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Abstract: This paper presents a novel 2-D magnet array with gaps and staggers, which is especially
suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density
distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers
on high-order harmonics and flux density were analyzed, and the optimized design is presented.
Compared with the other improved structures based on traditional Halbach magnet arrays,
the proposed design has the lowest high-order harmonics percentage, and the characteristics of
flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and
easy to manufacture. The proposed magnet array was built, and the calculation results have been
verified with experiment.
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1. Introduction

With the rapid development of the Micro-Electro-Mechanical System (MEMS) and semiconductor
industry, a magnetically levitated planar motor is becoming an optimal choice to meet the requirements
of high speed, high precision, and high vacuum in lithography equipment and various microscopes [1–3].
A magnetically levitated planar motor generally contains a 2-D magnet array and an ironless coil array,
and planar motors can be classified into moving-coil type and moving-magnet type according to
different moving part. Moving-coil type planar motors have the disadvantages of cable interference
and inconvenient cooling system. Oppositely, planar motors with moving magnets can avoid these
problems completely and thus have the potential for higher precision [4].

As the mover of a planar motor is magnetically levitated and driven by Lorentz force, the magnetic
field produced by the magnet array plays a crucial role in determining the speed and accuracy of the
planar motor. The flux density determines the thrust force, acceleration, and max speed. The high-order
harmonics greatly influence positioning accuracy because the high-order harmonics are ignored to
save time in real-time control and the simplification leads to force ripple. There are two ways to reduce
the force ripple: one is to compensate high-order harmonics with a control method, and the other is to
optimize the structure of the magnet array for lower high-order harmonics. Obviously, the latter is
better because it can fundamentally restrain the force ripple.

Much research has been done to optimize the traditional Halbach magnet array for low high-order
harmonics and large flux density. For instance, Trumper et al. [5] investigated different magnet array
topologies and proposed an ideal Halbach magnet array. Min et al. [6] proposed a 2-D magnet array
with 45◦ magnetized magnets. Peng et al. [7] proposed a new Halbach magnet array with trapezoidal
magnets, and Liu et al. [8] used hexagon magnets as the horizontal magnetized magnets. Zhang et al. [9]
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used a two-layer magnet array for low high-order harmonics and large flux density. Although these
designs can reduce high-order harmonics, the structures are too complex to manufacture. Furthermore,
as the density of NdFeB permanent magnet is nearly three times that of mounting plates, which are
usually aluminum, the magnet array for the planar motor with moving magnets should be lightweight
to achieve high acceleration and low energy consumption.

In this paper, we propose an easy-to-manufacture 2-D magnet array with gaps and staggers to
reduce the high-order harmonics and self-weight. As the 2-D magnet array is a periodic structure
in the horizontal directions, Fourier analysis was used to model the magnetic field. Compared
with the time-consuming finite element method, the analytical method based on Fourier analysis
can determine the field efficiently and accurately, and it is more suitable for further analysis and
optimization. The magnet array was then separated into two sub-arrays for simplification of analysis,
and the flux density distribution of the total magnet array was derived by superposition. Afterwards,
the influences of gaps and staggers on the high-order harmonics and flux density were obtained, and
a set of structural parameters of the proposed design were calculated by minimizing the high-order
harmonics. The calculation shows that the high-order harmonics percentage of the novel 2-D magnet
array is much lower than that of other designs and that the mz-component of flux density is larger than
that of traditional Halbach magnet arrays. At last, the proposed magnet array was built, and the flux
density distribution was measured to validate the theoretical results.

2. Materials and Methods

Figure 1 shows a sectional view of the novel magnet array with gaps and staggers. There are gaps
between neighboring vertical and horizontal magnetized magnets, and the mounting heights of these
two kinds of magnets are different. The gap width is e, and the mounting height difference is ∆H.
τ is the pole pitch, and H is the height of all magnets. c is the half width of the vertical magnetized
magnets, while d is the half width of the horizontal magnetized magnets. The coordinate system center
is set in the center of a vertical magnetized magnet’s top surface.
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2.1. Modeling

As shown in Figure 2, the space was divided into three regions to derive the flux density
distribution of the magnet array. The arrows in the figure denote the magnetization direction of
the permanent magnets from the S-pole to the N-pole, and the magnetic flux density distribution
strengthens above the magnet array. As NdFeB permanent magnets have a relative permeability of
1.03–1.05, which is close to the relative permeability of air, the empties of the magnet array could be
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neglected in Region 2. Equations (1)–(4) are valid for Regions 1 and 3, while Equations (5)–(9) are
applicable to Region 2.

