ﬂ SCNSors m\py

Article

An Embedded Multi-Agent Systems Based Industrial
Wireless Sensor Network

Mohammed S. Taboun *"* and Robert W. Brennan
Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; rbrennan@ucalgary.ca
* Correspondence: mstaboun@ucalgary.ca; Tel.: +1-403-220-7185

Received: 9 August 2017; Accepted: 7 September 2017; Published: 14 September 2017

Abstract: With the emergence of cyber-physical systems, there has been a growing interest in
network-connected devices. One of the key requirements of a cyber-physical device is the ability to
sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement.
In this study, an embedded multi-agent systems-managed wireless sensor network is presented.
A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and
passive wireless sensor node types are defined, along with their communication protocols, and two
application-specific examples are presented. A series of three experiments is conducted to evaluate
the performance of the agent-embedded wireless sensor network.

Keywords: wireless sensor networks; multi-agent systems; embedded agents; distributed intelligent
sensing and control

1. Introduction

Recent advances in technology have led to the emergence of devices that connect to the Internet,
in order to communicate with each other. This phenomena is known as the Internet of Things (IoT)
and is revolutionizing daily life. The industrial application of these devices is known as cyber-physical
systems; while a subset of IoT, cyber-physical systems, is composed of cyber-physical devices that
have more focused requirements of IoT devices.

Wireless Sensor Networks (WSNs) are a widely-accepted solution to deal with the requirements
and challenges of cyber-physical systems. WSNs are a large group of wireless sensor nodes,
which communicate sensory data to a data acquisition system. Two key challenges, which are related
to the reduction of power consumption of WSNs, are topology management and communication
overhead reduction. Given the distributed nature of WSNs, multi-agent systems are a widely-accepted
solution for managing WSNs.

In this paper, we propose an embedded multi-agent system to manage an industrial WSN.
The WSN described in this study is targeted to the oil and gas industries; more specifically, oil and
gas refineries along with storage tank and trailer monitoring applications. Some application-specific
examples are provided in Section 6. After an outline of background information, an embedded agent
architecture is proposed to manage and control the WSN. Two wireless sensor node types are presented:
active and passive wireless sensor nodes. Two application specific examples are presented: a series of
experiments is conducted to compare the effects of increasing the number of sensor nodes in a passive
wireless sensor cluster, comparing a cluster of active wireless sensor nodes with passive wireless sensor
nodes and, finally, the effect of a sensor node changing clusters.

2. Background

In this section, the background information is briefly examined. Cyber-physical systems are
briefly described along with research trends in wireless sensor networks. Multi-agent systems as
a solution for managing wireless sensor networks are also briefly outlined.
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2.1. Cyber-Physical Systems

Cyber-physical systems are defined by [1] as “a new generation of systems with integrated
computational and physical capabilities that can interact with humans through many new modalities.”
In other words, cyber-physical systems are systems of hardware, with companion software, that
are able to communicate with humans and other systems, as well as interact with their respective
environments. This interaction is accomplished by sensing the environment (with sensors) and acting
on the environment via some sort of actuation [2].

Cyber-physical systems have become a popular research area in the past decade. This research
has presented several unique challenges in the context of designing secure and efficient cyber-physical
systems. According to [3], these challenges arise when the computational framework is combined with
a continuous physical system. Another challenge is also presented, in which cyber-physical systems
must be autonomous. This is evident as many cyber-physical systems are tending to be designed to
function without human intervention. An example is given with the self-driving car [4]. The third and
final challenges presented in [3] are that most cyber-physical systems are constrained by environmental
and operational limitations. Examples of these limitations are given as low computational power,
battery life considerations, communication ranges and bandwidth.

A widely-accepted solution to contend with several of these challenges is the use of Wireless
Sensor Networks (WSNs). WSNs are a network of small, low-powered wireless sensors. These sensors
are usually battery powered and communicate through their own wireless sensor network protocol.

2.2. Industrial Wireless Sensor Networks

As previously mentioned, WSNs are a widely-accepted solution for some of the challenges in
cyber-physical systems. A WSN is composed of wireless sensor nodes, which are small low-powered
devices with limited processing and computing resources and are inexpensive compared to traditional
sensors [5]. More specifically, a WSN sensing and monitoring system does not require the extensive
electrical wiring infrastructure of a conventional sensing and motoring system. However, the trade-off
can be lower speeds and higher latency due to the wireless interface. In recent years, industrial WSNs
have become a popular area in research due to the advances in processing power of single-board
micro-computers and the reduced power consumption of embedded devices.

Two of the primary concerns in industrial wireless sensor networks are data routing and
aggregation. When a large-scale industrial WSN processes data from many sensor nodes, a large
bandwidth overhead is created. One of the most widely-accepted solutions that reduces this bandwidth
overhead is clustering the WSN. This clustering process creates a hierarchical structure in the WSN,
which allows for more streamlined data aggregation. The clustering process also creates two categories
for classifying nodes within the WSN. These node types are sink nodes and regular sensor nodes,
which are shown in Figure 1.

The cluster heads of the WSN'’s respective clusters are made up of the previously-mentioned sink
nodes. The sink nodes are responsible for aggregating data and transmitting this aggregated data from
the WSN to the data acquisition centre (such as a SCADA system) or to the base station of the WSN.
Due to the higher amount of transmissions required of the sink node when compared to the sensor
nodes, the sink node is often a higher processing, fixed unit with respect to the sensor nodes. In other
words, the sink node is a higher powered, wired unit with a fixed location.

The regular sensor nodes, on the other hand, make up most of the WSN. These sensor nodes
collect sensory data and transmit these data to the sink node. The sensor nodes are therefore only
required to have a very low powered processor and can usually be powered by a battery. In the case of
networks where not all of the nodes are stationary, sensor nodes that have a fixed location are called
anchor nodes, and nodes that do not have a fixed location are referred to as mobile nodes.

