SFAN optimal parameters automatically [37].

Unfortunately, there are many grey areas in signal processing algorithms for PZT data analysis.
Furthermore, there are no details regarding the integration of Savitzky-Golay (SG) filters with both
first and second derivatives in SFAN/PNN via the EMI technique. This paper proposes a novel
and reliable strategy for damage detection with higher confidence levels, which is based on neural
networks. The performance of the proposed methodology will be experimentally investigated using
an aluminum plate containing three attached PZT patches. The structural damage will be simulated as
metallic nuts, which will be bonded at three different positions.

In summary, the two main objectives of this present study are:

e develop an improved method based on the EMI technique that is relatively more efficient in terms
of damage detection rates when compared to state-of-the-art approaches; and,

e develop a method that uses a short dataset for training neural networks, which would be a great
advantage for practical applications in SHM systems.

The remainder of the paper is organized as follows. Firstly, the main theoretical fundamentals
are addressed. Secondly, the proposed method is presented, followed by the experimental results and
discussion. Finally, the paper highlights the final remarks of the proposed approach.

2. Theoretical Fundamentals

2.1. Electromechanical Impedance

The basic principle behind the Electromechanical Impedance (EMI) technique is the application of
high frequency structural excitations (typically greater than 20 kHz) through the surface-bonded
PZT transducers, before measuring the impedance of structures by monitoring the current and
voltage applied to the PZT. Changes in the PZT’s impedance indicate changes in the structure,
which subsequently can be used to interpret damage status. For the last two decades, extensive SHM
research has been performed to investigate the damage status of structural components that are
used in mechanical, aerospace, and civil engineering applications. These techniques have been
extended to be used in piezoelectric sensor diagnostics, concrete cure monitoring, and biomedical
applications. In practice, a source with variable frequency results in the structure vibrating at its
natural frequencies, with these responses used to estimate the Frequency Response Function (FRF)
for computing EMI. The presence of damage will change these natural frequencies, causing shifts in
frequency and amplitude. Statistical metrics compute the differences between the healthy structural
condition (baseline) and the unknown conditions using EMI to detect either the presence or absence of
structural damage.

The technique based on the EMI for SHM applications was initially proposed by Liang et al. [16]
and is an important form of the Non-Destructive Evaluation (NDE) method. This technique uses PZT
transducers that are glued onto the monitored structure. When subjected to a mechanical stimulus,
the PZT transducer converts mechanical energy into electrical energy (sensor). When subjected to
an electric stimulus, the PZT transducer converts electric energy into mechanical energy (actuator).
Hence, when considering a linear PZT transducer, the EMI behavior can be described as follows [38]:

SEdt T
s "

where S represents the mechanical deformation, T is the mechanical stress, E is the electric field, D is

S
D

the charge density, s is the complacency, d is the piezoelectric deformation constant, and ¢ is the
permissiveness. The first line of the matrix describes the inverse effect of the PZT, while the second
one describes the direct effect. Figure 1 shows the structure, including the PZT, which is represented
by an electromechanical model of the mass-spring type with a single degree of freedom [16]:
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Figure 1. Electromechanical coupling between the PZT patch and the host structure.

In Figure 1, M represents the mass, K; is the elastic spring constant, and C is the damping
coefficient. If the transducer is excited through a sine wave source V with magnitude v and angular
frequency w, then it will produce a current I of magnitude i and phase ¢. Following this, the electrical
impedance of the PZT (Zg(w) can be determined, as follows [16]:

Z(w) GE

Vo1 )
m%ﬂ&ﬂ , )

Zg(w) = T~ @(533T -

where Z (w) and Z(w) represent the mechanical impedances for the transducer and monitored
E

XX’
Young’s modulus, transverse piezoelectric charge coefficient, geometric constant and imaginary unit,

structure, respectively. In Equation (2), €337, Yy, d3,, a and j represent the dielectric constant,
respectively. From Equation (2), we can see that any variation in terms of the structural impedance
will cause changes in the electrical impedance of the PZT patch, which subsequently causes changes in
the EMI signatures.

