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Abstract: Environment perception is essential for autonomous mobile robots in human-robot
coexisting outdoor environments. One of the important tasks for such intelligent robots is to
autonomously detect the traversable region in an unstructured 3D real world. The main drawback
of most existing methods is that of high computational complexity. Hence, this paper proposes a
binocular vision-based, real-time solution for detecting traversable region in the outdoors. In the
proposed method, an appearance model based on multivariate Gaussian is quickly constructed
from a sample region in the left image adaptively determined by the vanishing point and dominant
borders. Then, a fast, self-supervised segmentation scheme is proposed to classify the traversable
and non-traversable regions. The proposed method is evaluated on public datasets as well as
a real mobile robot. Implementation on the mobile robot has shown its ability in the real-time
navigation applications.
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1. Introduction

In recent decades, the robotics community has made great efforts to develop mobile robots
with complete autonomy. Traversable region detection is one of the fundamental problems for
such autonomous navigation systems. Numerous vision-based approaches have been proposed for
structured road detection. In recent years, some researchers have attempted to tackle more challenging
unstructured road conditions where unstructured roads are referred to the roads that have arbitrary
surfaces and various shapes without painted markers or distinguishable borders [1]. However, due to
the demand of good tradeoff between time efficiency and accuracy, it is still challenging for a ground
robot to autonomously locate a variety of traversable areas and safely navigate itself with respect to
human-defined rules (i.e., keep off the non-road area) in real-time [2].

Kong et al. [3] proposed a method to decompose the detection process into two steps: vanishing
point estimation and road segmentation based upon the detected vanishing point. This approach could
be used to detect various types of roads. However, it was limited by high computational complexity
of the vanishing point estimation. Many algorithms have attempted to speed up the procedure of
vanishing point estimation. Moghadam et al. [4] proposed an optimal local dominant orientation
method using joint activities of only four Gabor filters and an adaptive distance-based voting scheme
for estimation of the vanishing point. Miksik [5] investigated a method of expanding Gabor wavelets
into a linear combination of Haar-like functions to perform fast filtering, and using superpixels in the
voting scheme to speed up the process. Besides the vanishing point based road detection methods,
many methods have directly differentiated the road pixels from the background using appearance
models [1,6–9]. Tan et al. [6] adopted multiple color histograms to capture variability of the road surface
and a single-color histogram to model the background in RGB space. Ramstrom and Christensen [7]
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proposed to construct Gaussian mixture models (GMMs) for the road and background using UV color,
normalized red and green, and luminance components. These methods required the color models to
be trained off-line and thus could not be adaptive to the appearance variations in real road conditions.
There are also several methods building the model directly from sample regions in the input image.
Álvarez and Ĺopez [8] employed normalized histogram of the surrounding area of a set of seed pixels
at the bottom part of the image to build the road model using illuminant invariance space. Similarly,
Lu [9] selected a region from the bottom part of the input image as road masks to model the road
and the background combining complementary color features, such as RGB, Lab and SILTP (Scale
Invariant Local Ternary Patterns) texture feature. The performance of these methods depended on
the quality of constant sample regions that might be a false road sample area. Instead of selecting a
constant sample area, Miksik et al. [10] used a trapezoid at the bottom and center of the image as the
initial sample region, and then refined it using the vanishing point. In recent years, different hybrid
methods have been proposed to further increase accuracy and robustness [1,11]. In [1], a sample region
was first determined using the vanishing point, the geometric and color features of road. Then a model
combining color, edge and shape features was used to detect unmarked roads. Álvarez et al. [11]
introduced road priors (geographical information) and contextual cues (horizon lines, vanishing points,
road markings, 3D scene layout and road geometry) to detect road areas in varying conditions. All of
the methods mentioned above, however, are still computationally expensive.

Most recently, Lee et al. have made efforts to reduce the computational load for online
applications [12]. In [12], to estimate the traversability in complex and unknown environments for an
autonomous vehicle, a self-supervised online learning architecture based on incremental nonparametric
Bayesian clustering was developed. This method consists of three stages: superpixel labeling with
inertial measurement unit (IMU) and wheel encoder data, incremental cluster learning, and traversable
region classification with k-nearest neighborhood. The whole algorithm could be used on a robot
platform for traversability estimation in complex and unknown environments as the authors claimed.
However, it took about 48.3 s for the incremental clustering leaning and 0.02 s for the traversabilty
estimation, which is still far from the real-time requirement of most robotics applications (e.g., at frame
rate 30 fps).

