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Abstract: In order to improve the classification accuracy of recognizing short-circuit faults in electric
transmission lines, a novel detection and diagnosis method based on empirical wavelet transform
(EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit
fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency
modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently,
the fault occurrence time is detected according to the modulus maxima of intrinsic mode function
(IMF2) from three-phase voltage signals processed by EWT. After this process, the feature vectors
are constructed by calculating the LE of the fundamental frequency based on the three-phase
voltage signals of one period after the fault occurred. Finally, the classifier based on support vector
machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of
short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT
has a better ability to present the frequency in time. The difference in the characteristics of the energy
distribution in the time domain between different types of short-circuit faults can be presented by the
feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and
effectiveness of the new approach.

Keywords: short-circuit fault; empirical wavelet transform; local energy; support vector machine

1. Introduction

The detection and classification of short-circuit faults in power transmission lines are the basis
for accurately judging the fault phase. The accurate removal of the fault phase reduces the further
negative impact of the failure in the power system. It is very useful for enhancing the stability of the
power system, boosting the transient stability of the system, and improving the quality of the power
supply [1,2].

Having a method to accurately and efficiently classify short-circuit faults is the basis of fault
clearance for power transmission lines. Fault voltage signals achieved from the sensors of photoelectric
voltage transformers contain various transient components due to uncertain factors, such as fault
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location, fault time, and transition resistance of transmission lines. It is useful but complex to analyze
and recognize these fault voltage signals. Generally, classification of short-circuit faults based on the
voltage signals include three steps: signal processing, feature extraction, and pattern recognition.

Signal processing is the basis of classifying short-circuit faults. The time-frequency analysis
approach is commonly used in the processing of short-circuit fault signals, which mainly includes the
wavelet transform (WT) [3,4]; wavelet packet transform (WPT) [5,6]; S-transform (ST) [7,8]; empirical
mode decomposition (EMD) [9]; ensemble empirical mode decomposition (EEMD) [10,11]; ensemble
empirical mode decomposition (EEMD); complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) [12]; and improved complete ensemble empirical mode decomposition
with adaptive noise (Improved CEEMDAN) [13]. WT and WPT are more capable of analyzing the
time frequency of signals. However, they still have limitations such as being easily influenced by
noise, limited frequency resolution in high-frequency parts as well as difficulty in selecting the mother
wavelet function and decomposition scale [1,14]. ST has good time-frequency resolution and noise
immunity, but ST also has a very high computation complexity. Therefore, it is difficult to analyze
fault signals at a high sampling rate. Compared with the WT, WPT, and ST methods, the EMD method
has advanced adaptability. As it can adaptively decompose the non-linear and non-stationary signals
into several intrinsic mode functions (IMFs), which reflect components at different frequencies. It is
considerably more convenient to extract the features of fault signals from IMFs. However, EMD has
some limitations due to mode mixing, pseudomode, and so on. The EEMD method has a higher
time-frequency resolution than the EMD and retains the problem of mode mixing. Furthermore, the
reconstructed signal and the final trend of EEMD contains residual noise, while different realizations
of the signal and noise generates different numbers of modes. The CEEMDAN method proposed in a
previous reference [12] was proved to be a significant improvement of EEMD, which realizes a small
reconstruction error and solves the problem of generating a different number of modes by adding
different noise to signals. However, the CEEMDAN method still has some problems, such as residual
noise contained in its modes. In order to solve these problems of CEEMDAN, the improved CEEMDAN
method was proposed by reference [13]. The empirical wavelet transform (EWT) is a new adaptive
signal processing method [15], which combines the adaptability of EMD with a wavelet decomposition
framework. Compared to EMD and its improved methods, EWT has the following advantages:

• EWT decomposes the signal spectrum adaptively, and constructs orthogonal wavelet filter banks
to extract amplitude modulated-frequency modulated (AM-FM) components with a compactly
supported Fourier spectrum. Therefore, it can accurately decompose the short-circuit fault signals
into IMFs to avoid mode mixing.

• The EWT approach has been proven by the classical wavelet theory. However, the orthogonality
of IMFs obtained by the EMD method has not been shown in previous studies.

• IMFs obtained by the EMD method require many iterations and numerous calculations. However,
EWT requires less calculations to obtain the IMFs from fault signals based on the wavelet method.

Therefore, EWT is more suitable for analyzing short-circuit fault signals with
non-stationary characteristics.

The features used directly affect the classification of short-circuit faults. The features of short-circuit
fault signals can be extracted from the time-frequency matrix of short-circuit faults. In the present study,
various entropies such as Shannon entropy [16], Shannon energy entropy (EE) [17], Shannon energy
spectrum entropy [18], Shannon time entropy (TE) [5], and Shannon singular entropy (SE) [19] have
been used to characterize the time-frequency characteristics of short-circuit faults. When short-circuit
fault signals are described by entropy, it is difficult to satisfy the requirement of different sampling rates
by a uniform standard of selecting sliding window parameters. Moreover, the entropy characteristics
in the time domain are extracted along the time axis. The differences between short-circuit faults in the
frequency domain are mainly reflected through the entropy value with limited expressive ability.
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On the basis of feature extraction, the types of short-circuit faults can be recognized by classifiers.
The methods used for constructing the classifier of short-circuit faults include neural networks
(NN) [20], extreme learning machine (ELM) [21], support vector machine (SVM) [22], and so on. NNs
have good robustness and adaptability resulting in it being widely used in the field of short-circuit
fault classification [4,5]. However, it is difficult to determine the optimal structure of the NNs-based
classifier and a large number of parameters need to be optimized. At the same time, the training
for the NN processing requires a large number of historical samples which limit the applications
of NNs. As the weights and thresholds are randomly generated in the process of network training,
ELM has a faster learning speed. However, the diagnosis results are easily affected and fluctuated by
both the hidden layer nodes and random parameters of ELM [23,24]. SVM has a good classification
ability and robustness while the optimal factors of SVM can be easily chosen by the cross-validation
method. In addition, it is easy to optimize the SVM with a small number of characters. The optimal
classifier can be constructed by the cross-validation method to reduce the classification error due to the
unreasonable parameters of SVM.

