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Abstract: Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate
potential failures or errors so as to improve the reliability of systems, designs, and products.
Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes.
There are some shortcomings in the traditional risk priority number (RPN) approach for risk
evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that
attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from
a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the
evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used
to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion
method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative
example is provided and examined using the proposed model and other existing method to show the
effectiveness of the proposed model.

Keywords: fuzzy risk evaluation; failure mode and effects analysis; multi-sensor information fusion;
D numbers; dempster-shafer evidence theory; fuzzy uncertainty

1. Introduction

Failure mode and effects analysis (FMEA) is a widely used technology in many fields to identify
potential failures or errors and further improve the reliability of systems by avoiding the occurrence
of these failures or errors [1–3]. Risk evaluation is a crucial step in FMEA, which aims to identify
failure modes with high risk so as to perfect system design to eliminating the risk [4,5]. In FMEA, risk
priority number (RPN) approach is a classical method for the risk evaluation [6,7]. Since having clear
physical meaning and easy to implement, the RPN approach has been received extensively concern
and application. However, there still are some shortcomings in the RPN approach [8,9], for example
the possible missing of risk factors, without considering the relative importance of risk factors, and so
on. Among these drawbacks, failing to address the uncertainty in risk evaluation is one of the most
concerned, and has attracted increasing attention [10–13].

In the risk evaluation of FMEA, domain experts’ knowledge and evaluations play a very
importance role. Because there are human being’s judgments, it inevitably involves various types of
uncertainties such as ignorance and fuzziness. Fuzzy set theory [14] provides a useful framework to
describe the uncertain information. Therefore, risk evaluation under fuzzy environment, also known
as fuzzy risk evaluation, has become an important research direction in FMEA. Many technologies
have been developed to solve the problem of fuzzy risk evaluation in FMEA. Chin et al. [15] presented
a data envelopment analysis (DEA) based FMEA to determine the risk priorities of failure modes.
Jee et al. [16] proposed a fuzzy inference system (FIS)-based RPN model for the prioritization of failures.
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In [17], the authors have given applied a model of evolving tree to allow the failure modes in FMEA to
be clustered and visualized. Reference [18] gives a detained literature review to the risk evaluation
approaches in FMEA. By summarizing the existing approaches [10,18], one of the main branches is to
regard the fuzzy risk evaluation in FMEA as a multiple criteria decision making (MCDM) problem
under fuzzy environment. Many MCDM or multi-sensor information fusion technologies [19–26] have
been used in FMEA, such as TOPSIS [27], VIKOR [28], evidential reasoning [29], and so on.

In this paper, we address the fuzzy risk evaluation in FMEA from a perspective of multi-sensor
information fusion. Each risk factor in FMEA is regarded as a sensor or information source that yields
an evaluation regarding the risk of each failure mode. Then, the risk evaluation of every failure mode
therefore becomes the process of fusing these evaluations generated from the information sources
that correspond to risk factors. Different from existing multi-sensor information fusion method used
in FMEA, in this paper the non-exclusiveness between the evaluations of fuzzy linguistic variables
to failure modes is taken into consideration. A novel model called D numbers [30–33] which is
an extension of Dempster-Shafer evidence theory [34,35] is used to model the non-exclusive fuzzy
evaluations. At first, a new D numbers based multi-sensor information fusion method is proposed.
Then, the proposed multi-sensor information fusion method is applied to FMEA, which results in
a novel model for fuzzy risk evaluation. At last, an illustrative example is given to demonstrate the
effectiveness of the proposed model.

The rest of the paper is organized as follows. Section 2 gives a brief introduction about fuzzy
set theory, RPN approach, as well as Dempster-Shafer evidence theory and D numbers. In Section 3,
a novel multi-sensor information fusion method is proposed based on D numbers. Then, the new
model for fuzzy risk evaluation in FMEA is presented in Section 4. Section 5 gives an illustrative
example of the proposed model to show its effectiveness. Lastly, Section 6 concludes this paper.
In addition, the notations of this paper are briefly introduced here: Ã represents a fuzzy set or fuzzy
number, and µÃ is its corresponding membership function, and AreaÃ represents the area of Ã in
the graph; Ω and Θ stand for the frame of discernment in Dempster-Shafer theory and D numbers
respectively, m represents a mass function and D is a D number; u¬E(Ã, B̃) is the non-exclusive degree
between Ã and B̃; BetP represents a distribution of pignistic probabilities; CF̃ is the defuzzified value
of fuzzy number F̃.

2. Preliminaries

2.1. Fuzzy Set Theory

Fuzzy set theory was first introduced by Zadeh [14] in 1965 to deal with the uncertainty
information. In some real application environments, the states are subjective concepts which are
too complex or too ill-defined to be reasonably described in conventional quantitative expressions.
In those situation, fuzzy set theory provides an efficiently simple way to express the vagueness or
imprecise information [36,37].

Definition 1. Let X be the universe of discourse, a fuzzy set Ã is characterized by a membership function
µÃ satisfying

µÃ : X → [0, 1] (1)

where µÃ(x) is called the membership degree of x ∈ X belonging to fuzzy set Ã.

