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Abstract: Wireless sensor networks are widely used in environmental monitoring. The number
of sensor nodes to be deployed will vary depending on the desired spatio-temporal resolution.
Selecting an optimal number, position and sampling rate for an array of sensor nodes in environmental
monitoring is a challenging question. Most of the current solutions are either theoretical or
simulation-based where the problems are tackled using random field theory, computational geometry
or computer simulations, limiting their specificity to a given sensor deployment. Using an empirical
dataset from a mine rehabilitation monitoring sensor network, this work proposes a data-driven
approach where co-integrated time series analysis is used to select the number of sensors from a
short-term deployment of a larger set of potential node positions. Analyses conducted on temperature
time series show 75% of sensors are co-integrated. Using only 25% of the original nodes can generate
a complete dataset within a 0.5 ◦C average error bound. Our data-driven approach to sensor position
selection is applicable for spatiotemporal monitoring of spatially correlated environmental parameters
to minimize deployment cost without compromising data resolution.

Keywords: wireless sensor networks; time series analysis; spatio-temporal analysis;
environmental monitoring

1. Introduction

Environmental phenomena such as temperature, pressure, humidity, and soil moisture are
dynamic processes. Understanding the spatio-temporal behaviour of these processes is relevant
for understanding the surrounding ecosystem’s state. Environmental phenomena in general
vary at a small spatio-temporal scale [1,2] that impact the local ecosystem. The microclimate
(temperature, solar radiation and other phenomena at small scale) affects ecological changes
in forests [3], soil characteristics in mine rehabilitation [4], and diseases in agriculture [5].
Thus it is crucial for many application scenarios to monitor environmental phenomena at high
spatio-temporal resolution.

Understanding the spatio-temporal behaviour of the environmental phenomena requires
development of an effective monitoring system. In past decades, weather stations have been the
widely used for monitoring. However, weather stations are spatially sparse, and they only capture
coarse-grained environmental variations, which are not sufficient for monitoring variations in small
scale ecological processes.

Recently, wireless sensor networks have been widely used in small scale environmental
monitoring as they can be economically deployed for fine-grained environmental sensing
and monitoring. Example applications include city centre heat monitoring [2], air quality
monitoring [6], building environment monitoring [7], soil moisture measurement [8],
volcano monitoring [9], ocean exploration [10], and harsh mountain environment monitoring [11].
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In most of these sensor network deployments, the number and positions of sensor nodes are selected
based on intuition, domain knowledge, or cost constraints. There is currently a lack of an objective
method for determining the best number of nodes and their spatial distribution. The challenge is that
the optimal node number and locations are dependent on the specific spatiotemporal processes in the
monitored environment. The dynamics of these processes are not known a priori, which is in fact the
motivation for monitoring the environment. Two of the sensor networks deployed by our research lab
for rainforest monitoring [12,13] and mine rehabilitation monitoring [4] are clear examples where the
number of nodes that were deployed was not based on any evidence-based understanding of the
number that would be needed. The question of the optimal number and placement of sensor nodes
needed for adequate environmental monitoring remains a challenge, and that is the topic that this
paper addresses.

In a real application scenario, it is important to know the optimal number of sensor nodes to be
deployed and the best position to achieve the project’s scientific or business objectives. A large number
of sensors incurs high deployment and operational costs. On the other hand fewer sensors may fail
to capture sufficient local details. The design goal should be to achieve the scientific objectives at the
most economical cost.

Strategies for determining the target number of deployment nodes vary from analytical to
simulation-based approaches. Some of the strategies are theoretically-based where environmental
phenomena are modelled as spatio-temporally correlated processes and suitable sampling strategies
are developed, such as in [14,15] where Gaussian process modelling is used. In [16], Monte-Carlo
simulation has been used to find the locations of nodes in space that produces the lowest
spatial variability. In [17], a geometrical approach is used treating sensor deployment as an area
coverage problem. Our approach balances theory with initial experimental evaluation of the sensor
deployment area to ensure that the coverage is adequate for the specific deployment scenario.