In order to improve the recognition accuracy of short-circuit fault signals, this paper presents a
method for the detection and diagnosis of short-circuit faults based on EWT and LE. First, the fault
signal is processed by the EWT method, with the results obtained by EWT being called IMFs.
Subsequently, fault detection is realized by the modulus maxima point of the IMF2. Following this, the
IMF0 of fault signals in the first period after the occurrence of the fault is decomposed into several
time-frequency blocks of equal size. The local energy (LE) features are obtained by calculating the
energy of each block to create the energy distribution of the fundamental frequency signals in the
time domain. Finally, the SVM classifier is constructed according to the LE feature vectors to classify
short-circuit faults. Comparison experiments verify the validity and creativeness of this new method.

2. Proposed Classification Framework for Short-Circuit Faults

The real measured fault signals do not have the accurate fault time. In order to verify the accuracy
of detection using the new approach and to obtain training samples for fault classification, the fault
signals for analysis are first simulated with certain parameters. As shown in Figure 1, a 500 kV
transmission system with double-terminal power supply and a system frequency of 50 Hz is adopted
in this model, while PSCAD software is used to carry out the simulated experiments.
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Figure 1. Diagram of the simplified transmission line model.

The transmission line parameters of the simulated system were obtained from a previous
reference [5]. Positive, negative, and zero sequence parameters are shown in Table 1.

Table 1. Parameters of transmission line.

Parameters Value

Positive and negative sequence resistance (Ω/km) 0.035
Positive and negative sequence inductance (Ω/km) 0.424

Positive and negative sequence reactance (S/km) 2.726 × 10−6

Zero sequence resistance (Ω/km) 0.3
Zero sequence inductance (Ω/km) 1.143

Zero sequence reactance (S/km) 1.936 × 10−6
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The ‘Bus 1’ is identified in Figure 1. Ten types of short-circuit faults are simulated, including
single-phase grounding faults (AG, BG, and CG), two-phase grounding fault (ABG, BCG, and CAG),
interphase short-circuit fault (AB, BC, and CA), and three-phase faults (ABC and ABCG) are simulated.
The end of ‘Bus 1’ is found at the signal acquisition end and reference point for the fault distance.

The parameters of the short-circuit fault signals generated by the simulated system are set
as follows:

1. The inception angle of voltage signals is set to a random integer value in the range of 0–360◦;
2. The fault transition resistance is arranged as a random integer value in the range of 0–200 Ω;
3. The fault distance is set to a random integer value in the range of 10–90 km.

The ranges of the transition resistance and fault distance were both chosen according to the same
paper [5]. The function of randi in MATLAB is used to generate the random value of three columns of
random integers (100 integers for each column). Then the corresponding ranges for each column are
0–360, 0–200, and 10–90 and 100 kinds of fault condition are obtained for each fault type.

The process of detecting and diagnosing short-circuit faults proposed in this paper is shown in
Figure 2. This mainly has two parts: the fault detection module and fault type identification module.
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Figure 2. Flow chart of the proposed approach.

In the detection module, the short-circuit fault signals are decomposed by the EWT method.
Following this, the modulus maxima value is used to determine the time that the fault occurred.

In the recognition module, the method calculates LE from IMF0 in the period after the occurrence
of the fault. After this, the feature vector is used as an input for the classifier based on SVM to obtain
the recognition result.

3. Processing of Short-Circuit Fault Signals by EWT and Detection of Faults

3.1. EWT

It is difficult to use the traditional EMD method to prove the orthogonality of the intrinsic mode
function (IMF) components. There are some problems of mode mixing and pseudo-mode in the
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decomposition results. On the basis of adaptive orthogonal wavelet filter banks, the EWT method
calculates the approximate and detail coefficients of the signals. Therefore, EWT obtains more accurate
IMF components than EMD, making it more suitable for the analysis of short-circuit fault signals.

The number of IMFs from EWT can be determined in a specified or adaptive way. In this paper,
an adaptive frequency domain segmentation method is employed with the specified number of IMFs.
Since the default initial boundary of the divided spectrum used contains the default parameters of two
values, three IMFs are obtained.

In this paper, the adaptive method is used to segment the original short-circuit fault signals f (n)
in the frequency domain. Three IMFs ( fi(n), 1 ≤ i ≤ 3) were constructed to analyze the components of
the short-circuit fault signals in different frequency domains.

f (n) =
3

∑
i=1

fi(n) (1)

The single-phase voltage signal f (n) (A-phase of CA fault) of short-circuit faults was used as an
example to show the process of EWT analysis. The signal sampling frequency of short-circuit fault
signals is 100 kHz. The sample of voltage signal contains 4000 sample points.

Firstly, the voltage signal is transformed by FFT to obtain the spectrum ([0, 50] kHz). Through an
adaptive segmentation step of EWT, the segmentation boundary is obtained as follows: Ω1 = 0.2 kHz,
and Ω2 = 25.275 kHz (Ω0 = 0 kHz, and Ω3 = 50 kHz). Since the frequency domain interval
corresponding to each IMF can be expressed as Λi = [Ωi−1, Ωi], the segmentation intervals are
determined by the segmentation boundary as Λ1 = [0, 0.2] kHz, Λ2 = [0.2, 25.275] kHz and
Λ3 = [25.275, 50] kHz. The original signal and spectrum segmentation results are presented in Figure 3.Sensors 2017, 17, 2133  6 of 25 
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Figure 3. The signal of f (n) and Fourier spectrum with detected boundaries are listed as follows:
(a) voltage signal; (b) detected Fourier supports for signal.