It is important to mention that the frequency range of the EMI, which exhibits greater sensitivity
and repeatability in detecting structural damage, depends on various structural factors, including
geometry, mass, boundary conditions, and other characteristics. The most advantageous concepts
behind the EMI techniques are related to their use of high frequencies in order to reduce the
interference from global conditions, such as environmental vibrations. In addition, excitations using
high frequencies make the wavelength relatively small, allowing for the detection of small damage,
such as cracks, delamination, and loosened screws. In many cases, such faults are missed by methods
that use low frequency excitation signals. Recommended reading related to using the EMI technique
in the SHM field can be found in previous studies [7,16,39].

2.2. Savitzky-Golay Filter

The Savitzky-Golay (SG) smoothing filter is considered as a type of Finite Impulse Response (FIR)
digital filter, which is represented by polynomial equations. Based on the least squares method [40],
the SG filter is typically used to smooth a noisy signal whose frequency range of the signal without
noise is large. In this type of application, the SG filter performs better than the standard FIR filters
because these tend to attenuate a significant portion of high frequencies of the signal along with noise.
Although the SG filter is more effective in preserving relevant high frequency components, SG filters
are less effective in removing high level noises in a signal. The particular formulation of the SG filter
preserves moments of higher orders much better than other methods. As a consequence, the widths
and amplitudes of the peaks for the desired signals tend to be preserved [41].
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The SG filter can be understood by considering an arbitrary degree d of the polynomial fit and to
an arbitrary N length of the noise data N-dimensional vector x. Assuming that N = 2M + 1 and is odd
for a sequence of M, a natural number, points symmetrical to each side of x, as follows [41]:

T
X:[X_M,...,X_1,X0,X1,...,XM] . (3)

The N data samples of x can be fitted by a polynomial, on d, of order 4 (0 < d < M), according to
the following equation:
fm=co+am+--+cgm? —M<m<M. )

where %, represents the mth smoothed data sample. The coefficients c; are real numbers and must
be determined optimally such that the corresponding polynomial curve best fits the given data [41].
Then, we define d + 1 polynomial basis vectors represented by s; (i=0, 1, ..., d) [41]:

si(m):mi—MgmgM. (5)
The corresponding S matrix (N x (d + 1)) is set to have s; as a column:
S = [so,81,.--,84] (6)

Hence, the smoothed values can be organized in a vector as follows:

M-

X=Bx=) ¢s;. )

i=0

However, the value yy = £ is given in terms of the center of the filter by according to below:

M
Yo = ng = Z bo (m) Xy 8)
m=—M

The N-dimensional vector x can be shifted of n instants of time as follows:

X — [xner- v Xn—1,Xn, Xp41, - '-/xn+M] T' (9)

A SG filter with length N and order d for smoothing noise in a sequence x(n) at the steady state
can be represented by [41]:

M
y(n)= Y, bo(—m)x(n—m). (10)
m=—M

By differentiating Equation (10) i times, we obtain the generic form of the filter output [40]:

M

yi(n) = i! Y. gi(—m)x(n—m)i=0,1, ...,d. (11)
m=—M

The use of derivatives is usually interesting when we want to removed offsets of the signals
during the pre-processing phase [42]. Usually, the first derivative removes the systematic offsets of
signal, while the second derivative can eliminate linear variations.

2.3. Neural Networks

This approach explores two different neural networks: Simplified Fuzzy ARTMAP Network
(SFAN) and the Probabilistic Neural Network (PNN). The FAN architecture has a supervised learning
network [43]. The Fuzzy ARTMAP Network (FAN) algorithm has two modules (ARTa and ARTb)
that are connected by the MAP Field module. Under this approach, the ARTa module is fed with EDs
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values computed from the smoothed signals (SG, first and second derivatives), while the ARTb module
has four recognition categories associated with four structural conditions (H, D1, D2, and D3). Figure 2
summarizes the architecture of the FAN. The FAN parameters are briefly described as follows. Briefly,
the choice parameter () defines the degree of interference in the selection of the most representative
neurons of the weight vector. The training rate (3) controls the speed at which the neural network
learns. The vigilance parameter (p) looks for differences among input patterns that are responsible
for creating new categories through similarity tests. The match tracking (¢) checks if there is a match
between the input (ARTa module) and output (ARTb module). Unlike the FAN algorithm, the SFAN
algorithm takes a further step when compared to FAN in reducing the computational overhead and
architectural redundancy, which slows down the training of the network [43]. Further details about
SFAN/FAN algorithms can be explored in previous studies [43,44].