This work considers a practical application scenario, using the example of a mine rehabilitation
monitoring program over an area of several square kilometres [4]. The objective is to monitor small
scale spatio-temporal variations using empirical data from a short-term, high density deployment to
optimize the deployment of a number of long-term sensor nodes. First, a larger number of static sensor
nodes are deployed across the sensor area. The observations at each sensor location form a time series
while observation at different locations form multiple time series. A time series analysis framework
is then applied on each individual series as well as at the multiple series. Co-integration analysis
is then used to determine the relationships between series. Co-integration provides information
on which time series are most similar to each other. Similar time series are used to determine one
location that can be used as an estimate for its co-integrated locations. Redundant sensors can be
re-used elsewhere, or alternatively initial deployments can be with a large number of low-cost, short
lifetime sensors that are replaced by fewer yet more robust long-term sensors. Implementing our
proposed co-integrated multiple time series analyses for temperature measurement in the mine
rehabilitation scenario showed that 75% of the existing sensors are found to be co-integrated with the
other 25%. In other words, similar temperature monitoring accuracy could be achieved with only 25%
of the existing deployment. The proposed approach is general enough that it can be utilized in any
spatio-temporal monitoring application.

The rest of the paper is organized as follows: Section 2 reviews previous work.
Background information on the techniques used is described in Section 3. The analytical approach that
is used and the algorithms developed for the approach are discussed in Section 4. Section 5 presents
analytical results from the particular mine rehabilitation sensor network. Section 6 concludes the paper.

2. Previous Work

In [3], authors have described the association between ecological processes and microclimate
(temperature, solar radiation and other phenomena at small scale). Temperature variation up to 8 ◦C
within a small forest patch was reported and linked to ecological changes. The effect of small scale
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climatological condition on the development of a fungal disease on a potato crop and forest canopy was
observed in [5,18]. Variation of temperature within a small urban area has been reported in [2] while
the microclimate effects on soil characteristics in mine rehabilitation were reported in our previous
work [4]. In all scenarios, variations in the environmental phenomena at small scale are observed and
linked to environmental changes, motivating the need for accurate understanding of local microclimate
conditions in many scenarios.

Environmental monitoring has a long history. As described in [19], The Australian Bureau of
Meteorology has been monitoring climatic variables including temperature, pressure, sun radiation,
and rainfall since 1957. However, only 4600 monitoring stations are installed to cover the whole
7.7 million square kilometres of Australia since the capital and operating costs of weather stations are
very high [19]. Such a coarse-grained spatio-temporal environmental monitoring would not suffice
for the small scale environmental impact analyses needed in mine rehabilitation [4] or rain forest
monitoring [12] scenarios.

Significant research has been undertaken in the design of monitoring networks in sensor
network applications. In general these works can be divided into three groups: mathematical,
geometrical and simulation approaches. A selection is reviewed here.

Environmental phenomena are modelled mathematically as a spatio-temporal random field
where the monitoring network design problem becomes the problem of sampling the assumed
random field. In [14,15], the phenomenon is modelled as a Gaussian process and sampling strategies
are designed. In [15], the authors also deployed sensor nodes for some time to learn the parameters of
the Gaussian process.

Another approach to design a sampling strategy has been the geometry-based approach.
Within a spatial region various geometrical approaches are used to select the positions of the sensors.
Voronoi tessellation, Delaunay triangulation, and cell declustering are some of the examples of these
geometric arrangements [15]. In [17], Voronoi tessellation is used to optimize the node positions.
The main issue with such approaches is the strong assumption regarding the nature of the process.
Environmental phenomena will not have convenient geometrical regions of similarity. The limitation of
such an approach in monitoring temperature is shown empirically in [15] where temperature variations
among equidistant points are different.

Other work by Chen et al. [20] also addresses geographic sensor node selection, although in their
case they select a subset of nodes from a heterogeneous collection of web-connected sensors for a
particular application using a web-services approach. In their case geographical sensor selection is
based on proximity and they do not provide a method for interpolating between sensor positions,
which is the focus of this work. Wang et al. [21] have described a wide area technique for selecting
the site of ground precipitation sensors to complement satellite observations. Their work is based on
maximizing the geographical coverage of sensors, sensitive to local terrain conditions. Such techniques
could be useful for determining the initial dense deployment of sensors, and is complementary to our
work which then identifies the best subset of those sensor locations.

In the simulation approach, sensors are placed at selected points and simulated sample
measurements are drawn from the expected sensor responses to check the quality of measurement.
In [16], Monte Carlo simulation is used to choose sensor locations. However, this requires the
spatio-temporal variability of the data to be estimated before any measurements are made.

Several studies have conducted time-series analysis in sensor networks [22–25]. Some works are
based on simulation while others are based on real observed series. One common objective of all the
studies has been to identify the nature of the time series from each sensor node and somehow use the
knowledge to reduce communication among sensor nodes which is important in energy saving in
resource constrained nodes. For example, in [24] sensor data is only transmitted when it cannot be
accurately forecast by a time series model of past data. Most works are based on univariate analysis of
measurements at one point. Our work considers the correlation of time series across space basing the
analysis on multivariate or multiple time series. The main focus of our work is to explore co-integrated
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time series and exploit their behaviour to optimize the number of sensors needed to monitor the
desired environmental phenomena at the required accuracy.

