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Abstract: In this paper, we propose an optimal cooperative sensing technique for cognitive radio to
maximize sensing performance based on energy detection. In most spectrum sensing research, many
cooperation methods have been proposed to overcome the sensitivity of energy detection so that
both primary and secondary users are better off in terms of spectral efficiency. However, without
assigning a proper sensing threshold to each sensing node, cooperation may not be effective unless the
received average primary user signal-to-noise ratio (SNR) is identical. We show that equal threshold
energy detection severely degrades sensing performance when cooperative sensing nodes experience
diverse average SNRs, and it is not unusual for even single-node sensing to be better than cooperative
sensing. To this end, based on the Neyman–Pearson criterion we formulate an optimization problem to
maximize sensing performance by using optimized thresholds. Since this is a non-convex optimization
problem, we provide a condition that convexifies the problem and thus serves as a sufficient optimality
condition. We find that, perhaps surprisingly, in all practical cases one may consider this condition
satisfied, and thus optimal sensing performance can be obtained. Through extensive simulations, we
demonstrate that the proposed technique achieves a globally optimal solution, i.e., it maximizes the
probability of detection under practical operating parameters such as the target probability of false
alarm, different SNRs, and the number of cooperative sensing nodes.

Keywords: cognitive radio; cooperative sensing; energy detection; globally optimal threshold;
hard decision

1. Introduction

We are entering the era of a fourth industrial revolution where both hyper-connectivity and
digital automation enable a large number of different types of economic entities to share information
quickly for optimal decision-making based on industrial IoT sensor networks. This wave has driven
5G New Radio (NR) development to provide greater capacity and higher reliability for tactile internet,
artificial intelligence (AI), and smart factory applications, etc. Since intelligent and efficient ways of
utilizing scarce spectrum are required to meet the huge demand for increasing capacity, new, emerging
technologies for dynamic spectrum management have been developed to improve spectral efficiency.

Cognitive radio (CR) is a promising form of technology for combating spectrum scarcity in
next-generation wireless networks. A group of secondary users (SUs) can exploit the unused spectrum
bands of a primary user (PU) in an opportunistic manner as long as no harmful interference is
guaranteed [1]. Recent worldwide migration from analog to digital television broadcasting has expedited
sharing of underutilized spectrum bands called TV white space (TVWS) [2]. For example, standards
such as IEEE 802.22 and IEEE 802.11af opportunistically utilize TVWS, and regulatory bodies such as
the FCC and OFCOM have updated rules for TVWS and other unlicensed bands [3]. TVWS-based CR
was also introduced to enable smart grid communications in rural areas because of the good propagation
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properties of TVWS [4]. LTE-CR was proposed as a cellular application to extend the LTE time-division
duplex (TDD) to support TVWS [5]. In addition to TVWS, 3GPP has developed LTE in an unlicensed
spectrum so that LTE can harmoniously coexist with other wireless systems in a 5-GHz spectrum [6].

To support CR, one of the key roles of SUs is to sense the PU with high detection probability
and evacuate the PU’s band immediately. There are several detection techniques, such as energy
detection, matched filter detection, cyclostationary detection, and compressive sensing, [7]. Among
these techniques, energy detection of [8] has been widely adopted in practice because it has low
complexity and does not require prior knowledge of the PU [9]. However, since sensing performance
of energy detection can deteriorate when the signal-to-noise ratio (SNR) is low [10], many cooperative
sensing techniques have been proposed to overcome performance degradation [11–24].

Specifically, to maximize sensing performance, a series of cooperation algorithms have been
investigated in terms of sensing duration, the number of cooperative sensing nodes, and thresholds of
energy detection [11–18]. In [11], sensing-throughput tradeoff depending on sensing duration was
investigated. The author of [12] jointly optimized sensing time and reporting time to maximize
throughput based on maximal ratio combination (MRC)-based soft decision. The fundamental
performance limits of the cooperative sensing using energy detection were analyzed by considering
the unlimited number of sensing nodes, and it has been shown that the OR rule achieves zero false
alarm probability for any given target detection probability irrespective of the received PU SNR [13].
In [14], the authors proposed optimal counting rules of hard decision under the Neyman–Pearson
criterion and Bayesian criterion, respectively. In [15], both sensing duration and fusion rule were jointly
optimized to maximize the throughput of SUs under the constraint of the probability of detection.
In [16,17], an optimal k was investigated for the so called k-out-of-N rule, and then the same threshold
for all sensing nodes is optimized by a given k. The authors of [18] proposed an on/off reporting
mechanism to achieve robust cooperative sensing over an imperfect reporting channel as well as
graceful degradation against sensor failures.

