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Abstract: In this study, we propose a tilted fiber Bragg grating (TFBG) humidity sensor fabricated
using the phase mask method to produce a TFBG that was then etched with five different diameters
of 20, 35, 50, 55 and 60 µm, after which piezoelectric inkjet technology was used to coat the grating
with graphene oxide. According to the experimental results, the diameter of 20 µm yielded the
best sensitivity. In addition, the experimental results showed that the wavelength sensitivity was
−0.01 nm/%RH and the linearity was 0.996. Furthermore, the measurement results showed that
when the relative humidity was increased, the refractive index of the sensor was decreased, meaning
that the TFBG cladding mode spectrum wavelength was shifted. Therefore, the proposed graphene
oxide film TFBG humidity sensor has good potential to be an effective relative humidity monitor.
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1. Introduction

After it was first developed, most optical fiber was used in telecommunications applications,
but in recent years the development of fiber optic sensors has proceeded rapidly, especially with respect
to temperature and stress sensors. Furthermore, fiber optic sensors for biomedical and home security
purposes have also been developed in recent years. The mechanism by which such sensors provide
measurements is very dependent on changes in the refractive index, such as in the case of LPG gas
sensor measurements of CO2 [1] and U-shaped bending-induced interference sensor measurements
of glucose solutions [2]. However, these previously developed sensing methods have not taken into
account the impact of environmental humidity. Therefore, according to the following references,
optical fiber sensors can be applied to provide a variety of different physical measurements, including
measurements of humidity [3–8], strain, temperature [3,4], and RI, with some sensors even being
versatile enough to measure several phenomena at once [9]. The present study proposes a humidity
sensor that could potentially be used to aid other sensors in adjusting to environmental humidity.
It should be noted, however, that various other types of fiber optic humidity sensors have previously
been reported. For example, a side-polished fiber sensor was fabricated with a wheel side-polishing
technique [10], a long period fiber grating sensor was fabricated using a multi-layer dip coating
technique [11], and a hollow core fiber sensor was achieved at a resonant wavelength [12]. However,
the methods used to fabricate those sensors are complicated. Therefore, the advantages of the sensor
proposed in this study are its low manufacturing cost and short processing time.

The proposed sensor utilizes a tilted fiber Bragg grating (TFBG) to achieve the humidity sensing
function because TFBG can effectively measure the surrounding refractive index. This is because when
the refractive index changes, the wavelength of the cladding mode of the TFBG will shift in a way that
corresponds to the ambient humidity value.
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Humidity sensors are often used in conjunction with cooled computers, heat treating furnaces,
smelting furnaces, clean room controls, and dryers, as well as in applications relating to drug
administration, food preservation, and climatic measurements. However, while some harsh
environments, such as high temperature environments or environments with high levels of
electromagnetic waves, will have an impact on the sensitivity of previously produced humidity
sensors, optical fiber humidity sensors could potentially overcome those environmental challenges.

In TFBG, there is a certain tilt angle between the grating plane and the fiber, so the transmission
spectrum possesses many resonances [13], resulting in the occurrence of more complex mode coupling.
Core and cladding mode coupling, including coupling involving the core mode and radiation mode,
also occur in TFBGs. Since the tilt angle and refractive index modulation determine the coupling
efficiency and the bandwidth of cladding mode resonances [14], the transmission characteristics of
TFBG provide a great amount of information related to the fiber and grating structures.

In 1996, Erdogan and Sipe [15], using a high-intensity ultraviolet radiation grating written in fiber,
presented a detailed theory of how Bragg reflection and radiation mode coupling loss are combined in
TFBG. In 2001, Li et al. [16] proposed a tilt-type fiber grating that uses the volumetric current (VCM)
method to calculate radiation morphology (including wavelength dependence, azimuth distribution,
and polarization dependence). In 2001, Feder et al. [17] used a spectrum analyzer and the radiation
pattern of the core and the cladding mode of TFBG to provide multi-band Raman pump power
measurements. In 2012, Wang et al. [18] introduced the sensing principles of a polyimide-coated FBG
humidity sensor. The results obtained for this sensor, including a sensitivity of 2 pm/% RH and a
measurement range of 30% to 80%, showed that polyimide resin is an ideal coating material for use in
the manufacturing of an FBG humidity sensor. In 2013, Berruti et al. [19] proposed a polyimide-coated
FBG humidity sensor with a wavelength sensitivity of 0.00213 nm/% RH in a humidity range of 0% to
75% at low temperatures. In 2014, Montero et al. [20] applied steel and carbon fiber polymers to FBG
measuring a range of 30% to 90% RH in a temperature range of 10~70 ◦C; in the range of 30% to 80%
RH, the sensitivity wavelength was 0.001375 nm/% RH. In 2016, Wang et al. [21] proposed coating
graphene oxide on TFBG as a means of sensing humidity via the adsorption and desorption of water by
the graphene oxide film. With the use of cladding mode and graphene oxide film interaction between
the detection wavelength at 1557 nm and the transmission loss change, a maximum sensitivity of
0.129 dB/% RH with a linear correlation coefficient in the humidity range of 10% to 80% and 99% was
achieved, indicating that this humidity sensor has repetitive stability and other good characteristics.
According to the above literature, the humidity measurement range of such sensors is about 30% to
80% RH, with the transmission loss changes yielding an average sensitivity of 0.00168 nm/% RH. As
these sensors are made using the arc fusion splicing method, where the sensing layer has a hydrogel
coating, the above method is highly time-consuming and involves a high degree of complexity.