It is worth noting that deep learning methods are also popular for traversable region
segmentation [13–17]. Xiao et al. [13] presented a road detection algorithm based on structured random
forest, making use of the contextual information. The computational time of their algorithm was,
on average, 70 ms (Intel Core i5-3230 CPU@2.6GHz) for unstructured road detection. Alvarez et al. [14]
used a convolutional neural network based algorithm to learn features for road scene segmentation.
Mohan [15] developed a new deep learning architecture, deep deconvolutional neural networks,
for road parsing. This method provides one of the best results on the KITTI-Road benchmark.
Howeverm the running time was over 2 s (Multiple GPU@2.5GHz). Recently, Oliveira et al. [16]
proposed an efficient deep model for monocular road segmentation which obtained the best trade-off
between segmentation quality and runtime on the KITTI dataset. However, the runtime was still
over 80 ms (NVIDIA Titan X GPU). On the other hand, these deep learning based methods are only
capable of being implemented on high-power GPUs which are usually unavailable on a mobile robotic
platform. Thus, deep learning based methods are still very challenging for real-time applications at
interactive frame rates in a mobile robot.

In this paper, we propose a novel method of detecting traversable region for a mobile robot
from a single image in real-time without dependency on any specific hardware. A fast and robust
multivariate Gaussian model combining RGB, illumination invariant space (IIS) [18] and local binary
pattern (LBP) [19] feature is built from an adaptive sample region determined by the constraints
of vanishing point and two road borders. The segmentation could be implemented in real-time on
standard CPU equipped by an ordinary mobile robot. The main contributions of this paper are as
follows:
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• A new method is proposed to robustly estimate a vanishing point, which outperforms the
state-of-the-art considering tradeoff of time efficiency and accuracy. The vanishing point is
detected by voting of a few line segments formed with some dominant pixels rather than by
voting of all pixels in most existing methods.

• A fast, self-supervised segmentation scheme is proposed for unstructured traversable region
detection. An appearance model based on multivariate Gaussian is constructed from the sample
region adaptively determined by the vanishing point and dominant borders in the input image.
This scheme allows real-time performance on a mobile robot.

The remainder of the paper is organized as follows. The proposed method is described in detail
in Section 2. Experimental results and discussion are presented in Section 3. Finally, a conclusion is
drawn in Section 4.

2. Methods

2.1. Traversable Region Detection

Figure 1 depicts the pipeline of the proposed traversable region detection. First, texture orientation
is computed using Gabor filter with eight directions for each pixel of the input image. Secondly, instead
of directly using all the pixels to vote for the vanishing point based on their orientations, we only group
some dominant pixels with the same orientation into line segment candidates. Thirdly, the vanishing
point is estimated by voting of those line segment candidates, and a seed pixel belonging to the road
area is located through the constraints of the vanishing point and two road border candidates. Lastly,
a sample region surrounding the seed pixel is selected to model the road combining RGB, IIS and LBP
features using multivariate Gaussian such that the road can be classified from the background based
on this appearance model.
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2.2. Vanishing Point Estimation 

In this paper, Gabor filters are used to estimate local dominant orientation for each pixel because 
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Figure 1. Pipeline of the traversable region detection: (a) input image, (b) estimating texture
orientations (represented by different colors) using Gabor filters, (c) grouping dominant pixels with
the same orientation into line segment candidates (in green with a blue point), (d) estimating the
vanishing point (red circle) by the voting of line segment candidates and locating the seed pixel (blue
circle), (e) selecting a sample region surrounding the seed pixel and constructing an appearance model,
(f) classifying the pixels into traversable/non-traversable area.
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2.2. Vanishing Point Estimation

In this paper, Gabor filters are used to estimate local dominant orientation for each pixel because
of their well-known accuracy. A 2D Gabor filter for an orientation θn and radial frequency ω is defined
as follows [20],