Secondly, a low-pass filter and two band-pass filters are defined based on the above segmentation
boundary. The Fourier transformation expressions of the scaling function φ̂1(ω), i = 1 and the
empirical wavelet function ψ̂i(ω), i = 2, 3 are respectively given as
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φ̂1(ω) =


1, |ω| ≤ (1− γ)Ω1

cos
[

π
2 β
(

1
2γ Ω0

(|ω| − (1− γ)Ω1)
)]

, (1− γ)Ω1 ≤ |ω| ≤ (1 + γ)Ω1

0, otherwise

(2)

ψ̂i(ω) =



1, (1 + γ)Ωi ≤ |ω| ≤ (1− γ)Ωi+1

cos
[

π
2 β
(

1
2γΩi+1

(|ω| − (1− γ)Ωi+1)
)]

, (1− γ)Ωi+1 ≤ |ω| ≤ (1 + γ)Ωi+1

sin
[

π
2 β
(

1
2γ Ωi

(|ω| − (1− γ)Ωi)
)]

, (1− γ)Ωi ≤ |ω| ≤ (1 + γ)Ωi

0, otherwise

(3)

where γ is a parameter that ensures no overlap between adjacent intervals [15]; and β(x) is an arbitrary
function, which is defined as

β(x) =


0, x ≤ 0

β(x) + β(x + 1) = 1, x ∈ [0, 1]
1, x ≥ 1

(4)

Following this, an approximate coefficient can be obtained by computing the inner products of
the empirical scaling function φ and signals f as shown in Equation (5). The detailed coefficients can
be calculated according to Equation (6).

We
f (1, n) = 〈 f , φ1〉 =

∫
f (τ)φ1(τ − n)dτ =

(
f̂ (ω)φ̂1(ω)

)∨
i = 1 (5)

We
f (i, n) = 〈 f , ψi〉 =

∫
f (τ)ψi(τ − n)dτ =

(
f̂ (ω)ψ̂i(ω)

)∨
i = 2, 3 (6)

where ĝ, g∨ and g denote the fast Fourier transformation, its inverse transformation, and complex
conjugate of the function g respectively.

Finally, the IMFs of EWT are obtained as

f1(n) = We
f (1, n) ∗ φ1(n) i = 1 (7)

fi(n) = We
f (i, n) ∗ ψi(n) i = 2, 3 (8)

where, ∗ is the symbol of convolution.
This shows that EWT can accurately extract the intrinsic mode information of different frequency

components short-circuit fault signals. Since orthogonal filter banks are generated according to
the spectral information of the original fault signals, this approach is more adapted for processing
short-circuit fault signals without the influence of pseudo-modes.

3.2. Processing of Short-Circuit Fault Signals Processing Based on EWT

In order to verify the advancement of EWT, four methods including EWT, WT, CEEMDAN, and
improved CEEMDAN are used to process the short-circuit fault signals. The parameters of the four
methods are set as follows. EWT is set in Section 3.1, while the number of decomposed layers of WT
is set to two. Thus, this results in three components for achieving a comparison with EWT using
the same number of components. CEEMDAN and improved CEEMDAN adopt default parameter.
By comparing the effect and computing time of different signal processing methods, the effectiveness
and advancement of EWT are verified. Figure 4 shows the decomposition results of short-circuit fault
signals by different methods.
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Figure 4. Comparison experiments of different signal processing methods for fault signal analysis are
shown as follows: (a) modes extracted by EWT; (b) modes extracted by WT; (c) modes extracted by
CEEMDAN; (d) modes extracted by Improved CEEMDAN.

As shown in Figure 4, modes extracted by EWT, WT, CEEMDAN, and improved CEEMDAN
approaches are described respectively. EWT decomposes the original fault signal into three IMFs
as shown in Figure 4a. Approximate coefficient (AC2) and detailed coefficients (DC1 and DC2) are
obtained by WT. However, more IMFs are extracted by CEEMDAN and the modes contain residual
noise. These defects cause difficulties in feature extraction. The improved CEEMDAN method
effectively suppresses the residual noise in modes and improves the performance of CEEMDAN
method, although it still results in a larger number of IMFs compared to EWT.
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The time required for the four methods to decompose the same fault signal is 0.042 s, 0.038 s,
654.662 s, and 518.956 s. Compared to CEEMDAN and improved CEEMDAN method, EWT has a
higher computational efficiency. Moreover, the computation efficiency of EWT is slightly less than WT.

IMF0 are used to extract features in Section 4.1 and thus we compared these components. As seen
in Figure 4, the IMF0 extracted by EWT does not contain other components that form the foundation
for feature extraction. The frequency domain is segmented in a restricted manner after the number
of decomposition levels in WT is fixed. However, the IMF0 AS2 contains an oscillating component
which is not conducive for feature extraction. In comparison, the IMF10 extracted by CEEMDAN
and the IMF8 extracted by improved CEEMDAN does not contain other components, although both
methods require more time to process the fault signal. Therefore, EWT was chosen as the signal
processing method.

3.3. Detection of Short-Circuit Faults Based on EWT

After obtaining the results of short-circuit fault signals processed by EWT, the time-frequency
matrix composed by IMFs can be used for feature extraction. If the features are extracted from the
whole time-frequency matrix, there will be no obvious fault characteristics with a high dimension of
feature vectors. Moreover, it will increase the complexity of the classifier and reduce the classification
accuracy. In the present research, the range of feature extraction is reduced to one period with the most
transient information after the occurrence of the fault [25]. Thus, the feature dimension of short-circuit
fault signals can be reduced effectively.