WSNs are distributed in their nature. There are several approaches to managing WSNs through
distributed computing. One of the most widely-accepted solutions to manage WSNss is the use of
multi-agent systems.
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Figure 1. An industrial wireless sensor network with sink nodes and sensor nodes.

2.3. Static and Dynamic Clusters in Wireless Sensor Networks

In the previous section, clusters of wireless sensor nodes were introduced. An important
factor when considering the design of wireless sensor networks is whether the clusters of wireless
sensor nodes are static or dynamic. In a static cluster of sensor nodes, the sensor nodes are
permanently assigned to a cluster and thus only perform tasks according to their respective cluster
head. Ina dynamic cluster however, the sensor nodes may change clusters, and their tasks and
priorities may change depending on the cluster that they belong to at any given time [6].

2.4. Range Measurement Techniques in Wireless Sensor Networks

Range measurement techniques can be classified into five different techniques as described
in [7]: Time of Arrival (ToA), Time Difference of Arrival (TDoA), Received Signal Strength (RSS), Angle
of Arrival (AoA) and Frequency Difference of Arrival (FDoA). ToA estimates the distance between
two neighbouring nodes by measuring the time the signal takes to travel between the two nodes.
TDoA is similar to ToA in the sense that it utilizes the time taken to reach the destination. TDoA,
however, measures the difference in arrival time of different types of signals sent at the same time
to measure the distance from the source. RSS estimates the distance of the source sending the signal
based on how strong the received signal is. AoA measures the angles of signals received from sources
whose positions are known and uses these measurements to locate the position of the sensor node.
Finally, FDoA measures the difference between received frequencies across two different antennas and
uses the Doppler shift to calculate the distance from the source.

While time-based measurements such as ToA and TDoA provide a more accurate measurement of
distance, they require a complex handshake interaction or multiple signal types respectively. AoA and
FDoA require multiple and directional antennas. The advantage of RSS, as described in [7], is that
sensor nodes do not need additional hardware or any additional communication overhead such as in
the other techniques. For the previously-described reasons and due to the hardware constraints on the
testing equipment, this study uses the RSS technique to estimate distance.

2.5. Agents in Wireless Sensor Networks

As mentioned previously, multi-agent systems are a widely-accepted solution for managing
WSNSs. In this section, key works in which multi-agent systems are used to manage wireless sensor
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networks are examined. It is, however, important to understand what is meant by the terms “agent
and “industrial agent.”

Although there is no unanimously agreed upon definition of a software agent, the most
commonly-accepted definition of an agent is presented in [8]. This states that an agent in a computer
system is situated in some environment and is capable of autonomous action in this environment
to meet its delegated objectives. Agents are defined by their characteristics and behaviours. Agents,
according to [9], are autonomous, responsive, proactive, goal-oriented, smart-behaving, social and
able to learn.

Industrial agents, according to [9], share the features of an agent, but have some specific
characteristics, as well. An industrial agent understands and efficiently handles the interface of
low level industrial devices. Industrial agents also belong to an agent-based industrial application
system within which hey act and communicate in a goal-oriented way. Industrial agents are subject to
guidelines, codes of conduct, general laws and relevant directives from higher levels.

In [10], various multi-agent solutions for WSNs are examined. A multi-agent architecture that
interconnects a wide range of heterogeneous devices that may possess various levels of resources is
proposed in [11].

Tynan et al [12] proposed the development of intelligent sensor networks using multi-agent
systems. This study had a simulation built, where the multi-agent system was developed using the
Java Agent Development framework (JADE) in Java.

A multi-agent based application-oriented middle-ware was introduced in [13]. This middle-ware
had a multi-agent management system that managed a distributed control system using IEC 61499
distributed control function blocks. This WSN middle-ware referred to a set of tools that reduced the
complexity on lower level hardware systems for mobile object tracking. This middle-ware approach
was illustrated using a case study in a factory mobile object tracking.

In [14], an interoperable WSN model using a multi-agent-based middleware was proposed.
This model aimed to provide a generalized framework to address some critical issues in WSN
paradigms such as interoperability, time synchronization, power management and distributed
computation. The middleware proposed in this study allowed the authors to build a WSN system
with efficient parallel processing capabilities and a higher reliability of system operations.

In [15], the “never miss an opportunity” scheme is proposed as a prototype for a WSN structure
using multi-agent technology to provide agility to the WSN. This model used PB-MAC-based
techniques to prioritize messages in order to wake sleeping sensor nodes and passively capture
data during the occurrence of unpredicted events.

In [16], a multi-agent architecture is proposed to exploit the advantages of multi-agent systems
modelling for WSN services, network topologies and sensor device architectures. This architecture
was intended to facilitate the high-level design of sensor networks based on multi-agent systems.
This model included agent-oriented modelling of WSN services and sensor device architectures.
The authors expected this architecture to reduce the costs of developing complex autonomous systems
and proposed validating this architecture as a future work.

Similarly, [17] proposed promoting the use of agent paradigms for the development of WSN
applications. This study described the use of MAPS, the agent platform used in the study. The authors
showed that the MAPs framework supported the development of applications in the context of WSNs.
The requirements of a full-fledged agent-oriented methodology for the development of WSNs are
also discussed.