ψω,θn(x, y) =
ω√
2πc

e−
ω2

8c2 (4a2+b2)
(eiaω − e−c2/2) (1)

where a = x cos θn + y sin θn, b = −x sin θn + y cos θn, c = π/2, ω = 2π/λ and λ is set to 4
√

2.
Let I(p) be the grayscale value of input image at p(x, y). The convolution of input image I(p)

and a bank of Gabor filters with orientation θn and radial frequency ω are calculated as,

Γθn(p) = I(p)⊗ ψω,θn

θn = (n− 1)π/N, n = 1, 2, . . . N
(2)

where N is the total number of orientations. The square norm of the complex Gabor filter response is
then computed as,

Eθn(p) = Re(Γθn(p))2 + Im(Γθn(p))2. (3)

Thus, the local dominant texture orientation θmax is defined as the orientation corresponding
to the strongest Gabor response across all the orientations. More precise angular resolution can be
achieved with a larger number of orientations (N = 36 in [3]). However, it would be at the cost of
computation complexity. In this paper, only 8 orientations are preferred to be used with a resolution
of 22.5◦. A confidence-rated technique similar to the work of Kong et al. [3] is used to provide a
confidence level for the local texture orientation θmax(p) at pixel p. Suppose E1(p) > . . . > E8(p) is the
ordered values of Gabor response for the 8 predefined orientations, the confidence in the orientation
θmax(p) is given by,

con fθmax(p) = 100(1− 1
5

6

∑
i=2

Ei(p)/E1(p)). (4)

The pixels with a confidence level smaller than a threshold Tth, i.e., con fθmax < Tth will be
discarded. In our experiments, the optimal Tth is set to 35.

It is found out that in many paved roads, those pixels contributing more to the voting share
have similar orientations and can be grouped into line segments. Therefore, we propose to first group
those dominant pixels into line segment candidates and then use these line segments to vote for the
vanishing point.

Instead of using gradient angle like the existing approach [21], the texture orientation is used
in this paper under the concept of line-support region for line segment detection. A region growing
algorithm is applied to group connected pixels (8-connected neighborhood used in this paper) with
a constant orientation tolerance into line-support region. A small orientation tolerance will result in
too narrow line-support regions while a large one tends to include too many outliers. Hence, in our
experiments, the orientation tolerance is empirically set as 22.5◦. Small line-support regions are rejected
by the following criterion [21],

nreg < − log10(11(XmYm)
5/2)/ log10(θth/180) (5)

where nreg is the number of pixels in the region, Xm and Ym are the sizes of the input image, θth is the
resolution of each orientation. Once a line-support region Ri is found, a least-square-fitting is applied
to obtain a line li. A line-support region Ri (a set of pixels) must be associated with a line segment,
actually a narrowed rectangle with its length and width. Thus, a rectangular approximation should
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be constructed to evaluate the fitted line. In this paper, we use the center of mass as the center of the
rectangle (ci,x, ci,y),

ci,x = ∑
j∈Ri

g(j)x(j)/ ∑
j∈Ri

g(j),

ci,y = ∑
j∈Ri

g(j)y(j)/ ∑
j∈Ri

g(j),
(6)

where g(j) is the gradient magnitude of pixel j. The main direction of the rectangle is set to the
direction of the fitted line li. Then, the width Li,w and length Li,l of the rectangle are set to the smallest
values so as to cover the full line-support region Ri. The fitted line li (and the line-support region Ri)
will be rejected if the rectangle is not narrow enough according to the ratio of length to width,

ri = Li,l/Li,w ≤ rth, (7)

where rth is a threshold and set to 2 in our experiment.
To further evaluate the fitted line li and select better line segment candidates for the vanishing

point estimation, more constraints need to be considered. As Figure 2 shows, after the region growing
and line fitting are applied, only a few line segments are extracted. Other less important line segments
will be further excluded and could be viewed as noise for the vanishing point estimation. Suppose the
set of line segments is {li}M and their slopes and centers are {Ki}M,

{
(ci,x, ci,y)

}
M, respectively. It is

assumed that the vanishing point is not located on the left/right edges of the image. Only those line
segments satisfying the following criterion are selected as candidates for vanishing point estimation:

γi = (ci,x − cxmean) · Ki > 0, (8)

where γi is a flag for line li, cxmean is the average of all the line centers in the x direction, cxmean =
M
∑

i=1
ci,x/M, and M is the total number of lines.
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Figure 2. An example of grouping dominant pixels into line segment candidates. Left: image overlaid
with texture orientations, 22.5◦-pink, 45◦-red, 67.5◦-cyan, 90◦-yellow, 112.5◦-green, 135◦-deep blue,
157.5◦-purple. Right: selected line segment candidates (arrowed green lines with blue points in the
middle); the one on the most left is abandoned.