In order to obtain the singularity of fault signal simply and clearly, the modulus maxima (MM) of
wavelet transform is introduced. The MM is only valid if it meets the following condition [26]:

∀ε > 0, a neighborhood |t− to| < ε exists; for every t− to.

| f (j, t0)| ≥ | f (j, t)| (9)

The time that a fault occurs often corresponds to the singular point of the voltage signal.
The traditional WT has good spatial localization properties, which can accurately detect the singularity
of fault signals. Therefore, the time that a fault occurs can be pinpointed by the modulus maxima point
in high frequency mode components [27]. A previous study [15] pointed out that EWT is based on the
wavelet theory framework. Furthermore, the largest difference between EWT and WT is that EWT is
based on the original signal for constructing orthogonal wavelet which does not require the mother
wavelet to be chosen. Thus, the fault time can be located through the modulus maxima point in the
high-frequency mode component based on EWT. This lays the foundation for extracting features of
short-circuit fault signals based on the first cycle after the occurrence of the failure.

When short-circuit faults occur, the voltage signals of the fault and non-fault phases change
together. Therefore, the time that a fault occurred should be determined synthetically by the
modulus maxima of IMF2 from three-phase signals. Four typical types of short-circuits include
the single-phase grounding fault (AG), two-phase grounding fault (ABG), interphase short-circuit fault
(AB), and three-phase fault (ABC and ABCG). These were used to verify the ability of EWT to pinpoint
time and location. The transform results are shown in Figures 5–8 and uniform scale is adopted.

As shown in Figures 5–8, the phase voltage signal of four types of faults are decomposed into
three IMFs (IMF2, IMF1, and IMF0) by EWT. Compared with IMF0 and IMF1, the modulus maxima of
IMF2 is more obvious. Therefore, the fault time can be determined by the modulus maxima point of
IMF2. At the same time, there are modulus maxima in the three-phase signal when short-circuit faults
occur. Therefore, the occurrence time of short-circuit faults can be determined by the modulus maxima
of IMF2 from the three-phase voltage signals processed by EWT.
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Figure 5. AG fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase voltage and
its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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Figure 6. ABG fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase voltage
and its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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Figure 7. AB fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase voltage and
its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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Figure 8. ABC fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase voltage
and its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.



Sensors 2017, 17, 2133 11 of 24

The detailed process of the new fault detection method based on the modulus maxima of IMF2

decomposed by EWT is described as follows:

1. If the result of fault detection from different phase signals is consistent, this result is considered
the fault detection result (FDR);

2. If two values of the three detection results are the same, the same value is decided as the FDR;
3. If the three-phase detection results are different, the minimum detection value is taken as the FDR.

The detection results of the three methods for different types of short-circuit faults are shown in
Table 2.

Table 2. Comparison of short-circuit fault detection results with different methods.

Method
Type
Fault

Number of
Sampling Point

Fault Detection Time of Each
Phase (Sampling Point) FDR (Sampling

Point)
Error (Sampling

Point)
A-Phase B-Phase C-Phase

EWT + MM

AG 2001 2006 2003 2003 2003 2
ABG 2001 2001 2002 2009 2001 0
AB 2001 2001 2000 2001 2001 0

ABC 2001 2001 2000 2001 2001 0

EWT + SE

AG 2001 2011 2013 2011 2011 10
ABG 2001 2009 2014 2008 2008 7
AB 2001 2005 2007 2006 2005 4

ABC 2001 2012 2007 2007 2007 6

EWT + EE

AG 2001 2016 2021 2017 2016 15
ABG 2001 2018 2016 2015 2015 14
AB 2001 2014 2012 2012 2012 11

ABC 2001 2018 2018 2020 2018 17

In order to verify the effectiveness and advancement of the new method, the location results of
the new method are compared with other methods based on Shannon energy entropy (EE) [5] and
Shannon singular entropy (SE) [17].

As shown in Table 2, the error of fault detection with the ‘EWT + MM’ approach for the AG type
is 2 sampling points (20 us), while the error of ABG, AB, and ABC is 0. The detection error of the
‘EWT + SE’ and ‘EWT + EE’ method is larger than that of the ‘EWT + MM’ method.

4. Feature Extraction Based on Local Energy

4.1. Local Energy

Existing research has shown that short-circuit fault signals in the first period change dramatically
when a fault occurs [25,27]. Moreover, the signal in this period contains the most abundant fault
features. In this paper, it is found that the IMF0 based on EWT can reflect the changing trends of
fault signals.

After obtaining the time at which a short-circuit fault occurs, the first period of the time-frequency
matrix after the occurrence of a fault is used to extract the features for constructing the feature vector
of the classifier. In order to present the change in the IMF0 over time, the new method uses local
energy (LE) to construct feature vectors. The time-frequency vector obtained by EWT is divided into
time-frequency blocks of equal size. Following this, the LE is obtained from each time-frequency
block. Finally, the feature vector of short-circuit fault signals is composed by combining the LE of all
time-frequency blocks.

In this paper, the sampling rate of short-circuit fault signals is 100 kHz. In the feature extraction
step of the new approach, the IMF0 obtained by EWT constitutes the vector E. The vector E is the
time-frequency vector having a dimension of 1× 2000 is divided into eight equal-sized time-frequency
blocks along the time axis, so that every block has 400 sampling points (0.2 T) as shown in Figure 9.
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The energy of the time-frequency block S1, S2, · · · , S8 is described as Z1, Z2, · · · , Z8 respectively.
These values are calculated as

Zu = ∑|Ev|2 u = 1, · · · , 8; v = 1, · · · , 125 (10)

where Ev is the sampling point of vector E.
The features of three-phase voltage signals are calculated according to Equation (9) to obtain

the feature vector Z = [ZA ZB ZC] = [Z1, · · · , Z24]. The feature vector reflects the energy variation
characteristics of the IMF0 of three-phase signals from short-circuit faults in the time domain.

4.2. Feature Extraction Based on LE

Ten types of short-circuit fault signals in Figure 10a are listed to illustrate the feature extraction
process. Their parameters are set as follows: fault distance is 30 km, the fault initial angle is 0◦, and the
transition resistance is 100 Ω. The results of feature extraction are shown in Figure 10b–d.

The black, red, and green discrete points correspond to the LE features of the IMF0 of A, B,
and C-phase voltage signals, respectively.