In [18], multi-agent systems were used to simulate a large-scale WSN, agent protocols were
used to facilitate the communication in the WSN. The aim of this study was to collect data using
agents and to send them to a sink node. This simulation clustered the WSN using the widely popular
LEACHtechnique. Another goal of this architecture was to have sensor nodes cooperate to eliminate
redundant data. Successive simulations showed the ability of the agent-based WSN to reduce energy
consumption and increase the rate of packet delivery in the WSN.
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In [19], a schema for data collection based on multi-agent systems using mobile agents was
proposed for collecting information according to an optimal reliable routing schema. This study
presented successive simulations for large-scale WSNs based on the SINALGOsimulator and showed
the performance of the architecture proposed in this study. The primary metrics of concern in this
study were energy consumption and the rate of packet delivery.

In [20], a low-cost embedded agent architecture for crop monitoring and irrigation was proposed.
This approached used the PANGEA[21] architecture to overcome the limitation of the low processing
power and communication devices of the WSN. The intended outcome of this approach was the ability
to merge heterogeneous environmental data from the WSN and initiate a response accordingly. In this
study, a case-study in which farmers could monitor the crops through the wireless sensor network via
the use of a television was presented.

Many studies of agent-based techniques in which the agents control and manage the WSN employ
a middleware or have the agents deployed on a cloud-based system. This is due to the limited
processing capability of wireless sensor node hardware. Recent advances in technology, especially in
the field of single board computers such as the Raspberry Pi Zero [22], have made it feasible to embed
the agents directly into the hardware. Many advantages of the distributed deployment of agents, such
as network reliability and lower communication overhead, have been described in [9]. In this study,
we apply the use of embedded multi-agent systems to manage and control real hardware, which paints
a picture of what embedded agents used in the application of industrial WSNs may look like.

3. Previous Work

In this section, recent work directly related to this study is discussed. Initially, previous work on
agent-based WSN is discussed, followed by the authors” work on dynamic reconfiguration of WSN
using multi-agent systems. The authors’ previous sink-node embedded multi-agent systems-managed
WSN is then discussed. Finally, the authors” application-specific example in oil and gas refineries
is mentioned.

3.1. Agent-Based WSN

In [23], a multi-agent systems-based WSN was developed for mobile object tracking systems.
This multi-agent system simulated a mobile object tracking system with thousands of sensor nodes.
This wireless sensor network used Time Distance of Arrival (TDoA) to measure the distance between
anchor nodes and mobile objects and then used two-dimensional trilateration to track the position
of the mobile object. The multi-agent system was used to overcome challenges in industrial WSNSs,
such as signal blockage or power loss. The simulation was built using JADE and Java.

Although this multi-agent-based simulation used the distributed computing inherently
incorporated into agent-based programming, the deployment of the agents was centralized. In other
words, the agents for the simulation were all on the same computer. This type of deployment is
common with many existing agent-based solutions, which, as previously mentioned, communicate to
low level hardware through the use of cloud-based communication protocols.

3.2. Dynamic Reconfiguration in WSN for Mobile Object Tracking

In [24], a distributed approach to manage wireless sensor node tracking in a factory environment
was proposed. The approach used a computationally-efficient distributed k-means algorithm,
which divided up the WSN into Voronoi cells. In [25], static and dynamic clustering approaches
are compared. The distributed approach in [24] is used as a base to compare static and dynamic
clustering, using a simulation created with JADE. The experimental results in this paper corroborated
the efficiency of static clusters versus the robustness of the dynamic clusters.

In [6], an experiment was conducted to compare a mobile object tracking WSN with static vs.
dynamic clusters.The experiment was conducted with a simulation that was implemented in JADE.
The experimental results show that while static clusters have a lower messaging overhead, dynamic
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clusters prove to have a higher reliability. In other words, in the simulation environment, dynamic
clusters had a lower amount of missed signals.

3.3. Sink-Node Embedded Agents

In [26], we proposed a sink-node embedded agent WSN. This WSN had agents embedded
only in the sink nodes. The agents were the task manager, the device manager and the sink
node mediator. In this multi-agent system, the task manager was responsible for managing local
task-oriented data, such as the data required for sensing tasks, and aggregating data. The device
manager was responsible for managing local device tasks, such as cluster reconfiguration. This
multi-agent system used a mediator architecture in which the device manager and task manager
communicated via the sink node mediator agent.

3.4. WSN in Oil and Gas Refineries

In [26], an application-specific example demonstrating the plug an play properties of the
sink node-embedded WSN was presented. In this example, a WSN was used to monitor
an oil and gas refinery. The application demonstrated how clusters could be used to represent
equipment, thus allowing intelligent, seamless introduction of new equipment to a facility. Similarly,
decommissioned equipment could be removed without affecting the rest of the WSN, due to the
hierarchical structure that resulted from clustering the WSN.

4. Multi-Agent Systems Embedded WSN

In this section, a novel multi-agent system is presented. The agents that are embedded in the sink
nodes are discussed, followed by the agents in the sensor nodes. The sensor node states are described,
and the WSN architecture is described.

4.1. Sink Node Embedded Agents

Built on the sink-node embedded agent system model initially described in [26], the sink node
has several agents embedded in it. These agents are the task manager agent, the device manager agent,
the port manager agent and, finally, the sink node mediator agent. These agents are described below
and are shown in Figure 2.

In this architecture, the device manager has knowledge of sink nodes’ respective cluster (the local
environment), the state of each node in the cluster (or nodes situated in the local environment),
the residual power level of each sensor node and, finally, the I/O on the node. The device manager
is only able to communicate through software APIs. The device manager has skills in conversation,
negotiation and decision making.

The task manager has knowledge of each local task status, as well as the critical levels of local tasks.
Similar to the device manager, it is only able to communicate through software APIs. The task manager
has skill in data aggregation, integration, filtering, conversation, decision making and event handling.