3. Background Information

This section briefly describes some background information required for this research. It includes
information on time-series analysis and a technical specification of the environmental sensor network
involved in this paper. Mathematical details are kept to a minimum, and readers are referred to [26]
for further information.

3.1. Theory of Time Series Analysis

Time series analysis is a framework for analysing sequentially observed data in time. It involves
analysing temporal correlation of the observation which can be used for identification of the process
model that generates the data. Identification of the model helps in generalizing the nature of
the underlying process and estimating past and future values based on available observations.
Environmental phenomena that are observed sequentially at regular sampling intervals are best
suited for this analysis. Environmental phenomena which form time series include temperature (T),
solar radiation (S), soil moisture (M), and rainfall (R). Each variable has an observation at each sampling
instant (t). The series of sampling intervals can be numbered (t0, t1, . . . , tn). The value of one variable
at successive sampling instants forms a time series, e.g., (T0, T1, . . . , Tn).

3.1.1. Univariate and Multivariate Time Series

Univariate time series analysis is concerned with the study of a single time series. A series of
temperature readings (Ti) measured at one sensor node is an example of a univariate time series.
Most of the environmental phenomena are measured in many locations generating multivariate time
series which are correlated among themselves. Multivariate time series analysis is the process of
analysing more than one time series at a time. Time series such as temperature (T0, T1, . . . , Tn),
solar radiation (S0, S1, . . . , Sn), and soil moisture (SM0, SM1, . . . , SMn) have relationships between
them that can be analysed under multivariate time series analysis. Similarly measurements of the
same variable at different locations, e.g., temperature from different sensors, can be analysed using
multivariate analysis.

3.1.2. Stationary and Non-Stationary Time Series

A time series is called a stationary if it exhibits a consistent temporal statistical pattern. Such time
series are amenable to time series analysis. If the moments of the time series such as mean and variance
do not change with time, the series is called stationary to the mean and the variance. (M0, M1, . . . , Mn)
is called stationary of order (1, 2, 3, . . . , n) if moments (m1, m2, m3, . . . , mn) remain constant over time.
For many applications, a time series is examined for second order stationarity. Second order stationarity
is based on the assumption that the underlying phenomena is a Gaussian stochastic process for which
first and second order moments (mean and variance) are sufficient to characterize it. A second order
stationary time series whose covariance is such that Cov(Xt1, Xt2) can be generalized by Cov(τ) where
τ = (t1 − t2) is called weakly stationary. Any time series that doesn’t show regularity about its moments
is called a non-stationary time series, and simple time-series analysis techniques cannot be used.
Temperature (T0, T1, . . . , Tn) measured at a particular location is a good example of a non-stationary
time series. Expected value, correlation, and variance all vary with time. Non-stationarity can occur
due to seasonal variation, unknown noise involved or due to the nature of the underlying phenomena.

3.1.3. Co-Integrated Time Series

Time series are called co-integrated if they show some similarity amongst themselves.
If two time series are co-integrated, even if they are non-stationary, one can be estimated



Sensors 2018, 18, 11 5 of 16

using the other. Many studies on co-integrated non-stationary time series have been conducted
in the field of econometrics where various quantitative and qualitative economical series are
analyzed [27,28]. Linear modelling can be performed among co-integrated series and ordinary least
square estimation becomes the best unbiased estimation. Such estimation is mathematically tractable
and statistically efficient. Most environmental phenomena are non-stationary in nature, so that linear
estimation cannot be performed without the assumption of stationarity or some transformation.
Assumptions may lead to invalid conclusions while some transformations render the data difficult
to interpret in the transformed scale. If multiple time series exhibit co-integrated characteristics,
no assumptions and transformation are needed. Co-integration analysis that has been proposed
in econometrics for economic time series modelling is adapted for environmental time series in
this work. As co-integration analyses search for similarly behaving series, this can help to determine
environmental series which are redundant, and so the sensors generating those redundant time series
are not needed.