As shown in Figure 10, the feature amplitude of the IMF0 of the non-fault phases (B and C) is
significantly larger than that of the fault phase A once an AG fault occurs. These characteristics meet the
trend characteristics that the fault phase voltage amplitude decreases and non-fault phase amplitude
increases when a single-phase ground fault occurs. The feature amplitude relationship between the
non-fault phase and fault phase has the same conclusion as AG when BG and CG faults occur.

When the ABG fault happens, the feature values of the fault phases (A and B) are small, while the
feature values of the non-fault phase C are large. These characteristics meet the trend characteristics
that the fault phase voltage amplitude decreases and the non-fault phase amplitude increases when a
two-phase ground fault occurs. The feature amplitude relationship between the non-fault phase and
fault phase have the same conclusion as ABG when the BCG and CAG fault occur.

When the AB fault happens, the feature values of the fault phases (A and B) are small, while the
characteristic values of the fault phase C are large. These characteristics meet the trend characteristics
that the fault phase voltage amplitude decreases and the non-fault phase amplitude increases when an
interphase short-circuit fault occurs. The feature amplitude relationship between the non-fault phase
and fault phase has the same conclusion as AB when the BC and CA faults occur.

When the ABC fault happens, the feature values of the three phases are small, which is consistent
with previous findings that the amplitude of the three-phase voltages decrease. The feature values and
trend characteristics of three-phase voltage signals of ABC and ABCG are relatively close under the
same fault condition.

The values of the input classifier are arranged according to the feature values of the A, B,
and C phases.

As shown in the above analysis, the energy distribution characteristics of different types of
short-circuit fault can be clearly reflected by the LE energy features in three-phase signals. There are
obvious differences in the feature values of 10 types of faults. All the above characteristics provide a
significant basis for the identification of fault type. The classification ability with LE features in the
new method will be further validated through statistical experiments in Section 6.

In order to verify the effectiveness of the feature extraction method, the EE [5] and SE [17] feature
extraction methods were also employed for comparison with the proposed method. Experiments show
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that every short-circuit fault signal obtains three IMF components based on EWT. The time-frequency
characterization of signals using EE and SE based on the whole time-frequency domain is limited.
In comparison, the LE feature characteristics reflect the energy change in the IMF0 of the signal in
the time domain, while the time domain characteristic of short-circuit fault signals is more detailed.
A detailed simulation is shown in Section 6.3.
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Figure 10. Three-phase voltage and its LE features of different short-circuit faults are listed as:
(a) three-phase voltage signals of 10 types of faults; (b) LE features corresponding to A-phase voltage
signal; (c) LE features corresponding to B-phase voltage signal; (d) LE features corresponding to
C-phase voltage signal.
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5. Design of Short-Circuit Fault Classifier Based on SVM

In the existing algorithms used for short-circuit fault classifiers, SVM performs accurately in
classification and has robustness with less training samples. The goal of SVM is to classify the data
points belonging to different classes by constructing the optimal hyperplane [28]. Figure 11 presents
the classification principles of SVM.
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Figure 11. Classification principle of SVM.

In order to better understand the basic principles of SVM, the two-class linearly separable data
set E′ is assumed as

E′ =
{

xk, yk

∣∣∣xk ∈ RU , yk ∈ {−1, 1}
}N

k=1
(11)

where xk is a U-dimensional input vector; yk is the corresponding class of xk; and N is the number of
samples. The data points in set E can be divided into two types by the hyperplane, which is defined as

wx + b = 0 (12)

where w is the weight vector; and b is the scalar. Two types of sample vectors from the hyperplane are
called support vectors. The distance between the two-class support vectors and separating hyperplane
is called the separating margin which is given as

m =
2
‖w‖ (13)

In order to get the maximized m, we need to minimize the ‖w‖. The goal of SVM is to determine
the value of w and b, so that the separating margin is the largest. The optimal separating margin can
be obtained by solving the quadratic optimization problem as{

min 1
2‖w‖

2

subject to yk(wxk + b) ≥ 1, k = 1, 2, · · · , N
(14)

In order to solve the above problems, the Lagrange multiplier α is introduced, and the
optimization objective function is obtained by max L′(α) =

N
∑

k=1
αk − 1

2

N
∑

k=1,g=1
αkαgykygxT

k xg

subject to αkyk = 0
(15)

After solving the above optimization problems, we can obtain the optimal solution α∗k , before
calculating the best solutions for w∗ and b∗. Finally, the optimal classification function is
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g′(x) = sgn((
N

∑
k=1

α∗k ykxT
k xg + b∗)) (16)

In fact, the classification problem of short-circuit faults is a non-linear separable problem. We can
map the sample data from the low-dimensional space to a high-dimensional space by the kernel
function K. By replacing xT

k xg with K(xk, xg), the optimal classification function is obtained as

g(x) = sgn((
N

∑
k=1

α∗k ykK(xk, xg) + b∗)) (17)

As the feature space corresponding to the Gauss kernel function is infinitely dimensional, the
finite sample is linearly separable in the space. In this paper, Gauss kernel function is used as

K(xk, xg) = exp(−γ‖xk − xg‖2) (18)

where γ is the parameter of the Gauss kernel function.
From the above analysis, we can know that SVM is limited in only being able to

deal with the binary classification. SVM needs to be further improved in order to solve the
multi-classification problem.

In this paper, the LIBSVM package based on “one-against-one” structure [29] is used to solve the
problem of multi-classification problem of short-circuit faults.

6. Simulation and Analysis

A total of 1100 samples (100 samples for each fault type) are generated in the simulated system
shown in Figure 1. Through statistical experiments, the number of training samples for the classifier of
SVM is determined to be 660 (60 samples for each fault type). In particular, the training samples are
randomly selected.

6.1. Comparison of Fault Detection Effect for Short-Circuit Fault Signals

In order to further verify the fault location efficacy of the new method, 1000 samples are tested.
The statistical experiments validated the advancement of the new method. The test results are shown
in Table 3.