However, the existing work [11–18] assumed that the average SNR is identical for all cooperative
sensing nodes, and so is the sensing threshold. This assumption may not be realistic in practical
systems. In addition to multipath fading and shadowing effects, there are several practical factors for
heterogeneous cooperative sensing, such as geographically different positions (indoor or outdoor),
inherent RF front-end sensitivity, obstacles, temperature variations, and so on. Thus, cooperative
sensing performance highly depends on the heterogeneity of the received PU SNRs at individual
SUs. Although previous work, such as [19], considered heterogeneous average SNRs for cooperative
sensing nodes, all sensing nodes still used the same sensing threshold.

In addition, the authors in [20–24] considered optimizing thresholds of cooperative sensing nodes
based on different average SNRs. In [20], an iterative threshold selection algorithm was proposed
to determine whether a specific sensing node can participate in cooperation or not, based on its
contribution to detection performance. The work of [21] proposed a weighted decision rule by
jointly optimizing the test threshold of likelihood-ratio and the local threshold of SUs. Although
heuristic methods of optimizing two thresholds at a time did not guarantee the achievement of global
optimal solutions, the proposed algorithm provided the highest throughput results over the non-jointly
optimized schemes [21]. In [22,23], a heuristic algorithm was proposed to achieve suboptimal thresholds
at cooperative sensing nodes by minimizing false alarm probability subject to target missed detection
probability. Different fusion rules with iterative algorithms were proposed to decrease the total error
detection probability for both single channel and multichannel cooperative sensing [24].

However, even though the existing literature [20–24] has investigated distinct thresholds for
cooperative sensing nodes according to their own average SNRs, they are suboptimal and theoretically
achieving the optimal detection performance still remains unsolved. Moreover, previous heuristic
approaches would suffer from high computational complexity as the number of cooperative sensing
nodes increases [20–24]. In this regard, we are motivated to theoretically develop a globally optimal
solution for energy detection under a heterogeneous PU SNR environment.
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We summarize our key contributions as follows. Based on the Neyman–Pearson criterion we
formulate an optimization problem to maximize the sensing performance when a hard decision is used
under different average SNRs. It is found that this is a non-convex optimization problem, and thus we
provide a condition that convexifies the original problem. We then verify that all practically meaningful
parameters satisfy the convexifying condition. Thus, our solution guarantees the maximized detection
performance of cooperative sensing. Considering that using a single common threshold severely
degrades the sensing performance when cooperative sensing nodes experience different average SNRs,
our solution is promising. Our extensive simulations show that a globally optimized solution achieves
an improvement of several orders of magnitude improvement under practical operating parameters
such as the target probability of false alarm, different average SNRs, and the number of cooperative
sensing nodes.

The rest of this paper is organized as follows. In Section 2, the CR system model and problem
formulation are introduced. Cooperative sensing with optimal thresholds is presented with a sufficient
optimality condition in Section 3. We present numerical results under practical operating parameters
in Section 4. Finally, we draw our conclusions in Section 5.

2. System Model

In this section, we provide a scenario of cooperative sensing operation in the CR system. Using
energy detection and its sensing performance metrics, we formulate an optimization problem.

2.1. Cognitive Radio System

Figure 1 illustrates a scenario for CR system with cooperative sensing in wireless networks. A SU
can temporally and spatially utilize the licensed or unlicensed spectrum band of the PU. To avoid
possible interference to the PU, the CR system requires SUs to simultaneously perform in-band sensing,
which means SUs periodically sense the operating spectrum band to verify whether the PU appears
or not. In addition to in-band sensing, out-of-band sensing implies that SUs sense the non-operating
bands and maintain a list of available bands. Even though our work is applicable to both in-band
and out-of-band sensing purposes, hereafter we consider in-band sensing. When SUs finish sensing,
they send their own sensing results to a fusion center so that it combines all local results and makes
a final decision about the presence of PUs. We assume that SUs honestly report their local decisions to
the fusion center via common control channels [11–17], e.g., an individual reporting channel is reliable
and error-free for simplicity [19–24].