∇2m ϕn = 0 (1)

m
→
Hn = −∇m ϕn (2)

m
→
Bn = µ0

m
→
Hn (3)

∇·m
→
Bn = 0 (4)

where n takes 1 or 3, representing Region 1 or Region 3.

∇2m ϕ2 = ∇·
m
→
M

µr
(5)

m
→
H2 = −∇m ϕ2 (6)

∇× m
→
H2 = 0 (7)

m
→
B2 = µ0µr

m
→
H2 + µ0

m
→
M (8)

∇·m
→
B2 = 0. (9)
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According to Figure 2, the boundary conditions can be expressed as follows:

m ϕ1(
mz = +∞) = 0 (10)

m ϕ3(
mz = −∞) = 0 (11)

mH1x(
mz = zti) =

m H2x(
mz = zti) (12)

m H1y(
mz = zti) =

m H2y(
mz = zti) (13)

m H2x(
mz = zbj) =

m H3x(
mz = zbj) (14)

mH2y(
mz = zbj) =

m H3y(
mz = zbj) (15)

mB1z(
mz = zti) =

mB2z(
mz = zti) (16)

mB2z(
mz = zbj) =

mB3z(
mz = zbj) (17)

where i takes 1 or 2; meanwhile, j takes 2 or 1, because ∆H may be positive or negative.
In order to simplify the calculation, two sub-arrays were first analyzed separately. One sub-array

contains the vertical magnetized magnets, while the other contains the horizontal magnetized magnets.
The magnetization vector function of the sub-array with vertical magnetized magnets can be expressed
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as a Fourier series in Equation (18) and that of the sub-array with horizontal magnetized magnets can
be expressed as Equation (19). The detailed deriving process is shown in Appendix A.

m
→

M1 =
Br

µ0

∞

∑
k=1

∞

∑
l=1

 0
0

akal cos kωx · cos lωy

 (18)

m
→

M2 =
Br

µ0

∞

∑
k=1

∞

∑
l=1

 bkal sin kωx · cos lωy
akbl cos kωx · sin lωy

0

 (19)

where k and l are the harmonic numbers for the mx- and my-directions respectively, and
bk = 4

kπ sin( kπ
2 ) sin(kωd), al = 4

lπ sin( lπ
2 ) cos[lω(d + e)], ak = 4

kπ sin( kπ
2 ) cos[kω(d + e)], bl =

4
lπ sin( lπ

2 ) sin(lωd).
The flux density distribution can be obtained by calculating differential equations by employing

all the equations above [10,11]. As a result, the magnetic flux density distribution of the sub-array
with vertical magnetized magnets can be expressed as Equation (20), while the expression of the
sub-array with horizontal magnetized magnets is Equation (21). The detailed deriving process is
shown in Appendix B.

→
B1V =

1
2

Br

∞

∑
k=1

∞

∑
l=1

(
e−λzb1 − e−λzt1

)
eλz·


akal
√

k2+l2

k2+l2 k sin kωx cos lωy
akal
√

k2+l2

k2+l2 l cos kωx sin lωy

−akal cos kωx cos lωy

 (20)

→
B1H =

1
2

Br

∞

∑
k=1

∞

∑
l=1

(
e−λzb2 − e−λzt2

)
eλz·


E(k,l)
k2+l2 k sin kωx cos lωy
E(k,l)
k2+l2 l cos kωx sin lωy

− E(k,l)√
k2+l2 cos kωx cos lωy

 (21)

where λ = π
τ

√
k2 + l2, and E(k, l) = bkalk + akbl l.

With the superposition method, the flux density distribution of the total magnet array in Region 1
can be obtained as follows:

→
B1 = 1

2 Br
∞
∑

k=1

∞
∑

l=1
eλz


[(

e−λzb2 − e−λ(zb2−H)
)

E(k,l)
k2+l2 +

(
e−λ(zb2−∆H) − e−λ(zb2−∆H−H)

)
akal
√

k2+l2

k2+l2

]
k sin kωx cos lωy[(

e−λzb2 − e−λ(zb2−H)
)

E(k,l)
k2+l2 +

(
e−λ(zb2−∆H) − e−λ(zb2−∆H−H)

)
akal
√

k2+l2

k2+l2

]
l cos kωx sin lωy

−
[(

e−λzb2 − e−λ(zb2−H)
)

E(k,l)√
k2+l2 +

(
e−λ(zb2−∆H) − e−λ(zb2−∆H−H)

)
akal

]
cos kωx cos lωy

. (22)

Compared with the magnetic field distribution raised by Jansen [11], this model is more universal.
Jansen’s design can be regarded as a special case of Equation (22) where e takes 0 and ∆H takes 0.