Table 3. The mean fault detection error of different detection methods under different noise.

Fault
Type

Mean Error (ms)

EWT + MM EWT + SE EWT + EE

0 dB 38 dB 57 dB 0 dB 38 dB 57 dB 0 dB 38 dB 57 dB

AG 0.2697 0.3513 0.2925 0.4715 2.8234 0.5274 1.7121 4.1411 1.7857
BG 0.2782 0.3845 0.2738 0.5014 2.5281 0.5587 1.6547 4.4726 1.8586
CG 0.2710 0.3651 0.2715 0.4637 2.8965 0.5341 1.7983 4.2705 1.9515

ABG 0.3247 0.3613 0.3492 0.7452 3.2739 0.9102 1.8109 4.3162 2.2711
BCG 0.2816 0.3216 0.2979 0.7518 3.3518 0.8853 1.3152 3.5790 1.5196
CAG 0.2793 0.3304 0.3153 0.7013 2.9573 0.8302 1.3785 3.6527 1.3904
AB 0.2464 0.3679 0.3495 1.6241 3.8901 2.3217 2.1251 4.1793 2.1352
BC 0.2358 0.3913 0.3718 1.7285 4.1357 2.4901 1.8347 3.7201 2.0274
CA 0.2419 0.3817 0.3552 1.7528 3.6569 1.9563 1.8629 4.2705 2.2853

ABC 0.3356 0.3674 0.3576 0.5222 2.6948 0.5673 0.8706 2.6023 1.1070
ABCG 0.3401 0.3627 0.3496 0.5371 2.5170 0.5794 0.8573 2.5731 0.9935
overall 0.2822 0.3623 0.3258 0.8909 3.1569 1.1055 1.5655 3.7979 1.7568

Table 3 lists the fault detection results of 10 types of short-circuit fault signals with noise signals
of 0, 38, and 57 dB when the ‘EWT + MM’, ‘EWT + SE’ and ‘EWT + EE’ methods are used to deal
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with the signals, respectively. The average error of the fault detection using the ‘EWT + MM’ method
is minimal.

It can be seen from Table 3 that the detection error of ‘EWT + MM’ is lower than that of the
‘EWT + SE’, and ‘EWT + EE’ methods when 0, 38, and 57 dB noise are added to short-circuit fault
signals. The mean detection error of short-circuit fault signals increases with the addition of noise.
Furthermore, it was concluded that a greater noise intensity resulted in a greater overall average
detection error.

6.2. Setting Parameters for Classifier

In order to avoid the influence of the unreasonable parameters for the classification accuracy
of the SVM classifier, this paper uses the cross-validation method to optimize the parameters
of C and γ in SVM. A five-fold cross-validation method is used to choose the optimal value of
parameters C and γ under different dimensions of LE features, where C ∈

{
212, 211, · · · , 2−1, 2−2}

and γ ∈
{

24, 23, · · · , 2−9, 2−10}. The number of time-frequency blocks and feature dimensions are
shown in Table 4. The classification accuracy of the 225 parameter combinations in SVM is tested with
different LE feature vectors. The optimal parameters and the classification accuracy in different feature
dimensions are shown in Table 4.

Table 4. Parameter effection on classifier accuracy.

Number of Blocks in
Each Phase

Feature Dimension of
Three-Phase Signals

Optimal Parameter
(C, γ) Accuracy (%)

1 × 3 3 (26, 25) 86.14
2 × 3 6 (27, 23) 89.32
4 × 3 12 (28, 2−2) 96.82
5 × 3 15 (210, 2−4) 98.18
8 × 3 24 (28, 2−5) 99.77

10 × 3 30 (27, 23) 99.55
20 × 3 60 (28, 2−7) 99.77
40 × 3 120 (29, 2−7) 99.77

2000 × 3 6000 (28, 23) 99.55

From Table 4, we can find the following characteristics:

1. When the number of blocks is increased from 1 to 8 in each phase, there is a dramatic increase in
classification accuracy. In particular, the accuracy rate is highest (99.77%) when there are 8 blocks
and the parameters of C and γ are 28 and 2−5.

2. The accuracy rate is generally stable when the number of blocks changes from 8 to 2000.
3. When the number of blocks (feature dimension) is increased, there is greater complexity in the

classifier. Therefore, the feature dimensions, C and γ in SVM are set as 24, 28, and 2−5 in the
new method.

6.3. Comparison of Short-Circuit Faults Classification Methods

Based on the above analysis, we can determine the advantages of the signal processing method
of EWT and the fault detection method used in the new method. In order to further verify the
effectiveness of the new method in classifying short-circuit faults, the features extracted by LE, SE,
and EE with classifiers of SVM, BPNN (Back-Propagation Neural Network), and ELM are combined
to create a different classification method for short-circuit signals. Following this, the classification
accuracy of these methods is compared.

In order to ensure the credibility of this comparison, the parameters of the classifier are set as
follows. When different features are used, the dimensions of the input vector and related parameters
in SVM, ELM, and BPNN are determined in the same way as described in Section 6.2. In the ELM



Sensors 2017, 17, 2133 17 of 24

classifier, the number of input nodes represents the input feature dimension, while the number of
output nodes is the number of fault classes. The activation function in ELM is the sigmoid function
f (x) = 1/(1 + e−λx). Thus, two parameters need to be determined: the number of nodes Ñ in the
hidden layer and the parameter λ that determines the smoothness of the sigmoid function. The
optimal combination of Ñ and λ is obtained by the grid search method, where Ñ ∈ {2, 4, · · · , 28, 30}
and λ ∈

{
10−1, 10−2, · · · , 10−9, 10−10}. The structure parameters of ELM and BPNN are shown in

Table 5. The optimal training parameters of BPNN such as learning rate, learning rate reduced factor,
learning rate minimum bound, and number of epochs are obtained by five-fold cross-validation [30].
The training parameters of BPNN are as follows: the maximum epoch number is 1000; the learning
rule is Levenberg–Marquardt; the moment constant is 0.98; the mean squared error is 1.00 × 10−5 [31].
The classification results of different methods are shown in Table 6.