Finally, a set of line segment candidates {li}M obtained above will be used to estimate the
vanishing point by a weighted voting scheme. A distance parameter Di,j is defined for voting,

Di,j = ∑
k

exp(−
Li,l + Lj,l

Ll
)di,j,k, (9)

where Li,l and Lj,l are the length of lines li and lj respectively, Ll is the sum of the length of all the lines,

Ll =
M
∑

i=1
Li,l , di,j,k is the distance from the intersection point of the lines li and lj to the line lk in the {li}M.

Thus, the intersection point pvp(xi,j, yi,j) corresponding to argmin
p(xi,j ,yi,j)

Di,j is selected as the vanishing

point. The complete algorithm for vanishing point estimation can be summarized as Algorithm 1.
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Algorithm 1. Vanishing Point Estimation

1. Compute the local dominant texture orientation {θmax(p)} at each pixel p using Gabor filter with
8 orientations

2. Group dominant pixels into line segments {li}M
2.1. Find a line-support region Ri using region growing with 8-connected neighborhood based on the

texture orientation of each pixel.
2.2. if nreg < − log10(11(XmYm)

5/2)/ log10(θth/180)

reject the line-support region Ri

else get a line li using least-square-fitting
2.3. Construct a rectangular approximation for Ri

2.4. if ri = Li,l/Li,w ≤ rth

reject the line li

else add the line li into {li}M

3. Refine the line segment candidates {li}M

for each line li

if γi = (ci,x − cxmean) · Ki > 0

keep it

else abandon it

4. Vote for the vanishing point pvp(xi,j, yi,j) using {li}M

4.1. Compute the distance parameter Di,j = ∑
k

exp(− Li,l+Lj,l
Ll

)di,j,k for the intersection point p(xi,j, yi,j)

of arbitrary lines li and lj in {li}M

4.2. Find the intersection point pvp(xi,j, yi,j) = argmin
p(xi,j ,yi,j)

Di,j i.e., the estimated vanishing point.

2.3. Sample Region Selection

Since the appearance of traversable region varies significantly, it is more plausible to build the
appearance model adaptively with the input image than with off-line training images [1]. To this
end, the selection of a sample region of the road plays an important role. The selected sample region
tends to include non-traversable region with non-adaptive methods. In our approach, the detected
vanishing point is used to adaptively define the sample region because it provides a strong clue to the
true location of road area.

In this paper, a similar technique is used as presented in Ref. [3] to find the two most dominant
borders from a set of imaginary rays that originate from the initially estimated vanishing point.
The difference is that we just roughly estimate the borders to define the sample region rather than to
segment the traversable area. Specifically, we only consider 17 evenly distributed imaginary rays with
the angle between two neighboring ones being 10◦, as is shown in Figure 3. Suppose Ai,L and Ai,R are
two neighboring regions on either side of the ray `i respectively. The color difference of Ai,L and Ai,R
for each channel of color space (RGB used in this paper) is defined as,

∆(Ai,L, Ai,R)c =
|mean(Ai,L)−mean(Ai,R)|√

var(Ai,L) + var(Ai,R)
, (10)
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where mean() and var() are the mean and variance of pixel value in the region. Let ∆(Ai,L, Ai,R) =

max
{

∆(Ai,L, Ai,R)c|c=R,G,B
}

, then the right and left borders are simply defined as the ray `j and `k to
satisfy the following expressions,

∆(Aj,L, Aj,R) = max(∆(Ai,L, Ai,R)|i=2,3,...8 ),
∆(Ak,L, Ak,R) = max(∆(Ai,L, Ai,R)|i=9,10,...16 ).