The port manager is essential in managing data moving through the port through which the
sink node communicates. This is necessary due to the elevated number of signals sent and received
through the sink node when compared to a sensor node, combined with the port’s limited ability
in sending or receiving a signal. In other words, the port manager should manage the port since
a signal cannot be sent at the same time the device is listening for signals, nor can two signals be sent
or received simultaneously. The port manager has knowledge of the local environment, the status
of each node and the status of the WSN port. The port manager agent, like the previous two agents,
can communicate through software APIs, but can also communicate through the WSN port. The port
manager has skills in conversation negotiation and decision making.



Sensors 2017,17, 2112

7 of 26

/ Knowledge: Advertisement, Call for Bid \
[ Communication: Software, Other Network Protocol |
\ Skill: Conversation, Collaboration, Brokering /

Device Manager

/ Knowledge: Local Environment, Node State, Node \
Power Level, Node I/O

( Communication: Software

\  Skill: Conversation, Negotiation, Decision Making /

Sink Node
Mediator

Port Manager

Task Manager

J

|

-
—

-~
e ~N

e N
/ Knowledge: Local Task Status, Local Task Priority \
Communication: Software
\ Skill: Conversation, Decision Making, Event Handling /

- —
~

~

/ Knowledge: Local Environment, Node Status, Port \

Status

[ Communication: Software, WSN Gateway l
\ Skill: Conversation, Negotiation, Decision Making /

AN

/

Figure 2. Sink-node embedded agents for agent-based WSN.

Finally, the sink node mediator has knowledge of advertisements and calls for bids.
It communicates through software APIs and other network protocols, for example through the Internet.
The sink node mediator has skills in conversation, collaboration and brokering. The sink node
mediator is responsible for mediating messages sent between agents located on a sink node, as well as
communicating with agents on other sink nodes. The sink node mediator, however, does not mediate
messages between sink nodes and regular sensor nodes local to the respective sink nodes.

4.2. Agent-Based Sensor Nodes

Similarly to the way agents are embedded into the sink nodes, the sensor nodes of the WSN
have agents directly embedded into them. To clarify, it is important to first define “sensor node” and
“sensor node agent”. The term “sensor node” refers to the hardware platform of the sensor. The term
“sensor node agent” refers to the software component. In other words, “sensor node agent” refers to
the embedded intelligence of the sensor node. In this architectures, there is one sensor node agent

deployed on each sensor node.
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The sensor node agent has a knowledge of the current cluster topology, or the local topology,
neighbouring sink nodes, communication port status, critical task levels and task status. The sensor
node agent is only to communicate with its respective sink node through the WSN protocol. The sensor
node agent has skills in communication, data aggregation and decision making.

4.3. Node States for Dynamic Reconfiguration

As previously mentioned, there may be a need for a sensor node to switch clusters. A reason for
this can be a loss of communication with its” respective sink node, due to blockage (see Figure 1) or
a power outage for the sink node. Figure 3 shows the different anchor node states. The transmission
state occurs when the sensor node is sending a message. Due to the resources required to send
a transmission, this state is typically a high power consumption state. Listening is the state that the
sensor would ideally spend most of its time in and, as a result, is its normal operating mode.

(=)
(=)~

Reconfiguring

Figure 3. Sensor node states.

The dynamic reconfiguration state occurs when a sensor node agent decides to change clusters.
In other words, when a sensor node agent decides to change sink nodes, it enters the dynamic
reconfiguration state. This state involves sending “pings” to its neighbouring sink nodes in a similar
fashion to the channel scan technique and joining the closest possible sink node. Due to the amount
of transmissions sent during this state, this is usually expected to be the node state with the highest
consumption of power. If the sensor node agent is unable to find its’ respective sink node, it enters a
sleep state, where it will lay dormant for a predetermined amount of time. When this time expires,
the sensor node agent will enter the dynamic reconfiguration state again. This reconfiguration process,
along with the initial node setup, is illustrated in Figure 4.
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Figure 4. Sensor node setup and reconfiguration process.

4.4. WSN Architecture

As can be seen in Figure 5, sensor node agents are deployed on sensor nodes, which allows sensor
nodes to communicate with the sink node of their respective clusters through the WSN communication
protocols. The sink node embedded agents communicate with the data acquisition system and/or
other sink nodes through other network protocols. Since the network architecture follows a clustered
topology, scaling the network to more nodes is relatively simple. An industrial WSN can be composed
of one, two or many sink nodes and one, two or many clusters of sensor nodes.
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Figure 5. Wireless sensor network architecture.
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5. Active vs. Passive Sensor Nodes

In this section, we compare active and passive wireless sensor nodes. In order to illustrate the
active and passive communication of sensory data between the sensor node and sink node, we must
first define active and passive sensor nodes. For this study, we consider passive wireless sensor nodes
to be sensor nodes that send sensor data on a given time interval, without a request from the sink node.
Active wireless sensor nodes, on the other hand, will send sensory data to the sink node, only when
the sink node sends a request first.

5.1. Active Wireless Sensor Nodes

As previously mentioned, active sensor nodes will send sensory data only when requested by the
sensor node. This process is initiated when the sink node sends a request. The sensor node confirms
the request was received, then sends the sensory data. The sink node confirms the sensory data were
received and then waits until it needs to request more sensory data (usually based on a sink node time
interval). In other words, the active wireless sensor nodes use a query-based architecture to transmit
sensory data upon request. This process is illustrated in Figure 6.

e
Node >

Request for Sensor Data

--Confirmation Request Received- =
Sensory Data
= - - Confirmation of Reception -- -

Wait for t seconds

Request for Sensor Data
--Confirmation Request Received- =
Sensory Data

= - - Confirmation of Reception ---

Figure 6. Active wireless sensor node communication with the sink node.