Input Vector Input Target Value

Match Tracking

Figure 2. General diagram for the Fuzzy ARTMAP Network (FAN) network.

A Probabilistic Neural Network (PNN) [45] was introduced. The PNN consists of four layers of
neurons: input layer, pattern layer (hidden layer), summation layer, and output layer. The structure of
PNN is illustrated in Figure 3. Further details about PNN can be obtained from a previous study [45].

x1 X2 Input vector x xn

Max(>1,52)

Figure 3. General diagram for the Probabilistic Neural network (PNN).
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3. Proposed Method

The proposed methodology for detecting structural damage is presented here. The methodology
consists of three phases: acquisition of the EMI signals, forming datasets, and conducting the damage
detection module. In Phase 1, the impedance signals were obtained based on the EMI technique.
For that, three PZTs (PZT#1, PZT#2, and PZT#3) were attached to the monitored structure. Damage
scenarios were simulated by attaching a metallic nut at three different positions (D1, D2 and D3).
In Phase 2, datasets are formed by smoothing all of the impedance signals through the Savitzky-Golay
filter (SG), SG with first, and SG with second derivatives. From the smoothed signals, Euclidean
Distances (EDs) are computed. In Phase 3, the detection module is carried out using PNN/SFAN
algorithms. This module is responsible for classifying the presence (D1, D2 and D3) or absence of
structural damage (Healthy (H)). For example, Figure 4 sums up the whole methodological procedure
for PZT #1 after the application of the SG filter. This procedure is similar for other PZTs.

r————-—_-—_-—_—_—-— —_——_———_——_————
EMI - Signal Acquisition I DataSet: Input for Neural Networks e :
e _i | Set |
DAQ - . 4 | L g N Euclidean
LABVIEW »| EMI Signatures t |' Savitzky—Golay g oo |
| I
ot 10 . A i e . s W I |
/1 Testing
:_ == Set |
L l |_,._. L o 1
B Y - . Testing Labels: -
' -Training Labels: . I 1,2,3and 4 |
: ' 1, 2' 3' and 4 ' l l ..... Ii e l
? l I I 4 l
— PNN/SFAN < . + PNN/SFAN
! / — / |
' I
? oo | : |
L Training 1 1 Testing ;

Figure 4. General diagram for the proposed methodology for PZT#1 and Savitzky-Golay filter.

3.1. Signal Acquisition Based on EMI

The experiments were carried out on an aluminum plate with dimensions of 400 mm x 250 mm
x 5 mm. The plate was suspended using fishing lines in both tips to simulate free-free boundary
conditions. Posteriorly, three piezoelectric diaphragms (called PZT#1, PZT#2, and PZT#3) with
diameters of 12 mm were used, which had active elements of type P-7 PZT ceramics (Murata
Electronics). These diaphragms were bonded (using 3M Scotch-Weld Epoxy Adhesives DP460
Off-White) to the plate at three different positions (Figure 5). According to a previous study [46],
piezoelectric diaphragms (also known as buzzers) have a simple circular construction consisting of a
brass plate onto which a piezoelectric ceramic disc is fixed. These acoustic components are readily
obtained and inexpensive, which make them attractive for other applications apart from producing
sound. Following this, a chirp signal sweeping from 20 kHz to 110 kHz with an amplitude of 3 V was
used to excite the set PZT/structure. Although many authors have mentioned that the real part of EMI
in a frequency ranges from 20 kHz up to 40 kHz [6,7], the best frequency band of the EMI signature
for higher sensitivity and repeatability in detecting structural damage depends on several issues,
such as geometry, mass, boundary conditions, and other structure characteristics [47]. Furthermore,
the frequency range was chosen in this present study because in high frequencies, the structure suffers
less interference of global conditions when compared to low vibration modes [3]. Likewise, studies
have shown that the variation in terms of voltage amplitude used for exciting PZTs is insignificant
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when applied to the EMI-based methods [48]. In order to limit the electric current through the PZT
patch, the resistor R was set to 1 k().