(11)

Once the right and left borders are obtained, a new imaginary ray `b is constructed to be the
bisector of ray `j and `k. A seed point pseed is found at the location of 2/3 of the bisector. Finally,
a region RS of K×K (K = 15 in our experiments) surrounding the seed is selected as the sample region,
as shown in the right image of Figure 3.
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Figure 3. Sample region selection for constructing an appearance model. (a) image with 17 evenly
distributed imaginary rays (in white) originating from the vanishing point. (b) image with dominant
borders (in red) and sample region surrounding the seed (blue circle).

2.4. Segmentation Method

In this paper, a computationally efficient model based on multivariate Gaussian with
complementary features, such as RGB, IIS and LBP, is used for segmentation. Given the sample
region, the mean feature vector µC and the covariance matrix ∑ C are first obtained using 7 channels of
each pixel,

µC = 1
ns

i=ns
∑

i=1
pC,i,

∑ C = 1
ns

i=ns
∑

i=1
pC,ipT

C,i − µCµ
T
C,

C = {r, g, b, c1, c2, c3, cLBP}.

(12)

where ns is the total number of pixels in the sample region, pC,i is the value of ith pixel for channel C
(r, g, b are for RGB space, c1, c2, c3 are for IIS space, and cLBP is for LBP).

Then, the likelihood of a pixel p belonging to the road/non-road region is measured as the
Mahalanobis distance between the pixel and the learned model,

D(p) =
√
(p− µC)

T∑ −1
C (p− µC). (13)

For all the pixels in the sample region, the initial mean µD0 and the variance σD0 are computed as,

µD0 = 1
ns

i=ns
∑

i=1
D(pi),

σD0 =

√
1
ns

i=ns
∑

i=1
(D(pi)− µD0)

2.
(14)
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A pixel pj is classified into the road region if it satisfies the following condition,∣∣D(pj)− µDk

∣∣ < λσDk (15)

where λ is a parameter depending on the location of the pixel. µDk and σDk are respectively the
mean and variance of Mahalanobis distance for all the pixels in the road region. µDk and σDk will be
adaptively updated as the new road pixel outside the sample region is found.

In this paper, the segmentation process starts from the seed pixel with region growing method
(8-connected neighborhood), as shown in Figure 4. The whole image is divided into three parts
by the border candidates and the horizontal line on which the vanishing point is located. To make
the segmentation be accurate and robust to the noise, we apply adaptive threshold by changing the
parameters λ, µDk and σDk . The parameter λ changes with the pixel location because the likelihood of
a pixel belonging to the road region varies for different areas of the image. In our experiments, λ is
set as,

λ =


3, i f pj ∈ Part I,
1, i f pj ∈ Part II,
0.5, i f pj ∈ Part III.

(16)

Furthermore, once a new road pixel pj is found and added to the road region, the parameters µDk

and σDk are updated as,

µDk = [µDk−1 ns,k−1 + D(pj)]/(ns,k−1 + 1),

σDk =
√
[σ2

Dk−1
ns,k−1 + (D(pj)− µDk )

2]/(ns,k−1 + 1),
(17)

where ns,k−1 is the total number of pixels in the current road region, specifically, ns,0 is the total number
of pixels in the sample region.
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The segmentation algorithm is summarized as Algorithm 2.
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Algorithm 2. Traversable Region Segmentation

1. Find the seed pixel pseed and the sample region RS surrounding the seed by the vanishing point.

2. For each pixel pi ∈ RS on each channel, compute the mean feature vector µC and covariance matrix ∑ C.

3. For each pixel pi ∈ RS, compute Mahalanobis distance D(pi) and then compute the initial mean µD0 and
variance σD0

4. Start segmentation from the seed pixel pseed with region growing
4.1. add pseed to the traversable region Rtrav,
4.2. for each pi ∈ Rtrav do