2.2. Analysis and Optimization

As the magnetization vectors are weakened in the gaps between the magnets, the novel magnet
array is more similar to the ideal Halbach array [5] than the traditional Halbach magnet array. Moreover,
the staggers can pull down the near-surface flux lines that contain large high-order harmonics
percentage as shown in Figure 3. Therefore, this novel magnet array has the potential for lower
high-order harmonics compared with the traditional Halbach magnet array.
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Based on the derived magnetic flux density distribution in Equation (22), the gap ratio (e/τ) and
stagger ratio (∆H/H) can be analyzed for optimization. A square plane was chosen to calculate the
maximum value of high-order harmonics percentage. The plane is 5 mm above the top of the novel
magnet array, and the side length of the square takes τ/2. A 20 × 20 point matrix (Pmn) was chosen in
the square for calculation. As the magnet array is exactly symmetrical in the mx- and my-directions
and the component of flux density distribution in the mz-direction is similar with those of the mx- and
my-directions, we used the mx-component to write the evaluation function, which is as follows:

F(e/τ, ∆H/H, d/τ) = max(
∣∣∣∣B1x(Pmn)− B1x

1,1(Pmn)

B1x(Pmn)

∣∣∣∣) (23)

where Pmn(0.025mτ, 0.025nτ, min(zt1, zt2) − 0.005), B1x is the total flux density containing the first
harmonic and high-order harmonics, and B1x

1,1 is the first harmonic.
When k > 20 or l > 20, the high-order harmonics are much smaller than the geomagnetic field

(about 6 × 10−5 T) [6]. Therefore, the harmonic components can be ignored if any one of the harmonic
numbers (k or l) is more than 20 when calculating the flux density.

The fixed parameters of the magnet array are listed in Table 1. As F presents the high-order
harmonics percentage, a lower value is better. By varying the gap ratio and the stagger ratio respectively,
we could obtain the influences on F and the maximum values of flux density components in the mx-
and mz-directions. Figure 4 shows that the novel magnet array with small gaps and staggers can
decrease high-order harmonics significantly with a slight decrease in flux density, and the high-order
harmonics intensity is more sensitive to gap ratio than to stagger ratio. If the gap ratio is too large, not
only does the flux density decrease too much but the high-order harmonics percentage also increases.
As the flux density decreases too much with big stagger ratio, the constraint of stagger ratio is set as
−0.5 to 0.5. This analysis provides constraints of variables for optimization as shown in Table 2.

Table 1. Fixed parameters of the novel magnet array.

Fixed Parameters Value Unit

Pole pitch (τ) 30 mm
Height of the magnets (H) 4 mm

Remanence of the permanent magnets (Br) 1.33 T

Table 2. Optimization parameters of the novel magnet array.

Optimization Parameters Constraints

Gap ratio (e/τ) [0, 0.15]
Stagger ratio (∆H/H) [−0.5, 0.5]

Width ratio (d/τ) [0, 0.35]
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the width ratio of two kinds of magnets (c/d) kept as 0.68:0.32 and (b) by varying ∆H/H when e/τ

takes 0.

Using F as the objective function, an optimized design can be obtained with the genetic algorithm.
The max generation was set at 100, while the population size was set at 30. Thus, the minimum of the
objective function can be obtained when the gap ratio takes 0.091, the stagger ratio takes 0.374, and the
d/τ takes 0.15. The minimum value of F is 0.1249, while that of Jansen’s is 1.4797.

3. Results and Discussion

3.1. Comparison

According to the optimized variables, the high-order harmonics and flux density of the proposed
magnet array can be calculated with Equation (22). Comparisons of this design with others’
are available.

For other optimized magnet arrays, there is no gap between magnets, so the weights are
approximately equal to that of Jansen’s design with the same magnet height. However, with the
same magnet height, the weight difference is too great in the comparison between this novel magnet
array and Jansen’s, thus losing the reference value. In this case, Jansen’s magnets should be thinner for
similar weights. The parameters of the proposed design are compared with those of Jansen’s in Table 3.

The high-order harmonics of the proposed magnet array and Jansen’s design are shown in Figure 5.
The peak values of high-order harmonics in this design are 8.36 × 10−3 T and 9.44 × 10−3 T in the
mx- and mz-directions, respectively, while those of Jansen’s are correspondingly 3.96 × 10−2 T and
6.80× 10−2 T. It is obvious that the novel magnet array decreases the high-order harmonics significantly,
and the weight is lighter than Jansen’s by 13.63%.
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Table 3. Parameters for the proposed magnet array and Jansen’s.