Therefore, this study proposes for the first time, to the best of our knowledge, a small diameter
TFBG sensor (20 µm) with a graphene oxide coating for humidity sensing. The novelty of the proposed
TFBG sensor is twofold: first, the sensitivity of the sensor is increased by reducing the fiber diameters
via etching; second, we provide new coating technology used the piezoelectric inkjet can provide a
uniform graphene oxide coating and fast processing, allowing it to be used as a humidity sensor.

2. Working Principle of the Graphene Oxide Humidity Sensor

Mode fiber coupling between the wave vectors of all vector fields occurs along the fiber axis to
form a uniform axial conduction mode structure that is defined by a flat phase plane perpendicular to
the guide shaft, as shown in Figure 1. The resonant wavelength satisfying the Bragg condition for an
ordinary fiber grating can be expressed by the following Equation [14]:

λBragg =
(

ne f f ,core + ne f f ,core

)
Λg (1)
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Figure 1. Schematic diagram of TFBG.

The Bragg resonance conditions described above are produced by the coupling of mode-forward
propagating core modes and back-propagating core modes. For TFBG, the inclination angle of the
grating surface and the axis of the fiber, as well as the grating period along the fiber axis, can be
modified according to the following Equation [14]:

Λg =
Λ

cos θ
(2)

Substituting Equation (2) into Equation (1), yields the following:

λBragg =
(

nco
e f f + nco

e f f

) Λ
cos θ

(3)

Due to the presence of the tilted angle, part of the light propagating in a forward direction through
the core mode will be coupled to the cladding mode of the backward propagation, and the resonant
wavelength of the cladding mode will be determined by the following equation [14]:

λCl,i = (nco
eff + ncl

eff ,i)
Λ

cos θ
(4)

where ncl
eff ,i is the effective refractive index of the ith cladding mode. As the effective refractive index

increases, the wavelength redshifts, and from Equation (2), it can be seen that using a fixed grating
period to change the rotation angle can change the Bragg period. The purpose of this study was
to investigate the cladding mode wavelength shift, and by inserting the measurement data into
Equation (4), we could verify whether the measurements provided by the TFBG humidity sensor
were correct.

Due to the interaction between the cladding mode and the graphene oxide, the resonance of the
cladding mode changes as the graphene oxide adsorption process proceeds, because the effective
refractive index of the graphene oxide film changes as the water molecules are adsorbed. As can
be seen from Equation (4), when the humidity increases, the refractive index changes, causing the
wavelength to be shifted, and through this phenomenon, the changes in the TFBG sensor effectively
correspond to the relative humidity changes.

3. Experiment

3.1. Processing and Fabrication of TFBG

In this study, the TFBG humidity sensor was fabricated using single-mode fiber (SMF-28),
the phase mask method, and piezoelectric inkjet technology. Using a wire stripper, 3 cm of the
protective middle layer was stripped from optical fiber, after which the fiber was wiped clean with
alcohol and then placed on a 3-axis micro-platform. Next, the mask platform was rotated 10 degrees
and excimer laser (Xantos XS, Excimer laser, COHERENT, Lübeck, Germany) irradiation was applied
through phase masks (1075.5 nm, Phase mask, Ibsen photonics, Farum, Denmark) to produce the
grating formation. An optical spectrum analyzer was then utilized to confirm the generation of TFBG
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in the core of the spectrum structure, as shown in Figure 2. The length of the TFBG was 5 mm.
The TFBG was processed using buffered oxide etch (BOE) to change the diameter of the fiber by
etching. Approximately 3 cm of the protective layer at the center of a single-mode fiber section was
removed, and the fiber was adhered to the etching board, which was then placed into a plastic box
into which BOE was poured to effect the etching.