3.1.4. Augmented Dicky-Fuller Test

Before conducting any inferential analysis, the co-integrated nature of the time series needs
to be validated. Researchers in [27,28] provided a framework to validate whether time series are
co-integrated. The Augmented Dicky-Fuller (ADF) test is a statistical procedure that tests the
stationarity hypothesis of a univariate time series. Given a time series, the ADF test fits varying
degrees of autoregressive (AR) models and provides statistics needed for acceptance or the rejection of
an initial non-stationarity hypothesis. Equation (1) shows an AR(1) process:

yi = c + ρyi−1 + ε (1)

where ε is a Gaussian white noise process with zero mean, and c is a drift constant.
The process is non-stationary if |ρ| ≥ 1 and the process is stationary if |ρ| < 1. In the ADF test,

non-stationarity is tested for higher degrees of order p using Equation (2) i.e., to check if the time series
fits an AR(p) model:

∆yi = ρyi−1 +
p−1

∑
j=1

bj∆yi−j + ε (2)

where the difference operator ∆ is ∆yi−j = yi−j − yi−j−1.
The ADF test is available in the libraries of statistical computing platforms like R [29].

The Dickey-Fuller Test Statistic is a statistical measure that is used to confirm that the nodes are
co-integrated. It should be less than a critical value determined by the number of observations, and the
confidence of decision. The needed critical threshold value and related statistics for various orders
of the process and the number of observations are tabulated in [27]. Table 1 below, shows the values
for different numbers of observations and different confidence levels for an order 1 process. For a
confidence level of 99% and more than 100 observations, it is common practice to choose a critical
value of the ADF test statistic of −3.5.

Table 1. Critical Values for Dickey-Fuller Test Statistic.

Sample Size 99% Confidence Level 95% Confidence Level

50 −3.58 −2.93
100 −3.51 −2.89
500 −3.44 −2.87

Infinity −3.43 −2.86
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3.2. Mine Rehabilitation Monitoring Sensor Network

This study uses environmental sensor network data obtained from the Meandu open cut coal
mine situated in a remote location of Queensland, Australia [4]. The industrial site of the mine
is fairly large and spread across several sections of the mine site. The mine was established in
the 1980s. Mining activity involves removing overburden, then removing the coal, and then replacing
the overburden. After the mining is completed in one section, the rehabilitation phase commences.
Rehabilitation involves restoring the previous environment, i.e., regenerating soil and re-establishing
plants (grass, shrubs, trees) back to the condition of the natural environment. Sensor networks are
deployed in rehabilitation sites, as shown in Figure 1, to monitor microclimate in order to assist with
the timing of operations such as planting, and watering. Air temperature, soil temperature at two levels
of depth, solar radiation, soil moisture, rainfall are measured in each rehabilitation site. The coloured
outlines on the map show areas where rehabilitation has begun in different years from before 2000 up
to 2010. The numbered boxes show the locations of sensor nodes.
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Figure 1. Meandu mine rehabilitation site and sensor deployment.

The sensor network designed by CSIRO has been deployed in several rehabilitation sections.
In the current deployment there are four sections, 12 sites and 24 transects in which 30 sensor platforms
are deployed. For ground truth validation, several sophisticated weather stations are also deployed.
Locations of the sensor nodes are selected based on the requirement of the rehabilitation monitoring.
A custom sensor network platform using a 900 MHz IEEE 802.15.4 compatible radio was designed.
A collection tree-based data collection protocol is used to for data communication from sensor to
the gateway. The gateway station then forwards data to a centralized server using 3G connectivity.
The server provides access to the data and further analysis. Technical details of the platform are given
in [4].

3.3. Limitations and Assumptions

This paper represents a first exploration of using the time-series analysis method of co-integration
for improved placement of sensors in an environmental sensing scenario. There are many assumptions
and restrictions to the applicability of this model, as follows.

Firstly, the method is only applicable to sensing parameter fields that are spatially correlated, i.e.,
where values at locations that are close spatially tend to have similar values. Environmental parameters



Sensors 2018, 18, 11 7 of 16

such as air temperature, humidity, wind speed and barometric pressure would be examples of
such parameters. There are many parameters, especially in the built environment, which would
not be amenable to such analysis, such as smart power meters in one street, or traffic density in
nearby streets. Part of the analysis in the next section is to identify if time series data are suitable for
this approach.

Another assumption is that spatial correlations between sensor readings persist over the long term.
An initial exploration of the estimation error over a whole year based on one week of training data is
presented in Section 5.4.

In some situations, dense sensor deployments may be intended to detect data anomalies,
for example a sudden increase in temperature due to an approaching forest fire. Again, since the
approach here uses a few sensors to interpolate parameters at other locations, it will be less sensitive
to local anomalies, and would not be suitable for such applications.