for each pj neighbor of pi and status(pj) 6= used do

if
∣∣∣D(pj)− µDk

∣∣∣ < λσDk

add the pixel pj to Rtrav,

update parameters µDk and σDk ,

status
(

pj

)
= used

end
end end

3. Experimental Results and Discussion

Three experiments have been conducted to evaluate the proposed method. Firstly, vanishing point
detection was tested on an image dataset for unstructured pedestrian lane detection and vanishing
point estimation (PLVP) [1]. This dataset consists of 2000 images of unstructured lanes under various
environmental conditions. Another more challenging image dataset from Ref. [3] (referred to as
Challenge dataset in the following section) was also used for more intensive tests. This Challenge
dataset contains 1003 images in total including 430 images taken along a Grand Challenge route in
Southern California desert. All the images were normalized to the same size 240 × 180 and all the
algorithms were run on a standard personal laptop (Intel i5-3230 CPU) without optimization or GPU
acceleration. Then, the traversable region segmentation was evaluated on the PLVP dataset as well
as KITTI road benchmark [22] to demonstrate the performance of the proposed method on different
unstructured scenarios. Lastly, to show the effectiveness of the method for real-time application on
robotics, the whole proposed framework was implemented on a Summit XL mobile robot platform
with a binocular sensor (baseline 7 cm) in an unstructured campus environment.

3.1. Vanishing Point Detection

To evaluate the performance of vanishing point estimation algorithm, we compare the proposed
method with two other related methods. One comparable method is a Gabor-based method presented
by Kong et al. [3]. In this method, the vanishing point was estimated directly by the voting of
all pixels based on their local orientations that were computed using Gabor filters in 36 directions.
MATLAB source codes provided by the authors of Ref. [3] were implemented for comparison. The other
comparable method is a Hough-based method proposed by Wang et al. [23]. In this method, Hough
transform was first used to extract line segments on the edge map. Then, the vanishing point was
detected by voting the intersections of line pairs. This method was implemented with C++ by us since
the source code is not publicly available.

To quantitatively assess the vanishing point estimation, the estimation error is defined
as follows [4],

δvp =
∣∣pd − pg

∣∣/L, (18)
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where pd and pg are the detected vanishing point and ground-truth respectively, L is the diagonal
length of the image.

Some examples of vanishing point estimation with different methods are shown in Figure 5.
Table 1 shows the vanishing point estimation performances both on the PLVP dataset and Challenge
dataset with different methods in terms of accuracy and runtime.
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Figure 5. Examples of vanishing point estimation with different methods. Ground truth: blue square,
proposed method: red circle, Gabor-based method [3]: yellow rhombus, Hough-based method [23]:
green triangle ((a–p) from PLVP dataset, (q–x) from Challenge dataset).

Table 1. Vanishing point estimation performance.

Method
Average Error

Times (s)
PLVP Dataset Challenge Dataset

Gabor-based method 0.0812 ± 0.1042 0.0909 ± 0.1010 11.712 a

Hough-based
method 0.1463 ± 0.1353 0.2464 ± 0.1464 0.009 b

Proposed method 0.0734 ± 0.0858 0.1023 ± 0.1085 0.021 c

a the code is in MATLAB, b,c the codes are in C++.

According to Figure 5, the Gabor-based method was easily affected by clutter pixels in an image
with a complex background (e.g., Figure 5b,e,k,m) because all pixels in a half-disk region were
directly used to vote for the vanishing point candidates. In contrast, the proposed method just takes
those dominant pixels that contribute more for the voting of vanishing point candidates and thus is
more robust to clutter noisy pixels. Thus, the proposed method has a better performance than the
Gabor-based method on the PLVP dataset. However, only a few line segment candidates are utilized to
estimate the vanishing point with a simple voting scheme in the proposed method. Too few candidates
will affect the estimation accuracy especially in very challenging scenarios (e.g., desert regions
Figure 5q–x). Contrarily, the Gabor-based method outperforms the proposed one on the Challenge
dataset because plenty of voting points are always available for the Gabor-based method. According
to Table 1, the average errors of the proposed method on the PLVP dataset and Challenge dataset are
0.0734 ± 0.0858 and 0.1023 ± 0.1085, respectively, while the average errors of the Gabor-based method
are 0.0812 ± 0.1042 and 0.0909 ± 0.1010, respectively. It is concluded that these two methods have
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close performances in terms of accuracy. In addition, the Hough-based method easily failed for natural
scenes containing noisy edges or many short line segments (e.g., Figure 5f,g,i,k,m,n,p) because the
vanishing point was simply estimated based on all the straight lines extracted from the image. Instead,
the proposed method forms pixels into a line segment based on their texture orientations and employs
a strict rejection scheme to keep only a small number of valid line segment candidates.