5.2. Passive Wireless Sensor Nodes

Passive sensor nodes follow a more simplified process. The sensor node sends sensory data,
and the sink node confirms there data were received. The sensor node waits for a predetermined time
interval, then sends sensory data again. In other words, the passive sensor nodes use an advertisement
architecture to passively transmit sensory data. This process is illustrated in Figure 7.

et e
Node
— Sensory Data

< - - Confirmation of Reception

Wait for t seconds

Sensory Data >
Confirmation of Reception

Figure 7. Passive wireless sensor node communication with the sink node.
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Due to the lower number of transmissions sent, the power consumption for each sensory data
transmission should be lower when using a passive wireless sensor node. Active wireless sensor nodes,
on the other hand, simplify cluster management: it is easier for the sink node to schedule received
messages, which may result in a lower number of missed messages. In this study, we investigate the
behaviour of WSNs with these two communication modes in the experiment sections.

6. Application Specific Example

In this section, we present two application-specific examples related to the oil and gas processing
industries. The first example is for an oil and gas refinery, which was presented in [26]. The second
example is a novel application in storage tank monitoring.

6.1. Agent-Based WSN for Oil and Gas Refineries

In [26], an application-specific example outlining the hierarchical clustering structure of a sink node
embedded WSN in an oil and gas refinery is given. This example is still relevant when discussing a fully
agent-embedded WSN. In this example, we consider the oil and gas refining process outlined in [27].

The basic refinery example starts with unprocessed oil (which consists of o0il, gas and water)
entering the Stage 1 separator. The natural gas that is separated from the Stage 1 separator and
transported to the low pressure gas compressor. Meanwhile, leftover oil flows to the Stage 2 separator,
where the remaining gas is separated from the oil. This gas is also sent to the low pressure gas
compressor. All the while, water that is separated during the process is sent to the water treatment
equipment. The refined oil is stored and/or exported after leaving Stage 2 separation. After leaving
the low pressure gas compressor, the gas is sent to the high pressure gas compressor, where it is then
exported through a gas pipeline. This process is illustrated in Figure 8.

Figure 8 also shows how cluster wireless sensor nodes can be used to monitor equipment. A cluster
of wireless sensor nodes can be embedded into a group of machinery: for example Cluster 1 consists
of wireless sensor nodes embedded in the low pressure and high pressure gas compressors. Similarly,
a cluster of wireless sensor nodes can represent one piece of equipment, for example: Cluster 3 consists
of wireless sensors embedded into the water treatment equipment.

LP Gas Compressor HP Gas Compressor

Base Station

b —— I —

T
| : : _____________ 4
: Stage 1 Separator

: Qil Export

|
|
|

Cluster 2

Water Treatment Oil Storage

Cluster 4
r——————,e—e—eer—r e — — 4 J

Figure 8. WSN for oil and gas refinery applications [26].
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6.2. WSN for Storage Tank Monitoring

A novel application-specific example is the use of agent-embedded WSN in a tank storage facility.
Some industries make use of facilities with several tanks. Often, these tanks are attached to trailers and
are moved from facility to facility. When monitoring the condition of the contents of the tank using
a WSN, the sensors should be able to communicate with a base station or data acquisition system in
the storage facility.

In this example, we consider the sink node to not be attached to the trailer. When a trailer leaves
with a storage tank, the sensor nodes will go into a sleep state, conserving battery, or will communicate
with a sink node that is on the towing vehicle. When a trailer enters a storage facility, the sensor
nodes should join a cluster without human intervention. This allows the data acquisition system to
seamlessly monitor all of the tanks in the facility. This example is illustrated in Figure 9.

( DATA ACQUISITION SYSTEM )

AL DTS

Base gtation

" o | el

3 c7

A— | —olle

Cc4 c8

W ol

Figure 9. Example of storage tank facility with trailer attached tanks.

Cc5

One of the design requirements for the WSN in this application-specific example is the ability
to add and remove sensor nodes from the wireless sensor networks. Sensor nodes are added when
storage tanks arrive and similarly are removed when a storage tank leaves the facility. For this to occur,
the topology of the wireless sensor network must consist of dynamic clusters. In the experiment section,
the effect of dynamic clusters on the quality of service is investigated using a hardware test bed.

7. Experiments

In this section, the experiments and experimental methods are discussed. There are three
experiments presented in this study. The first experiment compares two interval times for passive
wireless sensor networks, as well as two different cluster sizes. The second experiment compares
active and passive wireless sensor networks for different cluster sizes. The third experiment examines
a sensor node reconfiguring its cluster. The metrics that are used to evaluate the performance of the
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WSN are discussed, followed by the hardware used for the experiment. The statistical design of the
experiment is outlined, and the results are presented.

7.1. Metrics

The experiments are evaluated on three key metrics. The first metric is the lost signal ratio.
The power consumption of the WSN is discussed along with the reconfiguration time.

7.1.1. Lost Signal Ratio

In large-scale factory wireless sensor networks, one of the most critical metrics is the number of
signals making it through to the data acquisition system. The Lost signal ratio (Ls) is defined as:

Ly = (nSEVlt - nreceived)/(nsent> (1)

where 71, is the total number of messages sent by sensor nodes in the WSN and 71,,,¢ejzeg is the total
number of messages received by the sink nodes in the WSN.

While an acceptable lost signal ratio is application specific, typically a goal is to minimize the lost
signal ratio. A lower lost signal ratio is the product of more of the signals sent by the sensor node
read by the sink node. A higher lost signal ratio, on the other hand, is a product of the sink node not
receiving the signals sent by the sensor nodes in its cluster. Lost signals result in lost information,
which in turn degrades the quality of any monitoring and/or control processing. Therefore, a lower
lost signal ratio contributes to a higher quality of service.