DAQ 110 i 2
03@‘9 :; 80 1)

DAC R ‘ ‘

J [=] | =]
N wn
Ll ~ —

110
ADC || ‘—Hm D1 PZTH#2
: O +— @
) 240
80 \ AR 2 T

=l
|
=
5
=
w
F AN

90

. A | 400
——

Figure 5. Acquisition system along with the plate, PZT and damage positions (dimensions in mm).

The data were recorded using the acquisition system proposed in a previous study [49].
This system manages a multifunctional Data Acquisition (National Instruments DAQ) device model
USB-6259 (Figure 6). All of the configuration parameters, such as sample rate, frequency range,
and voltage amplitude, are easily set at the acquisition software, which was developed in LabVIEW [49].
The acquisition software provides the real, imaginary and module of the EMI. Furthermore,
the software provides the time for the response of the set PZT/structure. PZT response signals
were sampled at a rate of 1 MS/s. Further details about the sampling method and how both the FRF
and EMI are computed can be obtained from a previous study [49]. It is important to mention that
PZT patches were connected to the acquisition system via copper wires. The wires were soldered
with the PZTs using a tin—silver—copper solder. It is important to mention that throughout all of the
experiments, the environmental temperature was maintained at a constant 22 °C. All of the procedures
were conducted based on the EMI technique [7,16,20]. It is important to highlight that each PZT patch
acts as a sensor and actuator simultaneously (EMI-based technique).

e e aaa

Figure 6. Experimental apparatus including: the aluminum plate, containing three PZT patches, DAQ,
and computer running the acquisition software.

The responses of the pristine structure at each sensor were first acquired in order to form the
baseline (BL). Posteriorly, a new cycle considering the pristine structural condition was carried out to
form the healthy structural condition (H). Finally, a small nut with diameter of 12 mm and height of
7 mm (about 30 g) was separately bonded (using 3M Scotch-Weld Epoxy Adhesives DP460 Off-White)
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to the structure at three different positions in order to form features of the damaged structure (Figure 6).
Damage positions were called as D1, D2, and D3. The total impedance signals for each PZT sensor was
considered, with each structural condition being 60. The interval of the time between two consecutives
samples was 30 s. These signals are smoothed by SG and derivatives before computing Euclidean
Distances (ED) for the formation of datasets.

3.2. Forming Datasets

This paper proposes a new way of forming datasets in the SHM field. The acquired data
set was divided into six sub-data sets. The first was formed after all impedance signals in the
time-domain, having been smoothed by the Savitzky-Golay (SG) filter. From all smoothed signals,
Euclidean Distances (EDs) were computed as follows (Figure 4):

ED(BL,U) = | }_(BL; — Uj)>. (12)

-

]

I
—

where BL is the SG-smoothed signal for the baseline, U is the SG-smoothed signal for unknown
structural condition, and n is the total of samples. The structural response signals were smoothed by
a 10th polynomial order with frame length of 501 (SG setup). The second dataset was formed after
applying the first derivative over the SG-Smoothed signals (Equation (11)). From these smoothed
signals, EDs were also computed by using Equation (12). We named this dataset SGFD. The third
one is performed similarly. However, we computed the second derivative (Equation (11)) over the
SG-Smoothed signals before computing EDs (named as SGSD).

The last three datasets were instead formed using the real part of the EMI in the frequency
domain. Impedance signals (frequency domain) were smoothed by SG, followed by computation of
the first and second derivatives. EDs were computed from the obtained signals after applying the
derivatives. Similar ones were obtained for the real part of the EMI (frequency domain) for each PZT
sensor. We split each dataset, with 60% being used for training and 40% for testing. Each dataset has
60 samples for each structural condition (H, D1, D2, and D3), with a total of 240 samples. These datasets
were used as inputs for the SFAN/PNN classifiers. Within the dataset, we used 144 and 96 samples for
training and testing, respectively.