PU

SU(1)

SU(2)

SU(3)

SU(N)

Fusion center
Local 

Decisions

Final

Decision

r1

r2

r3

rN

Figure 1. A scenario for cooperative sensing of cognitive radio system in wireless networks; there is
a primary user, cooperative secondary users, and a fusion center. SU: secondary user.
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2.2. Energy Detection and Sensing Performance Metrics

Let τ be a continuous value denoting sensing duration. Under the absence of PU (hypothesisH0),
the received signal at a sensing node is given by

r(t) = n(t),

where n(t) is the noise power at time t. Under the presence of PU (hypothesisH1), we have

r(t) = h(t) · s(t) + n(t),

where s(t) is the received PU signal and h(t) is the channel gain at time t. We assume that n(t) is white
Gaussian noise with two-sided power spectral density N0 (AS I), and sensing duration τ is short so
that the channel can be assumed to be static (AS II). According to [8], the test statistic using energy
detection is given by

T =
1

N0

∫ τ

0
|r(t)|2dt.

Let γ be the received SNR given by γ = P
N0B , where P denotes the received power of PU at

a sensing node, and B is the channel bandwidth. Under the assumptions of AS I and AS II, the received
energy of PU signal is simply Pτ. When PU is absent, T has the central chi-square distribution with the
degrees of freedom equal to 2τB. When PU is present, T has the non-central chi-square distribution
with 2τB degrees of freedom and non-centrality parameter δ = Pτ

N0
equal to γτB. Based on the central

limit theorem (CLT), when 2τB is more than 250, T under two conditions can be considered as Gaussian
random variables [8].

T ∼
{
N
(
2τB, 4τB

)
, underH0,

N
(
2τB + γτB, 4τB + 4γτB

)
, underH1,

(1)

where N
(
m, σ2) represents the normal distribution with the mean m and the variance σ2. From now

on, we assume that 2τB is large enough so that the CLT condition is met, and thus T is a Gaussian
random variable.

Suppose that we have N cooperative sensing nodes using energy detection. Let εi be the
detection threshold and Pd

i be the probability of detection, i.e., Pd
i = P (Y ≥ εi|H1) at a sensing

node i ∈ {1, · · · , N} [11,13]. Then, we have

Pd
i (εi, γi, τ, B) = Q

(
εi −

(
2τB + γiτB

)
√

4τB + 4γiτB

)
, (2)

where

Q(t) = 1√
2π

∫ ∞

t
exp

(
−u2

2

)
du. (3)

Let P f
i denote the probability of false alarm, i.e., P f

i = P (Y ≥ εi|H0) at a sensing node
i ∈ {1, · · · , N} [11,13], and we have

P f
i (εi, τ, B) = Q

(
εi − 2τB√

4τB

)
. (4)

We notice that there is no PU signal present underH0, and then P f
i is independent of γi. However,

when h(t) is varying due to shadowing/fading, Pd
i gives the detection probability conditioned on the
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instantaneous SNR γi. In this case, the average detection probability can be derived by averaging (2)
over fading statistics.

P̃d
i =

∫
Q
(

εi −
(
2τB + γiτB

)
√

4τB + 4γiτB

)
fγ(γi)dγi, (5)

where fγ(γi) is the probability distribution function (PDF) of SNR under fading/shadowing and its
mean value is γ̄i [25]. In addition to the aforementioned probabilities, the probability of miss detection
is Pm

i = 1− Pd
i , and the probability of correct rejection is Pc

i = 1− P f
i at a sensing node i ∈ {1, · · · , N}.

During cooperative sensing, a PU is assumed to be either present or absent. Although multiple PUs can
arrive or depart randomly, this assumption is still reasonable based on the long time average scenario
of observed PU behavior. One may refer to [26,27] to optimize both the sensing time and sensing
period (duty cycle) so that instantaneous sensing performance improves under random arrivals of
multiple PUs in cooperative sensing.