Parameters Proposed Magnet Array Jansen’s

e/τ 0.091 0
∆H/H 0.374 0

d/τ 0.15 0.16
Height of the magnets (mm) 4 3

Weight of the array (g) 431 499

Sensors 2018, 18, 124  7 of 12 

 

Table 3. Parameters for the proposed magnet array and Jansen’s. 

Parameters Proposed Magnet Array Jansen’s 
e/τ 0.091 0 
∆H/H 0.374 0 

d/τ 0.15 0.16 
Height of the magnets (mm) 4 3 

Weight of the array (g) 431 499 

The high-order harmonics of the proposed magnet array and Jansen’s design are shown in 
Figure 5. The peak values of high-order harmonics in this design are 8.36 × 10−3 T and 9.44 × 10−3 T in 
the mx- and mz-directions, respectively, while those of Jansen’s are correspondingly 3.96 × 10−2 T and 
6.80 × 10−2 T. It is obvious that the novel magnet array decreases the high-order harmonics 
significantly, and the weight is lighter than Jansen’s by 13.63%. 

 
Figure 5. The high-order harmonics in the mx- and mz-directions. (a) Jansen’s design; (b) This 
proposed design. 

Furthermore, Figure 6 shows that the proposed design has the lowest high-order harmonics 
among the designs as mentioned in the literature [6–9]. The structure of the proposed design is the 
simplest and easy to manufacture. 

Otherwise, the flux density of this design is stronger than that of Jansen’s by 9.5% in the 
mz-direction, which indicates a larger thrust in the horizontal direction. As the flux density in the mx- 
and my-directions mainly provides levitation force and high acceleration is not required in the 
vertical direction, a slight decrease in flux density in the mx-direction is acceptable.  

In summary, the proposed magnet array sharply decreases high-order harmonics in both 
horizontal and vertical directions and strengthens the thrust in the horizontal direction. These 
characteristics meet the requirements of magnetically levitated planar motors. Future research will 
focus on improving the flux density further. 

Figure 5. The high-order harmonics in the mx- and mz-directions. (a) Jansen’s design; (b) This
proposed design.

Furthermore, Figure 6 shows that the proposed design has the lowest high-order harmonics
among the designs as mentioned in the literature [6–9]. The structure of the proposed design is the
simplest and easy to manufacture.

Otherwise, the flux density of this design is stronger than that of Jansen’s by 9.5% in the
mz-direction, which indicates a larger thrust in the horizontal direction. As the flux density in the mx-
and my-directions mainly provides levitation force and high acceleration is not required in the vertical
direction, a slight decrease in flux density in the mx-direction is acceptable.

In summary, the proposed magnet array sharply decreases high-order harmonics in both
horizontal and vertical directions and strengthens the thrust in the horizontal direction. These
characteristics meet the requirements of magnetically levitated planar motors. Future research will
focus on improving the flux density further.
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3.2. Experiment

In order to validate the theoretical results, an experimental magnet array (as shown in Figure 7)
was built according to the optimized structural parameters. The parameters of the magnet array are
listed in Table 4.
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Table 4. Parameters of the proposed magnet array.

Parameters Symbol Value Unit

Pole pitch τ 30 mm
Remanence of the permanent magnets Br 1.33 T
Width of vertical magnetized magnet 2c 15.5 mm

Width of horizontal magnetized magnet 2d 9 mm
Width of gap e 2.75 mm

Height of the magnet H 4 mm
Height of the stagger ∆H 1.5 mm
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The magnetic flux density distribution was measured with the Gauss meter Lakeshore 410. Figure 8
shows the measured and theoretical values of this design and those of Jansen’s design in the mx- and
mz-directions. The magnetic flux density components were measured or calculated along a line 5 mm
above the magnet array surface.
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It was found that the measured values match well with the theoretical values of the proposed
magnet array, so the accuracy of the modeling is convincing. The flux density components of the
proposed magnet array are much closer to sine than Jansen’s design in both the mx- and mz-directions,
which entails lower high-order harmonics. Therefore, the effect of high-order harmonics suppression
has been further validated.