This initial investigation uses temperature as the example environmental variable, since it is easy
to measure and changes relatively slowly. Our future work plans to extend this work to other sensors.

4. Proposed Analytical Methodology and Algorithms

4.1. Data Analytic Framework

This section describes the analytical framework used for the analysis of the multivariate time series.
Figure 2 shows the different steps involved in the analytical process.
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First, exploratory analysis of time series data looks for any significant inconsistencies.
Spatially proximate sensors are plotted together for this. Outlier detection is performed including
univariate and multivariate features. The detailed approach to performing outlier detection
analysis is available in our previous work [4]. The next step is to identify the time series model.
Stationary behavior of the series is analysed using an Augmented Dicky-Fuller test for each sensor.
As expected, none of the periodic temperature time series are stationary. Co-integration analysis is then
performed for all possible pairs of sensors. The result of the co-integration analysis is the confirmation
or failure of the co-integration test of the pairs of the available sensors. After co-integration analysis,
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the Best Subset Node Selection step is performed that searches for the best possible subset of the sensor
nodes that can estimate each of the time series.

4.2. Co-Integrated Series Selection Algorithm

Firstly, a decision must be made about which set of nodes are sufficiently close in location
to be considered as possible co-integrated nodes. This means identifying a local neighbourhood
of nodes. For example, in the experiments we describe here, 12 nodes in the north-east corner of the
mine site (numbered 201 to 212 in Figure 1 above) are selected. They are within 1 km of each other.
It would be less likely that nodes in the south-west corner of the mine would be as closely correlated.
Within this neighbourhood, all possible pairs of nodes are examined.

The co-integrated series selection algorithm searches for the best co-integrated node for each
sensor node. This algorithm starts fitting a linear model on one node with all the other nodes.
After fitting the model each residual series is then evaluated for stationarity using the Augmented
Dicky Fuller test. At the end of the run, the algorithm generates the best co-integrated node for each
sensor node.

In the case where the most correlated node has a Dickey Fuller test statistic which is above the
critical value of −3.5, then it cannot be estimated accurately from other nodes, and that node would be
one of the critical locations for a permanent sensor node.

Algorithm 1: Co-integrated time series selection

1: TS← sensor series
2: for each time series i do
3: # fit a linear model with each other node j
4: lm[i][j]← linear model TS(i, j)
5: resd[i][j]← residual(lm[i][j])
6: end for
7: for each residual i,j do
8: # run Dicky− Fuller test
9: DF [i][j]← ADFtest(resd(i, j))
10: end for
11: for each time series i do
12: ts←maximum(abs(DF(i, j)))
13: Cointegrated[i]← ts
14: end for

4.3. Best Subset Sensor Nodes Selection Algorithm

After validating that the observed time series are co-integrated, a best subset nodes selection
algorithm searches for the best subset of nodes that can be used to estimate the value at each
unobserved location. At each location, the proposed algorithm starts searching for the best linear
combination of observations at other locations that can reproduce the observed value. It is possible
to set the maximum number of nodes to be searched from 1 to N, where N is the total number of
available nodes. If the maximum node to be selected is set to 1, the algorithm selects a single best node
for the estimation. The searching involves all available series. A linear combination of temperature at
a particular location is calculated based on Equation (3):

Y = βX + ε (3)

where β = (β0, β1, . . . , βN) are corresponding linear weights and X is the matrix of variables with each
column representing a single series.
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The least square cost function to minimize is given by (Y − βX)T(Y − βX) which when
differentiated with (β0, β1, . . . , βN) provides the least squares unbiased estimation of the parameters
as given by Equation (4):

β̂ =
(

XTX
)−1

XTY (4)

In each iteration, the algorithm selects one more co-integrated series that has not been
previously selected. The selection is based on the node whose addition to the subset most reduces
the estimation error. After parameter estimation, the estimated value of this series based on the
linear combination of other series can then be calculated for a test set (different from that used to
select parameters) using parameters from Equation (4).

In each iteration, the algorithm produces the training error for each series.
Observing training errors, a suitable number of nodes can be selected which can generate all
the series. This suitable number may be determined by operational requirements, e.g., one might
have only 4 permanent sensing stations for deployment, and wish to choose the best four locations.
Alternatively, this number could be chosen by scientific requirements, such as needing a maximum
of 0.5 ◦C RMSE error at all the estimated positions. Finally, the number could be chosen on a
statistical basis, such as identifying when adding an additional node does not significantly reduce
the RMSE of estimated readings (using something like the heuristic “elbow” criterion in a graph of
RMSE versus number of nodes). Pseudocode of the algorithm that selects the best subsets is given in
Algorithm 2.