As shown in Table 1, the average computation time of the proposed method was significantly
shorter than that of the Gabor-based method. The average error of Hough-based method was
much higher than that of the proposed method although it was about two times faster than the
proposed method.

In summary, the proposed method can achieve good tradeoff between accuracy and time efficiency
for real time implementation.

3.2. Traversable Region Segmentation

Two comparable methods were used to make comparisons for road segmentation. One is a
boundary-based method presented in Ref. [3] while the other is a pixel-based method presented
in Ref. [10].

To quantitatively evaluate the road segmentation accuracy, we employ a similar approach as the
one in Ref. [3]. Suppose that Ad is the segmented road area and Ag is the binarized ground-truth.
The matching score is calculated as,

η(Ad, Ag) =

∣∣Ad ∩ Ag
∣∣∣∣Ad ∪ Ag
∣∣ (19)

where traversable areas for Ad and Ag are set to 1 while non-road areas are set to 0. The matching
score η can reach maximum value of 1 only when the detected road area completely coincides with
the ground-truth. In order to show the road segmentation performance on the dataset, we change the
matching score from 0 to 1 and compute the rate of correctly segmented images (Figure 6). Six examples
of road segmentation with different methods are demonstrated in Figure 8.
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Figure 6. Segmentation accuracy with different methods on the pedestrian lane detection and vanishing
point estimation (PLVP) dataset.

According to Figure 6, the proposed method outperforms the other two methods. In the
pixel-based method [10], a training region at the bottom of the image was selected to construct
GMMs for the road appearance. However, the training region might contain non-road pixels and
cannot always represent the true road area. For instance, the segmentation for the image on the sixth
row in Figure 7 is not satisfying because the sample region included a small portion of non-road
pixels. Moreover, it was difficult to determine an appropriate number of Gaussian models and the
threshold for segmentation (e.g., it is over segmented for the image on the fourth row in Figure 7).
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In contrast, the proposed method tends to select an optimal sample region based on the vanishing
point and dominant borders. In addition, a multivariate Gaussian model combining complementary
features and an adaptive threshold are used in the proposed method to robustly segment the road
from the background.Sensors 2017, 17, 2101 12 of 17 
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Figure 7. Examples of segmentation. Column 1: input image, Column 2: vanishing point and dominant
borders detected by the proposed method, Column 3: segmentation by the proposed method, Column
4: the pixel-based method [10], Column 5: the boundary-based method [3].

As for the boundary-based method [3], the segmentation depended on detection of the dominant
borders. However, inaccurate dominant borders would lead to unexpected road segmentation.
For instance, the road segmentation for the image on the first row in Figure 7 includes much of
the non-road regions because of false borders. Furthermore, this method classified all the pixels
locating in the area between two straight-line borders into road pixels and thus was not suitable
for most curved roads (e.g., the segmentations for images of curved roads on the second, fourth,
fifth and sixth rows in Figure 7 either included some non-road pixels or excluded some road pixels).
In comparison, the proposed method also utilizes the dominant borders but does not strongly depend
on them. If there is a big tree or building on the left and near the camera, the edges of the tree-trunk
or building might form a line segment and become a line segment candidate used for voting. On the
one hand, these kinds of noisy candidates can be rejected at some degrees by the strict criterions
(Equations (5), (7) and (8)). Moreover, as can be seen in Figure 8, even though the vanishing point
estimation or the dominant border detection was not good enough, a seed pixel of road could still be
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correctly found. Then, the correct road sample region surrounding the seed could be used to further
build the appearance model. Thus, the subsequent segmentation would not be influenced by such
inaccurate vanishing points or borders.Sensors 2017, 17, 2101 13 of 17 
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Figure 8. Examples of segmentation with the proposed method under conditions of inaccurate
vanishing point and dominant borders. Row 1: input images, Row 2: vanishing point and dominant
borders, Row 3: segmentation.