7.1.2. Power Consumption

One of the most popular and heavily considered topics when considering the implementation of
WSN is the battery power consumption. In industrial WSN, some or many sensors may be battery
powered. In this experiment, power consumption is measured as opposed to battery power, as the
sensors are all plugged into a power supply. We can define the total power consumption of the
system as:

m

Pavg = ( Z Ptr,nttr,n + Pl,ntl,n + P‘r,ntr,n + Ps,n ts,n) /m (2)
n=1

where 1 is the current sensor node, m is the total number of sensor nodes, Py, P, P,,Ps are the power

draw when a node is in its respective states, shown in Figure 1, and t represents the node’s time in

each respective state.

It is important to note that only the power consumption for sensor nodes is of concern, as opposed
to the power consumption of sink nodes. In a typical heterogeneous industrial WSN, the sensor nodes
may or may not be battery powered, but the sink nodes are fixed units with an unlimited power
supply. In this experiment, the power consumption of the sensor nodes is measured at the power
source, through the use of a logging ammeter.

7.1.3. Reconfiguration Time

The final metric, which is used in the third experiment, measures the reconfiguration time for the
sensor node to change its cluster. This metric is important for several reasons. Firstly, the longer the
sensor node spends in the reconfiguration state, the more power it uses. The second, and arguably the
most important reason, is that while the sensor node is without a sink node, it cannot communicate
critical sensory data. If the sensory data at the time are critical (for example, in an emergency), the lost
signal ratio needs to be at a minimum. In this experiment, the reconfiguration time is measured by
using the sensor node’s system clock and a data logger, which records each sensor node’s variable
states, including the current sink node, in millisecond intervals.
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7.2. Experimental Hardware and Software Implementation

In this study, the experiments are conducted on physical systems in order to capture realistic
data as opposed to ideal-condition data, which simulated systems are prone to include. In order
to understand the experimental results, it is important to understand the hardware configuration
of the WSN. As previously mentioned, the sensor nodes are connected to a common power source,
and a logging ammeter was used to measure the current draw. The sensor nodes are composed of
two pieces of hardware. The hardware platform in which the sensor node agents are embedded on
are a Raspberry Pi Zero v1.3 [22]. These Raspberry Pi Zeros are connected to their WSN components,
which are ZigBee XBee nodes [28], using a standard XBee Explorer adapter. The sensor nodes also
include a standard WiFi adapter; however, these adapters are only used for agent deployment and not
in experimentation. A photograph of a sensor node can be seen in Figure 10.

Figure 10. Photograph of Raspberry Pi Zero-based sensor node hardware.

The sink nodes use a Raspberry Pi 3 [29] as their hardware platform for intelligence.
The Raspberry Pi 3 has a more powerful processor than the Raspberry Pi Zero and is capable of
running many software agents at once. Like the sensor nodes, the sink nodes have ZigBee XBee nodes
in which they communicate to their respective cluster of sensor nodes. A photograph of a sink node
can be seen in Figure 11.

\

Figure 11. Photograph of Raspberry Pi 3-based sink node hardware.

One of the key reasons for choosing Raspberry Pi is its ability to run Java programs natively.
The XBee ZigBee API supports Java as its official language. Thus, the multi-agent system was
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implemented in the Java Agent Development Framework (JADE) [30]. The Raspberry Pi Zero and
Raspberry Pi 3 run a Linux operating system (headless), and the JADE agents are deployed accordingly.

In this experiment, we are concerned with resource usage and quality of service in the clusters.
In order to effectively compare factors, the types of messages in communication exchanges need to be
consistent. As a result, the sensor nodes do not send actual sensor readings, but generic messages that
follow the format: (SENSORID,MESSAGENUMBER, EXCEPTIONCODE). This allowed us to provide
an objective comparison of the loading on the clusters.

7.3. Statistical Design

In the first experiment, we are investigating the effect of two factors on the lost signal ratio and the
power consumption of a wireless sensor network cluster. The first factor is the number of sensor nodes
in a cluster. When increasing the number of sensor nodes, the sink node requires more bandwidth, so
we expect to see an increase in lost signal ratio. In this experiment, this factor has six levels, the cluster
size ranging from 5-10 sensor nodes.

The second factor is the time between sent signals. In a WSN with passive sensor nodes, the sensor
nodes send signals based on a factor internal to the sensor node. In this experiment, the sensor nodes
are inspected based on a time frequency. This factor has two levels: 5 s and 10 s.

Given the previously introduced factors, a statistical scheme for experimentation can be devised.
There are 2 factors, 1 of which is 6 levels and 1 of which is 2 levels. With a full factorial design outlined
according to [31], we will have the following design:

Tbase = (61) (21 ) 3)

where 14,4, is the number of base runs. In the first experiment, there are 12 base runs. With 5 replications
of these base runs, there are 60 runs required.

In the second experiment, we are investigating the effect of two factors, as well. The first factor
is the effect of cluster size on a WSN cluster, similar to the first experiment. Using some of the
data from the first experiment as a control group, the second factor compares the active and passive
communication protocols discussed in Section 5. With the same number of factors, the same number of
base runs is required as in the first experiment. Thus, with 5 replications, there are 60 runs altogether
for the second experiment.

In the third experiment, we look at the dynamic cluster behaviour’s effect on the lost signal ratio,
the power consumption of the sensor nodes and the reconfiguration time as opposed to static clusters.
The effect of increasing cluster size with these two sensor node configurations is also examined. In this
experiment, a sensor node switches back and forth between two clusters every 100 messages. The two
clusters range in size from 5-10 sensor nodes. Similar to the first two experiments, there are 12 base
runs and 5 replications. Thus, the third experiment also has 60 runs.