3.3. Damage Detection Phase

In order to guarantee the accuracy and repeatability for the proposed method, the damage
detection phase uses two different neural networks: the Probabilistic Neural network (PNN) and the
Simplified Fuzzy ARTMAP Network (SFAN). One PNN or SFAN network is created for each PZT
sensor, thus resulting in a total of three networks. Each neural network is separately fed with one of the
datasets described above. For both training and testing procedures, each structural condition (H, D1,
D2, and D3) was labelled as 1, 2, 3, and 4, respectively (Figure 4). Hence, the method is responsible
for classifying four different categories. The FAN parameters are set as follows: the choice parameter
(oc = 0.25), the training rate (3 = 1), the vigilance parameter (p = 0.78), and the match tracking (¢ = 0.
85). The spread constant (o) for PNN was set to 0.1. The choice of those parameters was made based
on reference [36].

4. Experimental Results

In order to evaluate the proposed methodology, this section presents the experimental results.
Firstly, Figure 7a depicts the impedance signatures for PZT#1, while Figure 7b depicts the related
signals for PZT#2: both signals for the healthy condition (H) and for three different damages (D1, D2,
and D3). For the purpose of brevity, only the signals for the real part of the EMI (frequency domain) are
shown. It is important to note that the differences between the signals representing different structural
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conditions are barely perceptible. As presented in this approach, signal processing techniques are an
excellent way to improve such differences. This results in clear and reliable damage identification.
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Figure 7. Electromechanical Impedance (EMI) signatures for various structural conditions (H, D1, D2,
and D3): (a) PZT#1; and (b) PZT#2.

Another important issue to be analyzed relates to the signal variation after applying SG and its
respective first and second derivatives. Hence, Figure 8a shows the raw EMI (real part) signature for
PZT#2 when considering two different structural conditions: H and D2. For the purpose of brevity,
only the signals for the real part of the EMI (frequency domain) are shown. As observed, the difference
between the signals is clear. Posteriorly, both of the signals were smoothed by SG and the obtained
results are presented in Figure 8b. As seen, the difference between the curves seems to be much
bigger than for EMI, which may result in an improvement in terms of success rates when the damage
detection is being performed by the SFAN/PNN algorithms.
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Figure 8. Real part of the EMI signatures considering two structural conditions (H and D2) for PZT#2:
(a) raw EMI (b) EMI signals smoothed by Savitzky-Golay (SG); (c¢) EMI signals smoothed by SG,
followed by application of the first derivative; and, (d) EMI signals smoothed by SG, followed by
application of the second derivative.
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Figure 8c,d shows the real part of the EMI for PZT#2 after application of SG, followed by the
application of the first and second derivatives, respectively. For both of the cases, the difference
between the signatures for H and D2 seems to be smaller than for only signals that are smoothed by SG
(Figure 8b). However, it is difficult to visually judge these differences. Hence, this approach proposes
the use of PNN/SFAN-based method in order to enhance the damage detection. The PNN/SFAN
results are presented next.

4.1. Study Case 1: Real Part of the EMI

To identify structural damage, datasets were used as inputs for the neural networks. Three PNN
and three SFAN (one for each PZT) were implemented for the analysis of structural conditions. All these
networks were built with the same architecture, since they were all intended to the same purpose
(monitoring the structural damage in an aluminum plate). Hence, the first analysis is depicted in Table 1.
The results are for both PNN- and SFAN-based methods with consideration of datasets formed from
the smoothed signals by SG, first (SGFD) and second (SGSD) derivatives. It is important to mention
that SG and derivatives were applied to the real part of the EMI (frequency domain). The results
are compared with PNN- and SFAN-based methods, which were performed by computing the
Euclidean Distances (ED) directly from EMI signals instead (methods were proposed in reference [36]).
All of the methods are implemented to the same datasets and same conditions in order to obtain a
fair comparison.

Table 1. Success rates for Probabilistic Neural Network (PNN) and Simplified Fuzzy ARTMAP (SFAN)
methods for the real part of the EMI (frequency domain).