2.3. Problem Formulation of Cooperative Sensing

We investigate optimal sensing thresholds for sensing nodes using hard decision. Even though
use of the soft decision achieves better performance than the hard decision, the burden of reporting
overhead hinders the use of soft decision [28]. One may want to directly consider the k-out-of-N rule,
but finding an globally optimal solution for the k-out-of-N rule is not very tractable unless the same
average SNR value is assumed for cooperative sensing scenarios [16]. Moreover, [21–23] pointed out
the very high computational complexity and impracticality of finding suboptimal k. Thus, we first
focus on AND and OR rules in this paper. The fusion center using the AND rule decides that PU is
present when all cooperative sensing nodes report PU presence to the fusion center [9]. Then, the final
detection and the final false alarm probabilities at the fusion center are simply given by

Pd =
N

∏
i=1

Pd
i ,

P f =
N

∏
i=1

P f
i .

Based on the Neyman–Pearson criterion, our aim is to maximize the final detection probability Pd

subject to the target final false alarm probability P f , which is formulated as follows:

max
εi ,i∈{1,··· ,N}

Pd =
N

∏
i=1

Pd
i ,

s.t. P f =
N

∏
i=1

P f
i ≤ P f . (6)

The fusion center using the OR rule decides that the PU is present when any cooperative sensing
nodes report PU presence to the fusion center [9]. Then, the final detection and the final false alarm
probabilities at the fusion center are simply

Pd = 1−
N

∏
i=1

(
1− Pd

i

)
,

P f = 1−
N

∏
i=1

(
1− P f

i

)
.
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Then, we can also use the OR rule to maximize the final detection probability Pd subject to the
target final false alarm probability P f as follows:

max
εi ,i∈{1,··· ,N}

Pd = 1−
N

∏
i=1

(
1− Pd

i

)
,

s.t. P f = 1−
N

∏
i=1

(
1− P f

i

)
≤ P f .

Considering the symmetric mathematical structure of Pm
i and Pc

i , an alternative optimization
problem is formulated as follows:

min
εi ,i∈{1,··· ,N}

Pm =
N

∏
i=1

Pm
i ,

s.t. Pc =
N

∏
i=1

Pc
i ≥ Pc,

where Pc is according given by 1− P f .
If the globally optimal solution can be derived from the AND rule of (6), our optimization

approach is also applicable to the OR rule because of its symmetric mathematical structure. AND and
OR rules are two opposite extremes. For comparison, the existing literature [7,11,13,28] have shown
that dominant performance regions of both rules highly depend on system parameters such as τ, γ̄, B,
and P f for different purposes. Herein we mainly focus on the existence of globally optimized sensing
thresholds. Therefore, in the rest of paper, our problem formulation of cooperative sensing mainly
exploits the mathematical structure of the AND rule so that we can provide a globally optimal solution
to maximize the detection performance of cooperative sensing under different average SNRs.

3. Cooperative Sensing with Optimal Thresholds

3.1. Limitation of Equal Threshold—A Motivating Example with Two Sensing Nodes

To better understand the effect of sensing thresholds, in this section we first verify the detection
performance with both equal and optimal thresholds when only two cooperative sensing nodes
experience different average SNRs.

Example 1. Since the same average SNR for all sensing nodes in [11,13–17] may not be realistic in practice
because of spatial diversity, herein we use different average SNRs in cooperative sensing [19–24]. As a motivating
example, Figure 2 shows the receiver operating characteristic (ROC) curves under four different scenarios: the
sensing performance of a single node sensing with the worst and the best average SNRs (CASE I and CASE II)
as well as that of both equal and optimal thresholds under different average SNRs (CASE III and CASE IV).
To obtain the equal threshold ε for two cooperative sensing nodes [19], the P f

i at individual sensing node is simply

given by
√

P f from (6), and then ε is accordingly given by
√

4τBQ−1
(√

P f
)
+ 2τB from (4). Interestingly,

compared to a single node sensing with a higher SNR (−12 dB), the sensing performance of cooperative sensing
with equal threshold is even worse, and thus cooperation is not beneficial at all. To overcome the degradation
of the detection performance, we assign the optimal threshold to each sensing node based on an exhaustive
search for illustrative purposes. By doing so, optimal thresholds can improve the sensing performance. Since an
exhaustive search is not suitable for a large number of sensing nodes, in Section 3.2, we further develop a convex
optimization algorithm to achieve optimal thresholds. When many sensing nodes cooperate, we are also interested
in knowing how much cooperative gain is expected by using globally optimized sensing thresholds.
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CASE I) a single node sensing with -15 dB