The TFBG was etched to 20 µm, and then piezoelectric inkjet technology (DMP-2850, Dimatix
Materials Printer, FUJIFILM Value From Innovation, Santa Clara, CA, USA) was used to spray an
aqueous solution of graphene oxide onto the surface of the optical fiber. The coated fiber was then
heated to 100 degrees on a baking plate to induce evaporation, allowing the graphene to become more
securely attached to the optical fiber surface, as shown in Figure 3.
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Figure 2. Processing and fabrication of TFBG sensor.
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Figure 3. Flow chart of the process of using piezoelectric inkjet technology to coat the fiber with
graphene oxide.

3.2. The Setup of the Humidity Sensing Experiment

The fiber was placed in a humidity control box. A light source (ASE-2200, ASE light source,
NXTAR Technologies Inc., Tainan, Taiwan) was attached to one end of the box, while an optical
spectrum analyzer was attached to the other. humidification control range of 20–80% RH, temperature
controller setting 27 ◦C, standard humidity sensor for compared to our TFBG GO humidity sensor,
humidifier to increase the environment relative humidity, dehumidification is the dry air into the
(a flow rate of 10 L/min) humidity control Box to reduce humidity, as shown in Figure 4.
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In this study, the TFBG-coated graphene oxide film coated on SMF-28 single-mode photosensitive
fiber was etched with five different diameters of 20, 35, 50, 55 and 60 µm, and the relative humidity
was measured at a constant temperature of 27 ◦C and a humidity range of 20% to 80% RH.Sensors 2017, 17, 2129 5 of 11 
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4. Results and Discussion

4.1. Graphene Oxide Film Coating

In this study, piezoelectric inkjet technology was used to coat graphene oxide film on optical
fiber. The thickness of the coated graphene oxide, as measured by scanning electron microscope
(SEM) imaging, was about 1 µm. Enlargement of the SEM image shown in Figure 5a revealed that the
graphene film was in the form of a sheet, thereby proving that the graphene oxide was coated on the
optical fiber sensor (Figure 5b). We sought to compare the effects of a uniform coating with those of a
nonuniform coating. As shown in Figure 5c,d, the nonuniform coating resulted in a slight degree of
transmission variation relative to the uniform coating, but the amount of variation was minimal and
would not significantly affect the measurement results.

When the humidity in the air increases, more water molecules are adsorbed on the graphene oxide,
and the water molecules on the graphene layer will, in turn, change the gap between the graphene and
the fiber. In a previous study of graphene oxide thin films [22], these changes were found to be due to
the bonding between the dissociated H2O molecules (H2O = H+ + OH−) and the C−OH and C=O
groups of the GO. Such an increase in interlayer spacing is also consistent with previous studies on the
interlayer spacing of graphene oxide as a function of relative humidity.
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Figure 5. (a) Scanning Electron Microscope (SEM) image of TFBG coated with graphene oxide film;
(b) SEM image of graphene oxide film; (c) TFBG GO coating comparison; (d) TFBG GO uniform
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4.2. Temperature Response of the TFBG Sensor

We conducted an initial temperature experiment to verify the effect of temperature on the
TFBG sensor, with the results being shown in Figure 6. As the temperature was raised from 40 ◦C
to 100 ◦C, the wavelength was shifted from a short wavelength to a long wavelength, with the
wavelength sensitivity being 0.014 nm/◦C. This can be compensated for by Bragg mode temperature
compensations. We will use temperature control by ±1 degrees C to reduce the effect of temperature.
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Figure 6. Effects of temperature on TFBG GO wavelengths.

4.3. Comparison of Different Diameters

The strength of the transmission, which is less strong without the etching, becomes stronger after
the etching, resulting in the wavelength being shifted from a short wavelength to a long wavelength.
After etching, the cladding mode is significantly enhanced, which improves the ability of the fiber
to measure the refraction index, as shown in Figure 7. Therefore, this study explored how different
diameters of the TFBG affect its sensitivity.

The TFBG coating graphene oxide humidity sensor has the best sensitivity in the number of
diameters. In this paper, the sensitivity of the sensor to humidity changes was measured with different
diameters of 20, 35, 50 55 and 60 µm. As can be seen from the discussion in Section 4.1 above, when the
level of water molecules in the air is increased, the molecules will, in turn, increase the gap between
the graphene and the fiber, thereby changing the external refractive index of the TFBG.
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Figure 7. TFBG spectrum, before etching (Black line), after etching (Red line).