PNN [36] PNN SFAN [36] SFAN
Sensor ED SG SGFD SGSD ED SG SGFD SGSD
PZT#1 75% 67.71% 50%  48.95%  71.87% 100%  46.87% 50%
PZT#2 70.83% 75%  100%  100% 84.37% 78.12% 100%  100%
PZT#3 77.08% 78.12% 78.12% 59.37% 75% 63.54% 83.33% 47.91%

As shown in Table 1, the results have indicated improved success rates for two cases (PZT#2 and
PZT#3) when using PNN along with SG. Similar results were obtained for the SGFD. When considering
the SGSD method, only one case (PZT#2) demonstrated any improvement, while others presented
very poor results. As shown in Table 1, SFAN has shown better performances (100%) for all four cases.
Analyzing only the improved cases, it is clear that the increases in the hit rates were quite significant for
the enhanced methods. Overall, the SGFD method seems to be more precise in identifying structural
damage in the frequency domain. This result is perceived through the analysis of the differences
between the EMI signatures for the healthy and damaged conditions (Figure 8c). Unfortunately, none of
the investigated methods have shown overall improvement of the accuracy of prediction.

4.2. Study Case 2: Time-Response Signals

The second analysis considers the same aforementioned conditions. However, the SG and
derivatives were applied to the impedance signals in the time domain. It is important to clarify that the
damage detection only considers the time domain response (voltage signals) without considering FRF,
electromechanical impedance, or Laplace/Fourier Transform. For that, the PZT transducer is excited,
and only its time response signal (voltage) is directly used to compute Euclidean Distances. It is
important to remark that even analysis of the excitation signal has not shown that the time response
signals are correlated with the electromechanical impedance (since it is guaranteed that the excitation
input is kept constant) [37,50]. Hence, working on the time domain simplifies and speeds up the
damage identification because the EMI is not computed, which by itself, is a great advantage in terms of
processing time [37,50]. In this sense, Table 2 depicts the results for both PNN and SFAN. The methods
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used are outlined in reference [36]. All of the methods are also implemented with consideration of the
same datasets and same conditions in order to obtain a fair comparison.

Table 2. Success rates for PNN and SFAN methods for impedance signals in the time domain.

PNN [36] PNN SFAN [36] SFAN
Sensor ED SG SGFD SGSD ED SG SGFD SGSD
PZT#1 75% 75% 50% 75% 61.45% 83.33% 94.79% 83.33%

PZT#2 96.87% 100%  75% 100% 98.95% 100%  85.41% 100%
PZT#3 70.83% 98.95% 85.41% 98.95%  77.08% 98.95% 88.54% 98.95%

As observed from Table 2, the methods based on SG and SGSD had significant performance
enhancement for both PNN and SFAN when compared with the ED-based method [36]. Unlike the
method based on the frequency domain, the SGFD method showed poorer performance when
considering time domain analysis. It is important to note that only the PZT#2 did not have better
performance for the SFAN-based method, while only PZT#3 had improved performance for the
PNN-based method (SGFD). It is remarkable that PNN obtained the same hit rates for the SG and
SCSD methods. Similar results are also shown for SFAN. As expected, SFAN performed better than
PNN, as shown in reference [36]. Clearly, it is an undisputed fact that the methods presented in this
approach were effectively able to successfully identify various structural conditions with much higher
hit rates for both PNN and SFAN.

5. Discussion

In order to estimate the accuracy of analysis, the confusion matrices are presented. Firstly, Figure 9
depicts the comparison between ED (Figure 9a), SG (Figure 9b), SGFD (Figure 9c), and SGSD (Figure 9d)
for PZT#1 when considering the SFAN classifier. Henceforth, all of the presented results relate to the
SFAN-based method. As observed from Figure 9, the structure with no damage was correctly classified
in all experiments. Likewise, the structure with damage was never confused with the structure with
no damage. This means that the errors that appear in the classification are merely due to a mistake in
the quantification of the damage. Furthermore, D1 structural condition was detected 100% correctly
for three methods, including the reference (Figure 9a). This result was anticipated because D1 was
placed near to PZT#1. It is clearly evident that the results for D2 and D3 (located further away from
PZT#1) were significantly improved when compared with the ED [35]. The method based on SGFD
detected all of the structural conditions with a hit rate of over 79%. Overall, the proposed methods
(SG, SGFD, and SGSD) performed better when compared with the ED-based method [36].
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Figure 9. Results for PZT#1 and SFAN (time domain) applied to: (a) Euclidean Distance (ED) [35];
(b) Savitzky-Golay (SG); (¢) SG + First Derivative (SGFD); and, (d) SG + Second Derivative (SGSD).