Algorithm 2: Best subset selection of M co-integrated nodes from N − 1 candidates for each of N nodes

1: # Search for the best subset of M sensors for each individual sensor, i
2: M← number of sensors in the subset
3: for each sensor i do
4: searchspace← set of all sensors minus sensor i
5: bestsubset[i]← NULL
6: for j = 1 to M do {add one more sensor to best subset for i}
7: lowest estimation error← infinity
8: for each sensor k in searchspace
9: fit linear model to sensor i using (k + bestsubset[i])
10: if estimation error from linear model < lowest estimation error
11: lowest estimation error← estimation error from linear model
12: bestsensor← k;
13: end if
14: end for
15: searchspace← searchspace− bestsensor
16: bestsubset[i]← bestsubset[i] + bestsensor
17: end for
18: end for

It is useful to estimate the computational complexity of Algorithm 1 and Algorithm 2.
Both algorithms basically have the same structure, which is for every pair of nodes, find a least
squares estimator for one node from the other, and then calculate the goodness of fit, either by
calculating the Dickey-Fuller statistic or the estimation error. The parameters which affect which
affect computational complexity are N, the number of nodes, M the size of the best subset, C = 2M,
the number of parameters that have to be estimated in the linear model, and S, the number of samples.

Equation (4) is the basis of fitting a linear model, and in terms of time complexity it consists of
a matrix multiplication XTX which is O(C2S), a matrix multiplication XTY which is O(CS) a matrix
inverse which is order (C3), and a final matrix multiply which is O(C2). The calculation of the error
metric or statistic consists of estimating S values from C parameters, O(CS). For the case where M = 1
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(using just one estimator node), and therefore C = 2 is a constant, the order of one linear fit is O(S). If this
is repeated for every pair of nodes, the total complexity is O(N2S). The N2 term suggests that it may be
infeasible to apply this method directly to thousands of nodes, instead these nodes should be divided
into disjoint neighbourhoods of less than 100 nodes. For M > 1 (i.e., larger subsets of estimators),
the complexity grows to O(N2M2S), and so for these experiments we just use M = 1 to reduce the
computation time.

5. Analysis of Results

This section provides results obtained from implementing the proposed algorithms on the
12 sensors in a 1 km × 1 km area in the north-east of the Meandu mine site, as shown in Figure 1.
The average distance between neighbouring nodes is about 100 m. Three weeks of temperature
time series starting from 1 January 2013 are used for the analyses. The first week of data is used to
select three “permanent” nodes from the 12, and to train models to estimate the other nine. Then the
temperature is estimated at the nine positions from the three “permanent” nodes for 10 days, and the
estimated temperature compared to the actual temperature at those nine positions. Temperature is
selected as a representative time series as it has been analysed in other works [1,2,15], and is known to
be amenable to time series analysis. We hope to investigate other parameters in future work.

5.1. Univariate Analysis

Figure 3a shows the multiple time series plot of 12 nearby sensors superimposed. It helps to
evaluate obvious inconsistencies among the series which is not present in this case. Figure 3b shows
the temporal autocorrelation of temperature from one of the sensors. From the nature of the correlation,
it is obvious that the series is non-stationary. Any series that possesses periodicity in their correlation
are non-stationary. The Augmented Dicky-Fuller test is run for each time series to verify that its
non-stationarity is of order 1. Also, the time series model identification utility available in R is used for
model identification. Figure 3c shows that after first order differencing, the autocorrelation is reduced
to small values for all lags, and so this differenced sequence is stationary, and amenable to analysis.
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5.2. Co-Integration Analysis

After confirming that all series are first order non-stationary, co-integrated analysis is then
performed for each node. The nodes are given ID’s ranging from node N1 to N12. Table 2 shows the
statistics of the ADF test value for each sensor node with the rest of the nodes.
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Table 2. ADF-test for time series, Best Match bold, NN = Physically Nearest neighbour.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