As shown in Figure 8a, when the diameter was 20 µm and the RH was at 20%, the wavelength
was 1535.962 nm, whereas the wavelength was 1535.367 nm at an RH of 80%, meaning that the shift
of the wavelength was 595 pm. As shown in Figure 8b, when the diameter was 35 µm and the RH
was 20%, the wavelength was 1550.060 nm, whereas the wavelength was 1549.815 nm at an RH of
80%, meaning that the shift of the wavelength was 245 pm. As shown in Figure 8c, when the diameter
was 50 µm and the RH was 20%, the wavelength was 1538.706 nm, whereas the wavelength was
1538.531 nm at an RH of 80%, meaning that the shift of the wavelength was 175 pm. As shown in
Figure 8d, when the diameter was 55 µm and the RH was 20%, the wavelength was 1538.231 nm,
whereas the wavelength was 1538.106 nm at an RH of 80%, meaning that the shift of the wavelength
was 125 pm. Finally, as shown in Figure 8e, when the diameter was 60 µm and the RH was 20%,
the wavelength was 1539.980 nm, whereas the wavelength was 1539.855 nm when the RH was 80%,
meaning that the shift of the whole wavelength was 125 pm.

At a diameter of 20 µm, the sensitivity was −0.01 nm/% RH, and the linearity was 0.996. At a
diameter of 35 µm, the sensitivity was −0.00425 nm/% RH, and the linearity was 0.990. At a diameter
of 50 µm, the sensitivity was −0.0031 nm/% RH, and the linearity was 0.985. At a diameter of
55 µm, the sensitivity was −0.0022 nm/% RH, and the linearity was 0.995. At a diameter of 60 µm,
the sensitivity was −0.0021 nm/% RH, and the linearity was 0.996. Through the experimental results
detailed above, we found that the diameter of 20 µm had the best wavelength sensitivity, as shown
in Figure 9. From the results for the above five diameters, it can be seen that the refractive index
decreases when the humidity is increased from 20% RH to 80% RH. The fact that the wavelength is
shifted from a long wavelength to a short wavelength can also be ascertained from Equation (4), so this
paper selected a 20 µm diameter TFBG humidity sensor to undergo the whole humidification and
dehumidification process.

4.4. Analysis and Discussion of Humidification and Dehumidification

The wavelength sensitivity in the first cycle was −0.01 nm/% RH, and the linearity was 0.996.
The wavelength sensitivity in the second cycle was −0.01 nm/% RH, and the linearity was 0.996.
The wavelength sensitivity in the third cycle was −0.01 nm/% RH, and the linearity was 0.996.
The optimal wavelength sensitivity was −0.01 nm/% RH, and the linearity was 0.996. From the
results for the three cycles, it can be seen that the sensitivity and linearity were the best in the third
cycle. From the error bars shown in Figure 10 the average error of about 0.000001 can be obtained.
According to the Figure 11, the response time for a humidity change from 20% to 80% RH was about
12.25 min, the recovery time was about 21.75 min. The results in Figure 11 indicate that the results for
the humidification process exhibited very good reproducibility. This in turn shows that the graphene
oxide film coating has good sensitivity and linearity when used with the TFBG sensor.
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Figure 8. TFBG humidity sensor spectra with different diameters of (a) 20 µm; (b) 35 µm; (c) 50 µm;
(d) 55 µm; and (e) 60 µm. Insets: (a-1) 1535.367 nm to 1535.962 nm; (b-1) 1549.815 nm to 1550.060 nm;
(c-1) 1538.2 nm to 1539 nm; (d-1) 1537.8 nm to 1538.6 nm; and (e-1) 1539.4 nm to 1540.4 nm.
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Figure 11. Response and recovery time of the TFBG sensor when subjected to a step humidity change
from 20% to 80%.