CASE II) a single node sensing with -12 dB

CASE III) cooperative sensing with equal threshold

CASE IV) cooperative sensing with optimal thesholds

Figure 2. Receiver operating characteristic (ROC) curves of cooperative sensing with two sensing
nodes; node 1 with −15 dB average signal-to-noise ratio (SNR) and node 2 with −12 dB SNR.

Example 2. In Figure 3, we verify how the difference of average SNRs affects the detection performance of
cooperative sensing. In this example with two sensing nodes, we vary the average SNR of one sensing node and
fix that of the other sensing node. For the equal threshold case, we notice that the effective range of the average
SNR is very limited. However, using optimal thresholds alway outperforms other cases regardless of the average
SNR difference. To this end, along with the previous work [19–24], we are motivated to find out the globally
optimal solution rather than suboptimal solutions. We will see that cooperative sensing dramatically (by several
orders of magnitudes) improves sensing performance under practical operating parameters such as the target
probability of false alarm, different average SNRs, and the number of cooperative sensing nodes.
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Cooperative sensing with optimal thresholds

Cooperative sensing with equal threshold

Sensing node 1 alone, different average SNRs

Sensing node 2 alone, -15 dB (always fixed)

The limited SNR range for
equal threshold cooperation

Figure 3. The detection performance for a single and two cooperative sensing cases when the average
SNR of the sensing node 1 varies from−20 dB to−10 dB and that of the sensing node 2 is fixed at−15 dB.
We notice that the effective range of the average SNR is very limited for the equal threshold case.



Sensors 2017, 17, 2111 8 of 15

3.2. Cooperative Sensing with Optimal Thresholds

In solving (6), the individual sensing threshold for sensing node i is εi =
√

4τBQ−1
(

P f
i

)
+ 2τB

by (4). Then, we can use P f
i as optimization variables instead of εi, and rewrite the optimization

problem (6) by using (2) for analytical tractability:

max
P f

i ,i∈{1,··· ,N}

N

∏
i=1
Q
(

1√
1 + γi

(
Q−1(P f

i
)
− γi

√
τB

2

))
,

s.t.
N

∏
i=1

P f
i ≤ P f . (7)

With one further step, we define the normalized threshold xi ,
εi−2τB√

4τB
fromH0 of (1). Then, it can

be easily drawn from (4) such that xi = Q−1
(

P f
i

)
.

After taking the logarithm of (7), the problem is equivalent to the following optimization problem:

max
xi , yi , i∈{1,··· ,N}

N

∑
i=1

logQ (yi) ,

s.t. yi =
1√

1 + γi

(
xi −

γi
√

τB
2

)
,

N

∑
i=1

logQ (xi) ≤ log P f , (8)

where yi is introduced as an auxiliary variable. The convex problem has three requirements:
the objective function must be concave for the maximization problem; the equality constraint functions
must be affine; and the inequality constraint convex functions must be non-positive [29]. Note that
although the objective function of (8) is concave, (8) still remains a non-convex optimization problem.
This is because when we make the inequality constraint functions convex, it becomes non-negative
which cannot satisfy a standard form of convex optimization. Thus, the problem cannot be posed as
convex optimization [29]. Hence, we now try to find the condition that can convexify the problem as
presented in the following proposition.

Proposition 1. Suppose that observations of cooperative sensing nodes follow the normal distribution as in (1)
with different SNR γi. Then, based on the Neyman–Pearson criterion, (8) can be convexified if

R (xi) + xi ≥
1√

1 + γi
(R (yi) + yi) , ∀ i ∈ {1, · · · , N} , (9)

where a function R(t) is defined as R(t) , Q′(t)
Q(t) .

Proof. See Appendix A.

Remark 1. Note that Proposition 1 serves as a sufficient optimality condition. As long as the sufficient
optimality condition is satisfied, the problem can be convexified so that a globally optimal solution can be obtained.