N1 - −43.26 −35.17 −25.90 −28.06 −24.65 −30.53 −29.79 −3.90 −30.20 −3.55 −7.86
N2 −43.26 - −45.02 −28.53 −29.82 −26.89 −31 −30.33 −3.53 −27.60 −3.64 −7.02
N3 −35.18 −45.01 - −25.36 −24.35 −25.21 −25.92 −25.08 −3.82 −26.42 −3.55 −6.58
N4 −26.07 −28.71 −25.19 - −25.59 −29.65 −43.97 −42.87 −3.82 −29.49 −3.54 6.48
N5 −28.16 −29.91 −24.26 −25.67 - −22.60 −24.43 −25.65 −3.91 −20.41 −3.57 −6.63
N6 −24.73 −26.96 −25.12 −29.75 −22.61 - −30.01 −29.86 −3.84 −22.45 −3.56 −6.69
N7 −30.53 −31.13 −25.79 −43.92 −24.40 −30.92 - −49.12 −3.83 −22.78 −3.57 −6.57
N8 −29.96 −30.48 −24.96 −42.05 −25.60 −29.90 −49.09 - −3.87 −22.45 −3.56 −6.68
N9 −3.90 −3.93 −3.19 −3.16 −3.40 −3.31 −3.26 −3.37 - −3.52 −5.16 −3.88
N10 −30.10 −27.49 −26.51 −20.69 −20.54 −22.59 −22.97 −22.29 −3.79 - −3.57 −6.68
N11 −3.55 −3.55 −3.68 −3.74 −3.94 −3.98 −3.97 −3.02 −5.13 −3.44 - −4.48
N12 −7.86 −7.07 −6.82 −6.77 −6.93 −7.01 −6.87 −7.02 −3.49 −7.25 −3.68 -
NN N2 N4 N4 N2 N6 N5 N8 N7 N10 N9 N8 N10
Best N2 N3 N2 N7 N2 N7 N8 N7 N11 N1 N9 N1

In order for a series to be co-integrated with another, the test statistic should be less than the
ADF test threshold which is normally set to −3.5, as described earlier in Section 3.1.4. It can be seen
that almost all ADF test statistics are less than the critical value which means all series are statistically
co-integrated. More negative values of the test statistic indicate a higher co-integration between series.
Almost all series have a high degree of co-integration with all other series, with the test statistic
for most pairs in Table 2 significantly more negative than the −3.5 threshhold. The exceptions are
nodes 9 and 11 with a test statistic close to the threshold when paired with other series. Among the
co-integrated series, some are highly co-integrated with a single series. Node N1, N3 and N5 are highly
co-integrated with N2. Similarly, N4, N6 and N8 are most co-integrated with N7. N9 and N11 are less
co-integrated with other nodes, but they are co-integrated with each other. Also, N10 and N12 are
co-integrated with N1 which in turn is co-integrated with N2. Note that the most co-integrated node is
rarely the physically Nearest Neighbour node, shown in the NN row in the table.

This co-integration result shows that three sensor nodes, namely N2, N7 and N11, are co-integrated
with all of the rest of the nodes. This indicates that using these three co-integrated series, the remaining
series should be able to be accurately estimated by using a linear estimator.

5.3. Estimation of Observation at Co-Integrated Nodes

This section analyses results about how co-integrated series can be used for the estimation of the
temperature value. The best subset selection algorithm is used to search for the best subset of nodes
among co-integrated nodes. The maximum subset to be selected is set to 1 to evaluate how useful the
most co-integrated node is for the estimation of temperature at other sensor nodes.

For each node, the most co-integrated node from Table 2 is selected as the estimator. Temperature is
then estimated during a separate 10 day test period using the linear model learned during the training
phase and mean test error is recorded.

We then also analyse how the estimation varies if other nodes are selected instead of the
most-co-integrated node. The RMSE is recorded for each of the other nodes used as an estimator.
Figure 4 shows how the root mean squared error (RMSE) varies when different nodes are used for
estimation—the order of nodes on the x-axis is from best to worst, left to right. The least RMSE for
estimation of node N1 in Figure 4a is with the most co-integrated node N2 with an RMSE of 0.26 ◦C.

Based on the ordering given by RMSE, the quality order (best to worst) of estimators is N2, N5,
N3, N7, N10, N8, N12, N4, N6, N11, N9. It is worth noting that this is different to an ordering based on
the ADF test statistic as shown in Table 2, where the most co-integrated nodes for N1 are (in order)
N2, N3, N7, N10, N8, N5, N4, N6, N12, N9, N11. The ADF test statistic, as shown in Table 2, gives a
measure of the confidence that two nodes are co-integrated, rather than a direct measure of the quality
of prediction. So, we recommend using Algorithm 1, based on the ADF, to establish where nearby
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series are sufficiently co-integrated for this method to be valid, and then use algorithm 2 based on
RMSE to actually select the best estimator nodes.