Figure 10 shows the results for the SG-based method for PZT#1 (Figure 10a), PZT#2 (Figure 10b)
and PZT#3 (Figure 10c). As observed, PZT#2 detected all the structural conditions with success rates
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of 100%. Likewise, PZT#3 obtained very precise results. PZT#1 obtained a hit rate of 100% for D1,
although it had poorer results for D2 and D3. Regardless, this highlights that the methods all had
excellent performance in identifying all the different structural conditions. These poor results are
justified since D2 and D3 are placed further away from PZT#1 (see Figure 6).
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Figure 10. Results for the SFAN-based method (time domain) considering only Savitzky-Golay (SG)
for: (a) PZT#1; (b) PZT#2; and, (c) PZT#3.

Figure 11 depicts the results for the SGFD-based method for PZT#1 (Figure 1la),
PZT#2 (Figure 11b), and PZT#3 (Figure 11c). As seen, PZT#1 had significant improvement if compared
to the results presented in Figure 10a. All of the structural conditions were detected with a hit rate of
over 79%, which is considered to indicate great performance. On the other hand, PZT#2 and PZT#3
had slightly worsened performance. However, their results are still over 70%, excepting for PZT#2
and D2, which is considered good performance in the field of neural networks. Once again, it can be
considered that the results obtained all showed satisfactory performance in identifying all the different

structural conditions.
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Figure 11. Results for the SFAN-based method (time domain) considering only Savitzky-Golay + First
Derivative (SGFD) for: (a) PZT#1; (b) PZT#2; and, (c) PZT#3.

Figure 12 shows the results for the SGSD-based method for PZT#1 (Figure 12a), PZT#2 (Figure 12b),
and PZT#3 (Figure 12c). As observed, PZT#2 detected all structural conditions with success rates
of 100%. Likewise, PZT#3 obtained very precise results. PZT#1 obtained a hit rate of 100% for D1,
although it provided poorer results for D2 and D3. Regardless, we can consider that the obtained
results indicate excellent performance in identifying all of the different structural conditions. In short,
the presented results for SGSD are quite similar to those presented for SG (Figure 10).
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Figure 12. Results for the SFAN-based method (time domain) considering only Savitzky-Golay
+ Second Derivative (SGSD) for: (a) PZT#1; (b) PZT#2; and, (c) PZT#3.

Finally, Figure 13 shows a comparison between the best results for the analysis in the frequency
domain (top) and time domain (bottom), considering only the SFAN-based method for PZT#1
(Figure 13a), PZT#2 (Figure 13b) and PZT#3 (Figure 13c). As observed, PZT#2 and PZT#3 had
substantial improvement in the time domain analysis, with a hit rate of over 90% for the best analyzed
case (D1). Furthermore, PZT#1 detected H and D1 structural conditions with success rates of 100%
when considering the time domain analysis. On the other hand, PZT#1 had better performance
for the frequency domain-based method when considering the damage in D2 and D3. Interestingly,
the analysis conducted in the time domain has shown an improved accuracy of SFAN-based methods
(Figure 13). This result is consistent with those in reference [35]. It is important to highlight that the
damage detection in the time domain was carried out without considering the Frequency Response
Function (FRF) or inverse Laplace/Fourier Transform, which by itself is a great advantage in terms of
computational efforts. It simplifies and speeds up the damage detection in real applications.
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Figure 13. Comparison among the best obtained results for SFAN in the frequency domain (top),
and SFAN in the time domain (bottom), for: (a) PZT#1; (b) PZT#2; and, (c) PZT#3.
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In particular, the data processing time and the accuracy of prediction are the major indicators of
a SHM system. The cost of a SHM system will increase with an increasing number of sensors in the
SHM system. As a consequence, the number of data points will be increased by thousands, and the
processing time will be substantially increased. As such, an optimized “low cost” and “efficient” SHM
system is urgently required in every engineering field. Beyond accuracy rates, the time consumptions
for both testing and training phases were also investigated for PZT#2, when only considering the SGFD
method. Training and testing times for SFAN were 0.126 s and 0.0079 s, while these were 1.672 s and
0.6742 s for the PNN, respectively. The results showed that the SFAN-based method consumed less
time for both training and testing phases when compared with PNN. This result was expected, as it is
consistent with those from previous studies [36,37]. As a consequence, the SFAN-based method seems
to be very reliable for implementing real-time SHM systems, especially for the testing phase by using an
ordinary laptop. All of the time measurements were carried in a Laptop running Windows 7 Ultimate.
The laptop configuration consists of an Intel Core i3-2.2 GHz with 4 GB of RAM. Detailed analysis of
the time consumption for PNN- and SFAN-based methods can be read in references [36,37].