Table 5. Structure parameters of ELM and BPNN.

Architecture of BPNN Architecture of ELM

The number of layers 3 The number of layers 3

The number of neuron in
the input layer

45 (LE)
36 (EE, SE)

The number of neuron
in the input layer

45 (LE)
36 (EE, SE)

The number of neuron in
the hidden layer

11 (LE)
10 (EE, SE)

The number of neuron
in the hidden layer

14 (LE)
12 (EE, SE)

The number of neuron in
the output layer 10 The number of neuron

in the output layer 10

The initial weights
and biases Random The initial weights

and biases Random

Activation Tansig; Tansig; Logsig Activation Sigmoid

Table 6. Accuracy of different short-circuit faults classification methods.

Method
Accuracy (%) Average

Accuracy (%)AG BG CG ABG BCG CAG AB BC CA ABC/ABCG

EWT + LE + SVM 100 100 100 100 100 100 100 100 100 98.75 99.77
EWT + SE + SVM 90 87.5 95 82.5 90 92.5 92.5 97.5 95 83.75 90
EWT + EE + SVM 85 87.5 87.5 90 85 82.5 92.5 95 90 91.25 88.86

EWT + LE + ELM 95 92.5 97.5 87.5 90 87.5 97.5 100 100 97.5 94.77
EWT + SE + ELM 67.5 57.5 52.5 27.5 57.5 62.5 90 90 100 73.75 68.41
EWT + EE + ELM 62.5 42.5 50 17.5 37.5 40 65 67.5 70 51.25 50.45

EWT + LE + BPNN 95 97.5 100 100 100 100 100 97.5 100 97.5 98.64
EWT + SE + BPNN 92.5 87.5 85 90 92.5 92.5 95 97.5 90 82.5 89.77
EWT + EE + BPNN 70 82.5 87.5 80 67.5 80 90 75 7.5 76.25 72.05

As shown in Table 6, the new method using LE has higher classification accuracy compared
to the results from ‘EWT + LE + SVM’, ‘EWT + SE + SVM’ and ‘EWT + EE + SVM’. In addition,
this same conclusion was obtained after comparing the classification results of ‘EWT + LE + ELM’,
‘EWT + SE + ELM’ and ‘EWT + EE + ELM’ or comparing the recognition results of ‘EWT + LE + BPNN’,
‘EWT + SE + BPNN’ and ‘EWT + EE + BPNN’. Therefore, the methods with LE features have the
greatest accuracy for classification. These results verify the effectiveness and advancement of the LE
features for the classification of short-circuit faults.

At the same time, the experimental results in Table 6 show that the proposed method using
‘EWT + LE + SVM’ has the highest recognition accuracy. The overall accuracy rate is 99.77% and the
accuracy rate for each fault is 100% except ABC/ABCG fault (98.75%) which verifies that the new
method using SVM to construct short-circuit faults classifiers is more feasible.
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In addition, based on the same set of LE features, the calculation time of the three classifiers
is shown in Table 7. The experimental platform is a PC with i3 processor (2.3 GHz frequency) and
4 G memory.

Table 7. Comparison of computing time of different classifiers.

Classifier Training Time (s) Testing Time (s)

SVM 46.215 0.149
BPNN 1976.420 0.218
ELM 1.691 0.117

From Table 7, the training and testing time of SVM are both is obviously shorter than BPNN
and longer than that of ELM. Considering the efficiency and accuracy of classification, it is more
reasonable to use SVM for realizing the classification of short-circuit faults, with these results verifying
the effectiveness and progressiveness of the new method.

In order to validate the noise immunity of the proposed classification method ‘EWT + LE + SVM’,
different noise level are added to the original short-circuit fault signals. The experimental results are
shown in Table 8.

Table 8. Classification accuracy of the proposed method with signal adding different noise.

Noise (dB)
Accuracy of Single Fault Type Signals Classification (%) Overall

Accuracy (%)AG BG CG ABG BCG CAG AB BC CA ABC/ABCG

27 97.5 100 95 100 100 97.5 100 100 100 97.50 98.86
33 97.5 100 97.5 100 97.5 100 100 100 100 98.75 99.06
38 97.5 100 100 100 97.5 100 100 100 100 98.75 99.32
43 97.5 100 100 100 100 100 100 100 100 98.75 99.55
57 100 100 100 100 100 100 100 100 100 98.75 99.77

As shown in Table 8, the classification results still have a high recognition accuracy (higher than
98.86%) in environments with different noises at 27, 33, 38, 43, and 57 dB. Thus the noise immunity of
the proposed classification method has been further verified. The fault type of ABC and ABCG are
recognized as one class because of the similar feature values and trend characteristics [1].

The effectiveness and advancement of the new method are verified by the experimental results.
In order to further verify the effectiveness of the proposed method, the practice short-circuit fault
signals are tested.

7. Verification of Actual Signals

In order to verify the recognition capability of the new approach for actual signals, the short-circuit
fault signals collected in line substation were used for tests.

From 7 March 2012 to 9 August 2014, a total of 167 sets of transmission line fault signals were
collected from the photoelectric voltage transformer with a serial number of OET711AVTZ in four
220 kV substations. In the serial number of the photoelectric voltage transformer, “OET” is the short
name of the photoelectric transformer; “7” is the design serial number; “11” is the abbreviation of
110 kV; “A” means that this will be used as a communication system; “VT” is the voltage transformer
type; and “Z” means that it is a hanging device. The fault voltage signals are recorded in the digital
fault recorder system. A set of phase voltage signals with faults are shown in Figure 12.