We repeat the analysis at node 4, which is most co-integrated with node 7 as shown in Figure 4b.
From this figure it can be seen that RMSE for node 4 is small with mostly co-integrated nodes 7, 8, 5
and 6 while estimation error is higher with node 11 which is less co-integrated. In the case of node 9,
the lowest RMSE is obtained with node 11 as shown in Figure 4c.
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If the RMSE error threshold for temperature measurement in all nodes were set to 0.5 ◦C, nodes 2,
7 and 11 would be sufficient to estimate all other nodes within the required accuracy. So the number of
deployed nodes could be reduced by 75%.

Figure 5a shows both the original measured temperature at node N1, and the temperature
estimated from using co-integrated node N2 over the 10 day test set. Figure 5b shows the detail of
these two time series for the first 3 h, as well as the original measured temperature at N2, and it
is clear that a linear estimator is significantly better than simply using N2 directly as an estimate.
Figure 6a shows the original measured temperature at N4 and the estimated temperature from its most
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co-integrated node N7, while Figure 6b shows the original and estimated temperature at node N9.
In all cases, the linear estimates from co-integrated nodes give good approximations to the actual
measured temperatures.
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5.4. Discussion

While we have demonstrated the proposed approach on temperature time series, the approach
is broadly applicable for determining the minimal set of sensor nodes for monitoring a given area.
Since the sensor fields for each area will have unique spatiotemporal dynamics, our approach requires
an initial dense deployment of sensor nodes for a short period. Once enough data is collected, we can
determine nodes that are highly co-integrated and select the minimal set of nodes that can capture
the sensor processes accurately. The deployment can then be reduced to include only the minimal
set of nodes, thereby minimizing the monetary cost and network scale, along with its associated
bandwidth overheads.

Several issues remain for future work. Firstly, how densely should the initial nodes be deployed?
This obviously depends on the nature of the parameter being measured and its spatial variability.
For this experiment, we have used temperature sensors that have been deployed at approximately
100 m intervals, and we have shown that 75% of sensors can be estimated by spatial interpolation.
Our suggestion would therefore be to deploy sensors at approximately four times the density of the
expected final deployment, with the expectation that 75% are unnecessary, but the remaining 25% will
be placed at better positions. This is clearly an area for more future investigation.
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A second question is whether the co-integrated prediction is reliable into the future, given that
the test data in Figures 5 and 6 is immediately after the training data. Figure 7 shows how the
RMSE changes over the course of the next year, using estimation parameters from just one week
of training data. The monthly moving average RMSE error peaks at about 1 ◦C in the opposite
season (winter in July versus training data during summer in January). This suggests that the RMSE
error in the opposite season may be twice that close to the training data. If the deployment is
planned to be very long term, this suggests temporary deployments that includes summer and
winter periods may be useful to get better prediction accuracy. Again, this is a fruitful area for
further research. Another area for further research is the use of non-linear models, including more
complex machine-learning estimators which could include the season as a prediction input.

6. Conclusions

This work has proposed a time series-based analytical approach to develop sampling node
selection in environmental sensor networks. Co-integration is found to be a useful tool to investigate
temporal variation of the monitored phenomena. From the analyses conducted with temperature series
in a mine rehabilitation scenario, a significant number of sensing nodes are found to be redundant.
Co-integrated nodes are shown to be capable of estimating observations at their co-integrated
neighbour without exceeding a small error threshold. Such an approach of finding the best
co-integrated nodes and using them to estimate observations for the rest of the nodes can be useful for
developing a long term environmental monitoring strategy.

To monitor a large spatial area, monitoring can begin with a large number of short-deployment
sensors and analysing their co-integrated nature. Where sets of nodes are found to be co-integrated,
redundant sensing positions can be removed. Permanent sensors are needed only in the positions
of the non-redundant nodes. Alternatively, a small set of nodes can be densely deployed in one part
of the area, the best positions chosen, then the unused nodes would be moved to another section of
the area and this can be continued until the whole spatial region is covered. However, while this
approach would provide local optima for sensor positions for each neighbourhood, it is more difficult
to guarantee an optimum deployment over a large area. One suggestion would be to start at the
centre of the deployment area, and then gradually move outwards. The pool of candidate nodes



Sensors 2018, 18, 11 15 of 16

could include all the already committed permanent nodes from previous areas in the pool of potential
co-integrated nodes. The best algorithm for extending this technique to cover a larger area would be
an interesting topic for future work.

Currently, this work only focuses on static sensor nodes. Future work could include using mobile
nodes in to the monitoring to map the co-integrated regions of the sensing field prior to permanent
node deployment.
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