It is important to note that the use of SG and its derivatives for the detection of the changes
within EMI signatures of a structure can be affected by low noise, environmental interferences,
and low vibration modes. Those problems were the subject of a previous study [51]. Future research
will be undertaken in including the SFAN method in a microcontroller or in another low-cost
hardware, as suggested as a previous study [52]. Furthermore, future work should focus on using
the optimization algorithm, such as Particle Swarm Optimization (PSO), to enhance the accuracy rate.
The idea is to use PSO for selecting the optimal setup parameters for SFAN (choice parameter (),
training rate (f3), vigilance parameter (p), and match tracking (¢)) to improve the classifier performance,
thereby maximizing the success rate of the classified results [37]. Furthermore, future investigations
should use structures made up of composite materials order to investigate incipient damage and its
progression. Furthermore, future research will be undertaken to evaluate the accuracy of the proposed
method for randomly initiated defects and to establish the outcomes from having two or more areas of
damage at the same time. Another interesting point to be addressed is the evaluation of different types
and sizes of damage [10,12,15].

Comparing the results obtained here with that of previous research in literature is quite difficult
due to the lack of many available approaches focusing on a similar scenario, which can lead to
unfair comparison. There are only three approaches that focus on SFAN and EMI available in
published research work [35-37]. They have investigated the progression of structural damage on
composite materials.

6. Final Remarks

This work introduced an improved method to detect damage in structures by exploiting the
EMI technique along with two different neural networks: SFAN and PNN. Three different methods
were used to form datasets, which were used as inputs to the neural networks: Savitzky-Golay (SG),
Savitzky-Golay with the first derivative (SGFD), and Savitzky-Golay with the second derivative
(SGSD). Furthermore, the analyses were carried in both time and frequency domains. As an example,
the method was applied to an aluminum plate. Three PZT sensors were bonded to the plate in order
to excite the plate and obtain structural responses. The results were presented in terms of success rates
from the confusion matrices analysis.

In summary, the comparative analysis has shown that the SFAN method has shown relatively
enhanced performances in the detection of damage in a structure when compared to PNN-based
methods. Furthermore, the methods based on SFAN incorporated with time domain analysis have
significantly enhanced the damage detection ability. As observed from these results, the proposed
method was also successfully able to identify various structural conditions with higher rates of accuracy
when using the SG, SGFD, and SGSD. After further investigating the results, the structure with no
damage was correctly classified in all of the experiments. Likewise, the structure with damage was
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never confused with the structure with no damage. Furthermore, each structural condition was mostly
detected with an overall success rate of over 70%, which is significantly higher than state-of-the-art
approaches. Moreover, this approach yields in an improvement of 90% when considering the best case
scenario. The results show excellent performance within the field of neural networks.

The outcomes of this study have shown that the efficiency, accuracy, and the robustness of the
proposed method in detecting damages in structures. The results conclusively confirmed that the
proposed approach can effectively lead to an increase in safety and reduce maintenance costs in SHM
systems. It is important to note that temperature variation is a classical issue in SHM systems when
using PZT sensors, which was negligible in this present analysis.
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