8. Experimental Results

In this section, the experimental results are discussed. As previously mentioned, there were three
experiments conducted. First, a comparison of 5 s and 10 s transmission interval times for 6-10 sensor
nodes is discussed. Next, active and passive wireless sensor nodes for a cluster of 6-10 sensor nodes is
discussed. Finally, the effect of a cluster changing sink nodes is discussed.

8.1. Comparing Interval Times for Passive Wireless Sensor Nodes

In the first series of experiments, passive wireless sensor nodes with different interval times are
compared. First, the effect of cluster size on sensor nodes with 5 s and 10 s intervals is presented. Then,
the difference in the lost signal ratio and power consumption of the two interval times is presented.
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8.1.1. Effect of Cluster Size on Passive Wireless Sensor Nodes

When considering the lost signal ratio, for a cluster of passive wireless sensor nodes with 5 s
transmission intervals, there was a statistically-significant difference between groups as determined by
one-way ANOVA (F(5,24) = 718.726, p = 0.000). A Tukey post hoc test revealed that the lost signal ratio

became statistically significantly higher whenever an extra sensor node was added, as summarized
in Figure 12.
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Figure 12. Lost signal ratio of cluster of 5-10 passive wireless sensor nodes with a 5 s
transmission interval.

For the power consumption for a cluster of passive wireless sensor nodes with 5 s transmission
intervals, there was a statistically-significant difference between groups as determined by one-way
ANOVA (F(5,24) = 165.675, p = 0.000). A Tukey post hoc test revealed that the power consumption

became statistically significantly higher whenever an extra sensor node was added, as summarized
in Figure 13.
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Figure 13. Power consumption of cluster of 5-10 passive wireless sensor nodes with a 5 s
transmission interval.
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For the lost signal ratio for a cluster of passive wireless sensor nodes with 10 s transmission
intervals, there was a statistically-significant difference between groups as determined by one-way
ANOVA (F(5,24) = 887.512, p = 0.000). A Tukey post hoc test revealed that the lost signal ratio became
statistically significantly higher whenever an extra sensor node was added, as summarized in Figure 14.
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Figure 14. Lost signal ratio for clusters of 5-10 passive wireless sensor nodes with a 10 s
transmission interval.

For the power consumption for a cluster of passive wireless sensor nodes with 10 s transmission
intervals, there was a statistically-significant difference between groups as determined by one-way
ANOVA (F(5,24) = 163.934, p = 0.000). A Tukey post hoc test revealed that the power consumption

became statistically significantly higher whenever an extra sensor node was added, as summarized
in Figure 15.
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Figure 15. Power consumption of a cluster of 5-10 passive wireless sensor nodes with a 10 s
transmission interval.
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8.1.2. The Effect of Increasing Passive Wireless Sensor Node Intervals

This study found that WSN clusters run with a 10 s transmission interval had statistically
significantly lower lost signal ratios (0.136 + 0.104) compared to WSN clusters run with a 5 s
transmission interval (0.366 & 0.101), t(58) = 8.714, p = 0.000. The results are summarized in Figure 16.
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Figure 16. Lost signal ratio of clusters of passive wireless sensor nodes with 5 s vs. 10 s
transmission intervals.

This study found that WSN clusters that have a 10 s transmission interval had statistically
significantly lower power consumption (789.7161 £ 141.828) when compared to clusters run witha 5 s
transmission interval (1094.15 + 130.137), as well, t(58) = 8.663, p= 0.000. The results are summarized
in Figure 17.
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Figure 17. Power consumption of clusters of passive wireless sensor nodes with 5 s vs. 10 s
transmission intervals.

8.2. Comparing Active and Passive Wireless Sensor Nodes

As previously mentioned, the second experiment compares active and passive wireless sensor
nodes. First, the effect of cluster size and lost signal ratio are looked at, along with the difference
between the means of the active and passive wireless sensor nodes. After that, the effect on power
consumption is examined.
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8.2.1. The Effect of Cluster Size on Active and Passive Wireless Sensor Nodes

When considering the lost signal ratio for a cluster of active wireless sensor nodes,
there was a statistically significant difference between groups as determined by one-way
ANOVA (F(5,24) = 237.482, p = 0.000). A Tukey post hoc test revealed that the lost signal ratio

became statistically significantly higher whenever an extra sensor node was added, as summarized
in Figure 18.
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Figure 18. The effect of cluster size on the lost signal ratio of a cluster of active wireless sensor networks.

When considering power consumption, for a cluster of active wireless sensor nodes,
there was a statistically-significant difference between groups as determined by one-way
ANOVA (F(5,24) = 3.569, p = 0.015). A Tukey post hoc test revealed that the power consumption

became statistically significantly higher whenever an extra sensor node was added, as summarized
in Figure 19.
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Figure 19. The effect of cluster size on the power consumption of a cluster of active wireless
sensor networks.
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8.2.2. Active vs. Passive Wireless Sensor Nodes

This study found that WSN clusters of active wireless sensor nodes had statistically significantly
lower lost signal ratios (0.0508 £ 0.1177) compared to clusters of passive wireless sensor nodes
(0.366 £ 0.101), £(58) = 17.010, p = 0.000. The results are summarized in Figure 20.
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Figure 20. Lost signal ratio in a cluster of active vs. passive wireless sensor nodes.