The KITTI road benchmark consists of urban unmarked, marked, and multiple marked lanes.
Because this paper mainly focuses on unmarked traversable region detection, the unmarked lane
subset of KITTI was used to further evaluate the performance. According to Figure 9, the proposed
method has achieved good performance on this public dataset compared with the other two methods.
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Figure 9. Segmentation accuracy with different methods on the KITTI road benchmark (unmarked
lane subset of KITTI).

The average processing time of the proposed method for traversable region detection (including
vanishing point estimation and segmentation) was 28.16 ms, which is significantly faster than that
of the pixel-based method [10] (2.93 s) and the boundary-based method [3] (63.56 s). In other words,
our algorithm can be run in real-time over 30 fps on standard CPU although the efficiency of the
proposed algorithm could be further improved by parallel computing.
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3.3. Real Time Implementations for Robot Navigation

The proposed framework has been implemented on a real mobile robot in campus environments
with unstructured pedestrian lanes (Figure 10). The robot was only allowed to travel on the normal
pedestrian lanes like a human being. In our experiments, the lanes are 1.5–2 m wide. The robot must
accurately localize itself and simultaneously build the traversable map for the environment.

The depth of the traversable region could be recovered with the binocular images by stereo
matching. We adopt a fast stereo matching algorithm suitable for embedded real-time systems
described in [24]. Once the disparity for a pixel p(x, y) of traversable region is found by stereo
matching, the 3D point in the sensor coordinates can be calculated with, xc

yc

zc

 = K−1

 x · zc

y · zc

zc

, (20)

where zc = b · f /d, b is the baseline, f is the focal length, d is the disparity and K is the calibration
matrix. To get the 3D points p(xw, yw, zw) of traversable region in world coordinates, a transformation
needs to be performed according to the current pose of sensor,

xw

yw

zw

1

 = T−1

 xc

yc

zc

, (21)

where T = [R|t ], R and t are rotation and translation matrix respectively for the consecutive robot
pose. In this experiment, ORB-SLAM [25] is chosen to estimate the pose and build the map.

To avoid producing too many 3D points of traversable region and save memory, a voxel filter [26]
is used to downsample the point cloud. Figure 11a gives the result of a whole loop trajectory (~240 m)
in the experiment. The grey point cloud represents feature points in the map while the green points
represent the resulting traversable region. The robot poses and the built map are overlapped on
the Google map in Figure 11b. These experimental results have shown that the robot can build a
traversable map of the unstructured environment in real-time for robot navigation. For instance,
the two narrow foot bridges (~1.5 m wide) on the real trajectory have been accurately mapped so that
the robot could correctly locate the bridges and cross them like a human being without falling into the
river. More analysis of localization and mapping results will be presented in the future work together
with other related algorithms, which is not in the scope of this paper.
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4. Conclusions 
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A self-supervised segmentation approach based on a multivariate Gaussian model built from the 
sample region is used to classify the road and background rapidly and robustly. Experimental results 
on the public dataset have shown that the proposed method is able to detect various unstructured 
roads in real-time. Furthermore, implementation on a real mobile robot in challenging environments 
has shown the effectiveness of the proposed framework for robot navigation where the traversable 
region detection could be performed at a frame rate of 30 fps. Future work will focus on combing the 
proposed traversable region detection method with new localization and mapping algorithms to 
facilitate robot navigations in more challenging large-scale environments. 
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Figure 11. A complete loop trajectory of the robot with traversable regions (a) blue: robot pose, green:
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4. Conclusions

This paper proposes a novel method for real-time detection of unstructured traversable regions
from a single image in complex outdoor environments. This method utilizes vanishing point
estimated by a new fast voting scheme to adaptively determine a road sample region of input image.
A self-supervised segmentation approach based on a multivariate Gaussian model built from the
sample region is used to classify the road and background rapidly and robustly. Experimental results
on the public dataset have shown that the proposed method is able to detect various unstructured
roads in real-time. Furthermore, implementation on a real mobile robot in challenging environments
has shown the effectiveness of the proposed framework for robot navigation where the traversable
region detection could be performed at a frame rate of 30 fps. Future work will focus on combing
the proposed traversable region detection method with new localization and mapping algorithms to
facilitate robot navigations in more challenging large-scale environments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/9/2101/
s1, Video S1: traversable region detection.
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