We notice that the sufficient optimality condition may not always hold for ∀xi ∈ R. However,
by considering all the practically meaningful scenarios, we rigorously verify that as long as P f

i is
on [ε, 1− ε] where ε is infinitesimally small and sensing observations follow the normal distribution,
the sufficient optimality condition holds so that a globally optimal solution is guaranteed in cooperative
sensing, as described in Examples 3 and 4.
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Example 3. To investigate the practicality of Remark 1, in Figure 4 we plot both the left-hand side (LHS) and
the right-hand side (RHS) of (9) with τ = 1 ms and B = 6 MHz for various PU SNR γi. As can be seen, LHS
is greater than RHS, and thus (9) holds for ∀xi ∈ [−10, 10]. Recall that xi is a normalized version of εi that
determines the false alarm probability, i.e., P f

i = Q (xi) and xi has a region of interest depending on P f
i . Ideally,

P f
i should be any value on [0, 1]. We notice that when (9) holds, the corresponding P f

i covers almost all values

on (0, 1). In this example, P f
i is in the interval [ε, 1− ε] where ε ' 7.620× 10−24, and thus it is obvious that a

set of xi satisfying (9) is a super set of the practical region of interest. In Figure 5, we also show that (LHS-RHS)
is positive in (9). Note that although the gap between LHS and RHS depends on the range of SNR, the inequality
condition itself still holds as long as P f

i is on [ε, 1− ε] regardless of SNR. For example, even for the worst case of
zero SNR, the condition (9) holds because LHS becomes equal to RHS.
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Figure 4. Under practical operating parameters, the y-axis is used to depict value for both left- and

right-hand sides of inequality (9) when xi = Q−1
(
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varies. Correspondingly, the table is used to

represent value of P f
i . LHS: left-hand side; RHS: right-hand side.
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Figure 5. Inequality condition (9) in Proposition 1 holds for practical operating parameters.
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Example 4. One may want to verify practicality of Remark 1 with other values of τ and B. Thus we also
consider the worst case condition such that 2τB is small and just satisfies the minimum CLT condition of (1),
e.g., 2τB ' 250. We confirm that when xi ≥ −5, (9) also holds and the corresponding P f

i spans in the
interval (0, 1 − ε′] where ε′ ' 2.867 × 10−7. Thus, although the problem is a non-convex optimization,
it can be convexified with Proposition 1 in practice, and a globally optimal solution can be derived as in the
following subsection.

3.3. Convex Optimization

Under the region of satisfying (9), now we can obtain the globally optimal solution by applying
the standard convex optimization procedure. Let v = (v1, · · · , vN), and the Lagrangian function
of (A1) is

L(v, λ) =
N

∑
i=1

logQ
(

ai

(
(logQ)−1(vi)− γ̃i

))
+ λ

(
log P f −

N

∑
i=1

vi

)
,

where λ is the Lagrange multiplier. The KKT condition for this problem consists of four parts, which
are a primal feasible, dual feasible, complementary slackness, and zero gradient:

N

∑
i=1

v∗i − log P f ≤ 0,

λ∗ ≥ 0,

λ∗
(

N

∑
i=1

v∗i − log P f

)
= 0,

Q′
(
ai
(
(logQ)−1(v∗i )− γ̃i

))
Q
(
(logQ)−1(v∗i )

)
ai

Q
(
ai
(
(logQ)−1(v∗i )− γ̃i

))
Q′
(
(logQ)−1(v∗i )

) − λ∗ = 0, i = 1, · · · , N. (10)

Since there is one Lagrange multiplier λ and also vi can be expressed by a function of λ according
to (10), one can obtain the optimal (v∗, λ∗) by adjusting λ based on some iterative methods such as
bisection method and Newton’s method. The details of the convex optimization algorithm are shown
in Algorithm 1 based on the bisection method.

Algorithm 1 : Find the globally optimal v∗ and λ∗ for (10).

Input: Given N, τ, B, P f , and γi for all i.

1: Set initial λmin and λmax.
2: Calculate ai and γ̃i for all i.
3: while |λmin − λmax| > ε do
4: λ = (λmin + λmax)/2.
5: Given λ, solve (10) to compute vi for all i.