The details of the real measured data set obtained by the photoelectric voltage transformer are
as follows:

- Fault lines: 110 kV transmission lines;
- Fault type: a total of 10 types of short-circuit fault;
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- Collection site: 110 kV bus side in 220 kV substation;
- Signal sampling rate: 5000 Hz.

The training set is constructed by using the descending sampling rate simulation signal, while the
training model is constructed by using the recognition scheme proposed in Section 6.3.Sensors 2017, 17, 2133  20 of 25 
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7.1. Detection of Actual Short-Circuit Faults

The EWT is tested by using four types of fault types AG, BCG, BC, and ABC as examples.
The results are shown in Figures 13–16.

We further verified the accuracy of the ‘EWT + MM’ method in pinpointing the time that a
short-circuit fault occurred. As shown in Figures 13–16, each signal of 4 fault types are decomposed
into three IMFs (IMF2, IMF1, and IMF0) by EWT. In particular, the IMF1 in Figure 14c is different
from that in Figure 14a,b. The reason is that when the C-phase voltage signal is processed by EWT,
this results in a narrow interval for the frequency domain corresponding to IMF0 while the components
at a frequency of 50 Hz appears in the interval of IMF1. The theory of ‘EWT + MM’ in Section 3.3 was
used for fault detection.

The test results of the ‘EWT + MM’ method being used to detect short-circuit faults are shown in
Table 9.

As shown in Table 9, the detection results of three-phase voltage signals of the AG faults are
different. The minimum value of 45.2 in the A-phase represents the FDR, which is close to the real
value (Figure 13). When the BCG fault occurs, the FDR of the C-phase in the BCG fault is the smallest
detection result of 44.4, which is close to the true value in Figure 14. As shown in Figure 15, there is
big difference between the detection result of A-phase and the real failure time. While the detection
value of B-phase and C-phase of the BC fault are the same (42.8), FDR has a value of 42.8. As shown
in Figure 16, the FDRs of the B-phase and C-phase have the same value of 42.8, which represents the
FDRs coming close to their true value.

Table 9. Actual short-circuit fault detection results.

Fault Type Fault Detection Time for Every Phase (ms)
FDR (ms)

A-Phase B-Phase C-Phase

AG 45.2 48.6 45.8 45.2
BCG 45.0 44.8 44.4 44.4
BC 65.2 42.8 42.8 42.8

ABC 45.8 46.4 46.4 46.4
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Figure 13. Actual AG fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase
voltage and its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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Figure 14. Actual BCG fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase
voltage and its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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Figure 15. Actual BC fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase
voltage and its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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Figure 16. Actual ABC fault signal’s modes extracted by the EWT are shown as follows: (a) A-phase
voltage and its IMFs; (b) B-phase voltage and its IMFs; (c) C-phase voltage and its IMFs.
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7.2. Classification of Short-Circuit Faults

After obtaining the time that a short-circuit fault occurred, the first period of the IMF0 after the
occurrence of this fault is used to extract features. Following this, the feature vector is used as an input
for the trained model in Section 6 to realize fault classification.

The following aspects require special instructions:

1. The IMF0 is needed, with the IMF1 of C-phase voltage signal in Figure 14c representing the
IMF0. Since statistical experiments show that the amplitude of IMF0 is less than 2 in this case,
the threshold of 10 is set for the purpose of uniform processing and easy calculation. If the
amplitude of the IMF0 is less than 10, the IMF1 is treated as the IMF0.

2. The IMF0 of the real signals were normalized.
3. The simulation samples are reduced to 5000 Hz and IMF0 were normalized.

The experimental results are shown in Table 10. The advancement of the fault classification
method proposed in this paper is verified.

Table 10. Actual short-circuit fault classification results.

Fault
Type AG BG CG ABG BCG CAG AB BC CA ABC Overall

Accuracy (%)

AG 32 0 0 0 0 0 0 0 0 0 100
BG 0 22 0 0 0 0 0 0 0 0 100
CG 0 0 27 0 0 0 0 0 0 0 100

ABG 0 0 0 7 0 0 0 0 0 0 100
BCG 0 0 0 0 9 0 0 0 0 0 100
CAG 0 0 0 0 0 11 0 0 0 0 100
AB 0 0 0 0 0 0 12 0 0 0 100
BC 0 0 0 0 0 0 0 18 0 0 100
CA 0 0 0 0 0 0 0 0 16 0 100

ABC 0 0 0 0 0 0 0 0 0 13 100

As shown in Table 10, the classification method proposed in this paper has high accuracy in
identifying faults for real signals. Therefore, the advanced nature of the proposed method is validated.

8. Conclusions

In this paper, a new classification method of short-circuit faults in the electric transmission line
based on EWT and LE is proposed. The new method has the following advantages:

1. Compared to the CEEMDAN and the improved CEEMDAN method for the decomposition of
short-circuit fault signals, EWT has a smaller number of IMFs and the decomposition result has a
higher accuracy. Therefore, it is more suitable for the processing of short-circuit fault signals;

2. The new method directly uses the MM of IMF2 in three-phase voltage signals to determine the
failure time. There is no need to use other complex methods for fault detection and this creates
the foundation for feature extraction;

3. Compared to entropy features, the feature of LE reduces the complexity of computation.
The change in IMF0 in short-circuit fault signals can be presented in the time domain which
is conducive to the accurate identification of short-circuit fault signals. More importantly,
the technique enhances the noise immunity of the fault classification scheme.

In the future work, the proposed method can be compiled into software and applied for real-time
data analysis.
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Abbreviations

EWT Empirical Wavelet Transform
WT Wavelet Transform
WPT Wavelet Packet Transform
ST S-Transform
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
CEEMDAN Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise
IMF Intrinsic Mode Function
NNs Neural Networks
BPNN Back-Propagation Neural Network
ELM Extreme Learning Machine
SVM Support Vector Machine
MM Modulus Maxima
LE Local Energy
EE Shannon Energy Entropy
SE Shannon Singular Entropy
FDR Fault Detection Result
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