This study found that WSN clusters of active wireless sensor nodes had statistically significantly
lower power consumption (663.92 + 19.33) compared to clusters of passive wireless sensor nodes
(1075.69 £ 19.33), t(58) = 16.726, p = 0.000. The results are summarized in Figure 21.
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Figure 21. Power consumption in a cluster of active vs. passive wireless sensor nodes.
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8.3. Effect of Sensor Node Cluster Reconfiguration

8.3.1. Effect of Increasing Cluster Size

For a cluster of dynamic wireless sensor nodes, there was a statistically-significant difference
between groups as determined by one-way ANOVA (F(5,24) = 25.821, p = 0.000). A Tukey post hoc test
revealed that the lost signal ratio became statistically significantly higher whenever an extra sensor
node was added, as summarized in Figure 22.
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Figure 22. Lost signal ratio of clusters of dynamic wireless sensor nodes.

When considering power consumption, for a cluster of dynamic wireless sensor nodes,
there was also a statistically-significant difference between groups as determined by one-way
ANOVA (F(5,24) = 10.145, p = 0.000). A Tukey post hoc test revealed that the power consumption

became statistically significantly higher whenever an extra sensor node was added. These results are
shown in Figure 23.
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Figure 23. Power consumption of dynamic wireless sensor nodes.
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When considering reconfiguration time, there is no statistical-significant difference between

groups. This can be seen in Figure 24.
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Figure 24. Reconfiguration time of dynamic wireless sensor nodes.

8.3.2. Static vs. Dynamic Clusters
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This study found that WSN clusters of dynamic wireless sensor nodes were not significantly
different when compared to static WSN both in terms of lost signal ratio and in terms of power
consumption. These results are shown in Figures 25 and 26.
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Figure 25. Lost signal ratio of static and dynamic wireless sensor nodes.
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Figure 26. Power consumption of static and dynamic wireless sensor nodes.

9. Discussion

In the first experiment, sensor node clusters with a message interval of 5 s were compared with
sensor node clusters with an interval of 10 s. The experiment found that for a cluster of passive
wireless sensor nodes, increasing the number of nodes in the cluster resulted in an increase of the lost
signal ratio, as well as an increase of power consumption per sensor node. The first experiment also
found that increasing the interval between messages sent generally decreases both the lost signal ratio,
as well as the power consumption of the WSN cluster. The effects of increasing the sensor nodes can
be expected, due the much higher amount of bandwidth the sink node must receive. The increase in
power consumption, however, can be linked to the higher amount of time spent in the transmission
state as the anchor nodes try to send the same message multiple times before moving on to the next
message, as per the ZigBee protocol.

In the second experiment, the increase in sensor nodes per cluster had less of an effect on the active
system. While there was still a significant increase in both lost signal ratio and power consumption, the
active wireless sensor networks tend to be less effected by the increase in cluster size. When compared
to the cluster of passive wireless sensor nodes, the active sensor node clusters had a statistically
significantly lower lost signal ratio and lower power consumption. These results show that the active
wireless sensor nodes, which allow for ease of reconfigurability with the embedded multi-agent system,
are also less prone to a high lost signal ratio while consuming less power.

Finally, the third experiment compared a static cluster with a dynamic cluster. The results show
that while an increase in cluster size increases both the lost signal ratio and power consumption of the
dynamic network, it does not affect the reconfiguration time. When comparing the differences between
a static cluster of active wireless sensor nodes, there is no statistically-significant difference in lost signal
ratio or the power consumption of the different groups. This demonstrates the WSNs’ capabilities
when adding and removing wireless sensor nodes, which is essential to the reconfigurability of the
industrial WSNs in the application-specific examples.

These experiments paint a picture of the effects of different factors on a wireless sensor network.
When considering passive wireless sensor nodes, increasing the size of each cluster results in a lower
quality of service, along with an increased power consumption for each sensor node. While the power
consumption for a passive wireless sensor node on its own should be lower than that of an active sensor
node due to the lower amount of transmissions required, a cluster of passive sensor nodes typically
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uses more power than a cluster of active wireless sensor nodes. This may be due to hardware protocols
of the hardware platform on which the sensor node agents are deployed. When comparing static
and dynamic clusters of sensor nodes, dynamic clusters have lower lost signal ratios, corroborating
the simulation results in [6]. The experiments in this study show the types of results to expect when
implementing embedded agents on a low-powered hardware platform as opposed to simulations.

10. Conclusions and Future Work

In this study, an embedded multi-agent systems-managed wireless sensor network was presented.
A novel architecture was proposed in which several agents are embedded in each sink node to manage
clusters in a distributed fashion, and one agent is embedded in each sensor node. Active or query-based
and passive or advertisement-based wireless sensor node types are compared. Two application-specific
examples are also presented in this paper that illustrate the type of industrial WSN referenced in this
paper. The first example, which is an example from a previous agent-based WSN, is an agent-based
WOSN for the oil and gas refining process. The second example is a novel embedded agent-based WSN
for a tank storage facility, which requires the plug and play characteristics of the agent-embedded WSN.

This paper also presents a series of three experiments. The results of these experiments show
that increasing the size of a cluster of sensor nodes increases the lost signal ratio and increases the
power required for each sensor node, which coincides with the results of many previously performed
experiments. The results also show that active or query-based wireless sensor nodes produce a lower
lost signal ratio and require lower amounts of power than passive or advertisement-based wireless
sensor nodes. Most importantly, the experiments show that dynamic clusters of wireless sensor nodes
do not have a higher lost signal ratio or require more power than static WSN clusters. This is important
as the dynamic characteristic is required for the WSN in the application-specific examples presented in
this paper.

One of the questions that arises from this study is if there is a link between the lost signal ratio and
power consumption. While this may be caused by the higher amount of time in the “transmission” state,
further experimentation to determine if lowering the lost signal ratio lowers the power consumption
of WSNs should be conducted. Another question that may be considered is whether the embedded
agent architecture performs better than a similar cloud-based architecture. Further experimentation
comparing embedded and cloud-based architectures for managing and controlling WSNs will need to
be conducted.
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