6: If ∑N
i=1 vi − log P f > 0, then set λmin = λ, else set λmax = λ.

7: end while

Output: Calculate P f
i (and also εi), and obtain the maximum Pd in (6) and (7).

4. Numerical Results

In this section we present the numerical results with optimal cooperative sensing. For numerical
results, the sensing duration τ is set at 1 msec and the channel bandwidth B is set at 6 MHz, both of
which satisfy the test statistic of the sensing node in (1). The extensive numerical results are mainly
based on the AND rule to verify the effect of optimal thresholds on both miss detection and false alarm
performances so that no harmful interference as well as high spectral efficiency are guaranteed for
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PU and SUs, respectively. As aforementioned in Section 2.3, one may easily verify that our approach
can be extended to the OR rule in a similar manner because of its symmetric mathematical structure
as with the AND rule. Liu et al. [24] proposed a local optimal solution using iterative-threshold
method, which is effective when SNRs are different. When average received SNRs are same for all
cooperative sensing nodes, their sensing thresholds should be same [24]. However, when SNRs are
same, the method in [24] cannot achieve the performance of the uniform threshold method because
of its inherent limitation of iteration procedure. By contrast, our proposed algorithm can achieve
a globally optimal solution whether SNRs are same or not. For the identical SNR case, we also verify
that the uniform threshold method exactly matches our globally optimal solution.

In Figure 6, ROC curves are presented for both a single node sensing and cooperative sensing with
seven nodes, i.e., N = 7. Each cooperative sensing node experiences its own average received SNR γ̄i,
which is randomly selected in the interval [−10,−16] dB. We also set the γ̄i of a single node sensing to
be either −10 or −16 dB to represent the best and the worst case scenarios, respectively. As can be seen,
although cooperative sensing with equal threshold (-�-) is obviously better than that of a single node
sensing with γ̄i = −16 dB (-@-), it is interesting to observe that cooperative sensing (-�-) can be worse
than single node sensing with γ̄i = −10 dB (-◦-). Namely, cooperation does not necessarily guarantee
better sensing performance unless the detection thresholds are properly set. However, cooperative
sensing with optimal thresholds (-C-) significantly improves the sensing performance. Specifically, when
compared to cooperative sensing with equal thresholds, under the target P f is 0.01, and Pm is reduced
from 30% to 2% (and thus the corresponding Pd is improved from 70% to 98%).
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Cooperative sensing with optimal thresholds, N=7

Figure 6. Receiver operating characteristic (ROC) curves for a single node sensing and cooperative
sensing; different SNRs are considered in cooperation with both an equal threshold and
optimal thresholds.

Next, to investigate the impact of N on optimal cooperative sensing performance, we compare the
miss detection probabilities Pm of the equal threshold method and the proposed optimal threshold in
Figure 7. As can be seen, the more sensing nodes participate in cooperation, the lower the achieved Pm

is, in both cases. However, the slope of optimal threshold is much steeper than that of equal threshold.
Furthermore, the miss detection probability is reduced by more than 100 times when N is 30 or more.
Since the improvement is roughly proportional to N, we conclude that using optimized thresholds
is essential for a large scale cooperative sensing, e.g., without optimal thresholds, many cooperative
sensing nodes possibly lead to stagnant sensing performance.
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Figure 7. The probability of miss detection for two different thresholds methods are shown with the
increasing number of cooperative sensing nodes; the target P f = 1%.

In Figure 8, we investigate the impact of the mean of different average SNRs E[γ̄i] on Pm. When
it is relatively low (below −17 dB), we do not observe a noticeable difference in Pm between equal and
optimal thresholds. However, as it grows, optimal thresholds can achieve much lower Pm than that of
equal thresholds. For example, a miss detection probability as low as 10−5 times can be achieved when
E[γ̄i] is −10 dB.
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Figure 8. The probability of miss detection for two different thresholds methods are shown when the
mean of different average SNRs of cooperative sensing nodes increases; the target P f = 1% and N = 7.