After three cycles of testing, we can see that the relative humidity measured by the TFBG graphene
oxide sensor was close to the relative humidity measured by the standard humidity sensor, which
shows that the TFBG sensor with graphene oxide coating has the same accuracy for humidity sensing
despite being cheaper.
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From the analysis results detailed in Section 4.3, it can be seen that a diameter of 20 µm yielded the
best humidity sensitivity, which is why this study subjected a 20 µm diameter humidity sensor to three
cycles of testing in order to obtain an analysis of sensitivity, linearity, and standard deviations for the
overall humidification and dehumidification process. As shown in Figure 11, as the humidity increased,
the refractive index decreased, resulting in the wavelength being shifted from a long wavelength to a
short wavelength. Specifically, the wavelength was 1535.962 nm when the humidity was 20%, whereas
the wavelength was 1535.367 nm when the humidity was 80%. That is, as the humidity went from
20% RH to 80% RH, the total amount of change in the wavelength was 595 pm.

We have provided the preliminary experimental data for a sensor stability and durability test.
According to the experimental results, the humidity sensitivity measured at 14 days was still quite close
to the initial sensitivity, as shown in Figure 12b. Furthermore, as shown in Figure 12a, the humidity
measurement results for 20% RH, 45% RH, and 80% RH showed good stability. It is thus proven that
the proposed sensor exhibits good stability and durability.
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5. Conclusions

In this study, a TFBG humidity sensor was fabricated by coating TFBG with a graphene oxide film.
The measurement results showed that the measurement sensitivity of the humidity was 4.695 times
higher than 0.00213 nm/% RH [7], 5 times higher than 0.002 nm/% RH [8], 7.273 times higher than
0.001375 nm/% RH [13], and 2.625 times higher than 0.00381 nm/% RH [21], while the wavelength
sensitivity was −0.01 nm/% RH and the linearity was 0.996. This optical fiber sensing system has
high research and development value, as the TFBG can be used not only for relative humidity sensing,
but also in temperature, strain, and magnetic field sensing applications, a versatility that suggests that
its future is really limitless.

Acknowledgments: This work was supported by the Ministry of Science and Technology, Taiwan (grant number
MOST-106-2623-E-151-001-D and MOST- 106-2221-E-151-023).

Author Contributions: Chia-Chin Chiang designed the study methods and experiments, analyzed the data,
and wrote the paper. Chao-Wei Wu conducted the experiments and analyzed the experimental data. Yung-Da Chiu
conducted the experiments and analyzed the experimental data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, C.; Wu, C.; Chiang, C. A ZnO Nanoparticle-Coated Long Period Fiber Grating as a Carbon Dioxide Gas
Sensor. Invention 2016, 1, 21. [CrossRef]

2. Fang, Y.; Wang, C.; Chiang, C. A Small U-Shaped Bending-Induced Interference Optical Fiber Sensor for the
Measurement of Glucose Solutions. Sensors 2016, 16, 1460. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/inventions1040021
http://dx.doi.org/10.3390/s16091460
http://www.ncbi.nlm.nih.gov/pubmed/27618059


Sensors 2017, 17, 2129 11 of 11

3. Woyessa, G.; Fasano, A.; Markos, C.; Rasmussen, H.K.; Bang, O. Low Loss Polycarbonate Polymer Optical
Fiber for High Temperature FBG Humidity Sensing. IEEE Photon. Technol. Lett. 2017, 29, 575–578. [CrossRef]

4. Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C.; Bang, O. Temperature insensitive hysteresis free highly
sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206–1213. [CrossRef]
[PubMed]

5. Alberto, N.; Tavares, C.; Domingues, M.F.; Correia, S.F.H.; Marques, C.; Antunes, P.; Pinto, J.L.;
Ferreira, R.A.S.; Andre, P.S. Relative humidity sensing using micro-cavities produced by the catastrophic
fuse effect. Opt. Quant. Electron. 2016, 48, 1–8. [CrossRef]

6. Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F. Photonic crystal fiber
interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242,
1065–1072. [CrossRef]

7. Urrutia, A.; Goicoechea, J.; Ricchiuti, A.L.; Barrera, D.; Sales, S.; Arregui, F.J. Simultaneous measurement of
humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuators B
Chem. 2016, 227, 135–141. [CrossRef]

8. Ascorbe, J.; Corres, J.M.; Matias, I.R.; Arregui, F.J. High sensitivity humidity sensor based on cladding-etched
optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 242, 7–16. [CrossRef]

9. Alberto, N.J.; Marques, C.A.; Pinto, J.L.; Nogueira, R.N. Three-parameter optical fiber sensor based on a
tilted fiber Bragg grating. Appl. Opt. 2010, 49, 6085–6091. [CrossRef]

10. Huang, Y.; Zhu, W.; Li, Z.; Chen, G.; Chen, L.; Zhou, J.; Lin, H.; Guan, J.; Fang, W.; Liu, X.; et al.
High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled
with graphene oxide film. Sens. Actuators B Chem. 2018, 255, 57–69. [CrossRef]

11. Dissanayake, K.P.W.; Wu, W.; Nguyen, H.; Sun, T.; Grattan, K.T.V. Graphene oxide coated long period grating
based fibre optic humidity sensor. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS),
Jeju, Korea, 24–28 April 2017.