4. Conclusions

In this paper, a novel magnet array with gaps and staggers is presented and analyzed.
The magnetic flux density distribution of this magnet array was derived. The influences on magnetic
field of gaps and staggers were revealed, and a set of optimized structural parameters were chosen to
decrease high-order harmonics. Compared with other designs in the literature, the proposed magnet
array has the lowest high-order harmonics percentage and the simplest structure. The flux density
distribution in the mz-direction is larger than that of the traditional Halbach magnet array, which entails
a greater thrust in the horizontal direction. Furthermore, the magnet array is lightweight and suitable
for the magnetically levitated planar motor with moving magnets. At last, the proposed magnet array
was built, and the calculation conclusions have been verified with experiment.
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Appendix A

The deriving process of the magnetization vector function (taking the sub-array with horizontal
magnetized magnets as an example) is listed as follows:
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The magnetization vector function describing the magnet array in the coordinate system can
be expressed as Equation (A1), and mMx, mMy, and mMz are the components in the mx-, my-, and
mz-directions in Equations (A2)–(A4).

m
→
M2 = m Mx

m x̂ + m My
mŷ + m Mz

m ẑ (A1)

m Mx = λxxλxy M (A2)

m My = λyxλyy M (A3)

m Mz = 0 (A4)

where λxx, λyy, λxy, and λyx are the distribution factors as shown in Equations (A5) and (A6), and λij is
the i-component of the residual magnetism amplitude in the j-direction, which are shown in Figure A1.
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Figure A1. The distribution factors of the residual magnetism amplitude. (a) Top view of the magnet
array; (b) cut-view of the magnet array; (c) λxx; (d) λxy.

λxx = λyy =



0 [nT, nT + c + e]

1 (nT + c + e, nT + c + e + 2d)

0 [nT + c + e + 2d, nT + 3c + 3e + 2d]

−1 (nT + 3c + 3e + 2d, nT + 3c + 3e + 4d)

0 [nT + 3c + 3e + 4d, nT + 4c + 4e + 4d)

(A5)
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λyx = λxy =



1 [nT, nT + c]

0 (nT + c, nT + c + 2d + 2e)

−1 [nT + c + 2d + 2e, nT + 3c + 2d + 2e]

0 (nT + 3c + 2d + 2e, nT + 3c + 4d + 4e)

1 [nT + 3c + 4d + 4e, nT + 4c + 4d + 4e)

(A6)

where T = 4(c + d + e).
When n is large enough, λxx, λyy, λxy, λyx can be expressed as a Fourier series. Thus,

the magnetization vector function can be expressed as

m
→

M2 =
Br

µ0

∞

∑
k=1

∞

∑
l=1

 bkal sin kωx · cos lωy
akbl cos kωx · sin lωy

0

 (A7)

where bk = 4
kπ sin( kπ

2 ) sin(kωd), al =
4

lπ sin( lπ
2 ) cos[lω(d + e)], ak = 4

kπ sin( kπ
2 ) cos[kω(d + e)], and

bl =
4

lπ sin( lπ
2 ) sin(lωd).

Appendix B

The deriving process of the flux density distribution (taking the sub-array with horizontal
magnetized magnets as an example) is listed as follows:

According to Equations (5)–(9), the following equation can be obtained:

∇2m ϕ2 = ∇·
m
→
M

µr
=

Brω

µ0µr

∞

∑
k=1

∞

∑
l=1

[(bkalk + akbl l) cos kωx cos lωy]. (A8)

Assume that

m ϕ2 =
Brω

µ0µr

∞

∑
k=1

∞

∑
l=1

[(bkalk + akbl l)Z0(
mz) cos kωx cos lωy] (A9)

The following equation can be obtained:

∇2m ϕ2 =
Brω

µ0µr

∞

∑
k=1

∞

∑
l=1

[
(bkalk + akbl l)(

d2Z0(
mz)

dz2 − λ2Z0(
mz)) cos kωx cos lωy

]
(A10)

where λ =
√
(kω)2 + (lω)2.

In Regions 1 and 3, the general solution of this differential equation is

Z0(
mz) = Cie−λmz + Dieλmz (A11)

where Ci and Di are constants, and i = 1, 3.
In Region 2, the general solution is

Z0(
mz) = C2e−λmz + D2eλmz − 1

λ2 . (A12)

By using the boundary conditions (Equations (10)–(17)), the value of C1 and D1 can be expressed as

C1 = 0 (A13)

D1 =
1

2λ2

(
e−λzb2 − e−λzt2

)
. (A14)
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Thus, the following equations can be obtained:

m ϕ1 =
ωBr

µrµ0

∞

∑
k=1

∞

∑
l=1

[
1
2

(
e−λzb2 − e−λzt2

) bkalk + akbl l
λ2 eλz cos kωx cos lωy] (A15)

→
B1H = µ0(−∇·m ϕ1) =

1
2

Br

∞

∑
k=1

∞

∑
l=1

(
e−λzb2 − e−λzt2

)
eλz·


E(k,l)
k2+l2 k sin kωx cos lωy
E(k,l)
k2+l2 l cos kωx sin lωy

− E(k,l)√
k2+l2 cos kωx cos lωy

 (A16)

where E(k, l) = bkalk + akbl l.
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