5. Conclusions

In this paper we proposed an optimal cooperative sensing solution using energy detection when
sensing nodes experience different PU SNRs. Specifically, the fusion center and its cooperative sensing
nodes used the hard decision under the Neyman–Pearson criterion. Despite the non-convexity of
the problem, we provided a sufficient optimality condition that interestingly holds in the practical
region of interest, and thus a globally optimal solution was obtained. Furthermore, utilizing optimal
thresholds provides a gain of several orders of magnitude of cooperation in terms of miss detection
probability compared with the conventional equal threshold under various scenarios of the target
probability of false alarm, the number of cooperative sensing nodes, and the different average SNRs.
Some practical extensions of the proposed scheme may include topics such as imperfect reporting
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channels, reduced reporting overheads, and energy-efficient sensing techniques in more general hard
and soft decisions.
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Appendix A

Proof of Proposition 1. For notational simplicity we define ai ,
1√

1+γi
and γ̃i ,

γi
√

τB
2 . Since (8) is

not convex optimization, we again define vi , logQ (xi) to make the inequality constraint of vi form a
convex set. Using xi = (logQ)−1(vi), the optimization in (8) becomes

max
vi ,i∈{1,··· ,N}

N

∑
i=1

logQ
(

ai

(
(logQ)−1(vi)− γ̃i

))
,

s.t.
N

∑
i=1

vi ≤ log P f . (A1)

Here, we define a function f (t) as

f (t) , Q
(

ai

(
(logQ)−1(t)− γ̃i

))
.

Then, for the objective function of (A1), the pointwise sum ∑N
i=1 log f (vi) is concave if f (vi) is

a log-concave function of vi for all i [29]. The log-concavity property of f (vi) needs to hold for all i,
so we now omit the subscript i for simplicity. To check whether f (v) is log-concave or not, we use the
log-concave condition, e.g., the inequality is f (v) f ′′(v) ≤ f ′2(v) [29].

Although one may directly obtain the first and second derivatives of f (v) with respect to v, it is
quite difficult to deal with (logQ)−1(v) in f (v). Interestingly, we notice that it is possible to express
both f ′(v) and f ′′(v) as a function of x. Once we use a function defined as z(t) , Q(a(t− γ̃)), then
f (v) = z(x(v)) = Q(a(x(v)− γ̃)), where x(v) = (logQ)−1(v). To obtain f ′(v) and f ′′(v), based on
the chain rule d f (v)

dv = dz(x(v))
dv = dz(x)

dx ·
dx
dv as well as the derivative formula (u−1)′(v) = 1

u′(u−1(v)) for
any analytic function u : R→ R [30], we have

dx
dv

=
Q(x)
Q′(x)

,

which is only a function of x. Thus, we have f ′(v) as follows:

f ′(v) = aQ′ (a (x− γ̃))
Q(x)
Q′(x)

. (A2)

In a similar way, we also have f ′′(v) as follows:

f ′′(v) = a2Q′′ (a (x− γ̃))
Q(x)2

Q′(x)2 + aQ′ (a (x− γ̃))
Q(x)
Q′(x)

− aQ′ (a (x− γ̃))Q′′(x)
Q(x)2

Q′(x)3 . (A3)
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Applying the log-concave condition f ′′(v) f (v) ≤ f ′2(v) with (A2) and (A3), the following long
inequality condition is given by(

a2Q′′ (a (x− γ̃))
Q(x)2

Q′(x)2 + aQ′ (a (x− γ̃))
Q(x)
Q′(x)

− aQ′ (a (x− γ̃))Q′′(x)
Q(x)2

Q′(x)3

)
·Q (a (x− γ̃)) ≤ a2Q′ (a (x− γ̃))2 Q(x)2

Q′(x)2 . (A4)

After several steps of manipulations withQ′′(t) = t√
2π

exp
(
−t2

2

)
= −tQ′(t) by (3), the inequality

condition in (A4) boils down to:

x(1− a2) + a2γ̃ +
Q′(x)
Q(x)

≥ aQ′ (a (x− γ̃))

Q (a (x− γ̃))
.

Finally, using a function R(t) = Q′(t)
Q(t) , the inequality condition is given by

R(x) + x ≥ a (R (a (x− γ̃)) + a(x− γ̃)) .

With notations of xi and yi, we obtain

R (xi) + xi ≥
1√

1 + γi
(R (yi) + yi) , ∀ i ∈ {1, · · · , N} ,

which completes the proof.
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