12. Gao, R.; Lu, D.F.; Cheng, J.; Jiang, Y.; Jiang, L.; Qi, Z.-M. Humidity sensor based on power leakage at
resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sens. Actuators B Chem.
2016, 222, 618–624. [CrossRef]

13. Dong, X.; Zhang, H.; Liu, B.; Miao, Y. Tilted fiber Bragg gratings: Principle and sensing applications.
Photon. Sens. 2011, 1, 6–30. [CrossRef]

14. Albert, J.; Shao, L.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photon. Rev. 2013, 7, 83–108.
[CrossRef]

15. Erdogan, T.; Sipe, J.E. Tilted fiber phase gratings. Opt. Soc. Am. A 1996, 13, 296–313. [CrossRef]
16. Li, Y.; Froggatt, M.; Erdogan, T. Volume Current Method for Analysis of Tilted Fiber Gratings.

J. Lightwave Technol. 2001, 19, 1580. [CrossRef]
17. Feder, K.S.; Westbrook, P.S.; Ging, J.; Reyes, P.I.; Carver, G.E. In-Fiber Spectrometer Using Tilted Fiber

Gratings. Photon. Technol. Lett. 2003, 15, 933–935. [CrossRef]
18. Wang, L.; Fang, N.; Huang, Z. Polyimide-Coated Fiber Bragg Grating Sensors for Humidity Measurements;

InTech Open Access: Rijeka, Croatia, 2012.
19. Berrutia, G.; Consalesa, M.; Giordanob, M.; Sansoneb, L.; Petagnac, P.; Buontempod, S.; Breglioe, G.;

Cusanoa, A. Radiation hard humidity sensors for high energy physics applications using polyimide-coated
fiber Bragg gratings sensors. Sens. Actuators B Chem. 2013, 177, 94–102. [CrossRef]

20. Montero, A.; Aldabaldetreku, G.; Durana, G.; Jorge, I.; de Ocáriz, I.S.; Zubia, J. Influence of Humidity on
Fiber Bragg Grating Sensors. Adv. Mater. Sci. Eng. 2014. [CrossRef]

21. Wang, Y.; Shen, C.; Lou, W.; Shentu, F.; Zhong, C.; Dong, X.; Tong, L. Fiber optic relative humidity sensor
based on the tilted fiber Bragg grating coated with graphene oxide. Appl. Phys. Lett. 2016, 109, 031107.
[CrossRef]

22. Naik, G.; Krishnaswamy, S. Room-Temperature Humidity Sensing Using Graphene Oxide Thin Films.
Sci. Res. 2016. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LPT.2017.2668524
http://dx.doi.org/10.1364/OE.24.001206
http://www.ncbi.nlm.nih.gov/pubmed/26832503
http://dx.doi.org/10.1007/s11082-016-0491-4
http://dx.doi.org/10.1016/j.snb.2016.09.144
http://dx.doi.org/10.1016/j.snb.2015.12.031
http://dx.doi.org/10.1016/j.snb.2016.04.045
http://dx.doi.org/10.1364/AO.49.006085
http://dx.doi.org/10.1016/j.snb.2017.08.042
http://dx.doi.org/10.1016/j.snb.2015.08.108
http://dx.doi.org/10.1007/s13320-010-0016-x
http://dx.doi.org/10.1002/lpor.201100039
http://dx.doi.org/10.1364/JOSAA.13.000296
http://dx.doi.org/10.1109/50.956146
http://dx.doi.org/10.1109/LPT.2003.813414
http://dx.doi.org/10.1016/j.snb.2012.10.047
http://dx.doi.org/10.1155/2014/405250
http://dx.doi.org/10.1063/1.4959092
http://dx.doi.org/10.4236/graphene.2016.51001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Working Principle of the Graphene Oxide Humidity Sensor 
	Experiment 
	Processing and Fabrication of TFBG 
	The Setup of the Humidity Sensing Experiment 

	Results and Discussion 
	Graphene Oxide Film Coating 
	Temperature Response of the TFBG Sensor 
	Comparison of Different Diameters 
	Analysis and Discussion of Humidification and Dehumidification 

	Conclusions 