For a finite set A = { x1, . . . , xi, . . . , xn} , the fuzzy set (Ã, µÃ) is often denoted by{
µÃ(x1)

/
x1

, . . . , µÃ(xi)
/
xi

, . . . , µÃ(xn)
/
xn

}
. It is easily found that a fuzzy set is described entirely

by its membership function. When µÃ takes value from {0, 1} , fuzzy set Ã degenerates into a classical
set. A fuzzy number Ã is a fuzzy subset of the real number R, and its membership function is

µÃ(x) : R→ [0, 1] (2)
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where x is a real number and there definitely exists an element x0 such that µÃ(x0) = 1. Triangular and
trapezoidal fuzzy numbers are the most widely used fuzzy numbers, and the former can be regarded
as the special case of the latter. A trapezoidal fuzzy number is usually denoted as Ã = (a1, a2, a3, a4),
as graphically shown in Figure 1, which has the following membership function

µÃ(x) =



0, x ≤ a1;
x−a1
a2−a1

a1,≤ x ≤ a2;
1, a2 ≤ x ≤ a3;

a4−x
a4−a3

, a3 ≤ x ≤ a4;
0, a4 ≤ x.

(3)

1
a

2
a

3
a

4
a

1

0

x

( )
A
xm ( )

A
x

Figure 1. Graphically presentation of the trapezoidal fuzzy number.

In theory and practice, fuzzy numbers are usually associated with linguistic variables to express
the fuzzy evaluation to objects. A linguistic variable is a variable whose values are represented by
words or sentences in a natural or artificial language, for example “Very Low”, “Low”, “Medium”,
“High”, “Very High”, where there values are usually expressed by fuzzy numbers.

2.2. Risk Priority Number Approach in FEMA

Risk priority number (RPN) approach is a traditional risk evaluation method in FEMA. In this
approach, the risk priority of each failure mode is expressed by a RPN which is defined by the
following formula

RPN = O× S× D (4)

where O is the probability of occurrence of a failure mode, S is the severity of the failure effect, and D is
the probability of a failure mode not being detected before it occurs. In the RPN approach, each factor
among O, S, and D is evaluated by 10 rankings, as shown in Tables 1–3. The larger the RPN value,
the higher the risk priority of a failure mode.

Table 1. Assessment rankings for occurrence in FMEA [38,39].

Ranking Probability of Occurrence Possible Failure Rate

10 Extremely high: failure almost inevitable ≥1/2
9 Very high 1/3
8 Repeated failures 1/8
7 High 1/20
6 Moderately high 1/80
5 Moderate 1/400
4 Relatively low 1/2000
3 Low 1/15,000
2 Remote 1/150,000
1 Nearly impossible ≤1/1,500,000
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Table 2. Assessment rankings for severity in FMEA [38,39].

Ranking Effect Severity of Effect

10 Hazardous without warning
Very high severity ranking when a potential failure mode
affects safe vehicle operation and/or involves noncompliance
with government regulations without warning

9 Hazardous with warning
Very high severity ranking when a potential failure mode
affects safe vehicle operation and/or involves noncompliance
with government regulations with warning

8 Very high Vehicle/item inoperable, with loss of primary function

7 High Vehicle/item operable, but at reduced level of performance.
Customer dissatisfied

6 Moderate Vehicle/item operable, but comfort/convenience item(s)
inoperable. Customer experiences discomfort

5 Low
Vehicle/item operable, but comfort/convenience item(s)
operable at reduced level of performance. Customer
experiences some dissatisfaction.

4 Very low
Cosmetic defect in finish, fit and finish/squeak or rattle item
that does not conform to specifications. Defect noticed by
most customers

3 Minor
Cosmetic defect in finish, fit and finish/squeak or rattle item
that does not conform to specifications. Defect noticed by
average customer

2 Very minor
Cosmetic defect in finish, fit and finish/squeak or rattle item
that does not conform to specifications. Defect noticed by
discriminating customers

1 None No effect

Table 3. Assessment rankings for detection in FMEA [38,39].

Ranking Detection Criteria

10 Absolutely impossible
Design control will not and/or cannot detect a potential
cause/mechanism and subsequent failure mode; or there is
no design control

9 Very remote Very remote chance the design control will detect a potential
cause/mechanism and subsequent failure mode

8 Remote Remote chance the design control will detect a potential
cause/mechanism and subsequent failure mode

7 Very low Very low chance the design control will detect a potential
cause/mechanism and subsequent failure mode

6 Low Low chance the design control will detect a potential
cause/mechanism and subsequent failure mode

5 Moderate Moderate chance the design control will detect a potential
cause/mechanism and subsequent failure mode

4 Moderately high Moderately high chance the design control will detect a
potential cause/mechanism and subsequent failure mode

3 High High chance the design control will detect a potential
cause/mechanism and subsequent failure mode

2 Very high Very high chance the design control will detect a potential
cause/mechanism and subsequent failure mode

1 Almost certain Design control will almost certainly detect a potential
cause/mechanism and subsequent failure mode

Although the RPN approach is easy to use, but it still has some shortcomings that are criticized
in many studies [8,9]. For example, three risk factors O, S, D are considered with equal importance;
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Traditional RPN approach only considers three factors but ignores other possible influential factors
to different application environment; Various sets of O, S and D may produce an identical RPN
value, but their hidden risk implications may be different. Please refer to [8,9] for more details on the
drawbacks of RPN approach.

2.3. Dempster-Shafer Evidence Theory and D Numbers

Dempster-Shafer evidence theory [34,35], also called Dempster-Shafer (D-S) theory or evidence
theory, is a popular theory to deal with uncertain information [40–45]. Compared with traditional
probability theory, this theory has an advantage of directly expressing the “uncertainty” by assigning
the probability to the set composed of multiple objects, it therefore has attracted increasing interest in
uncertainty reasoning and modelling [46–52] and been further extended such as generalized evidence
theory (GET) in open world [53–55].

Let Ω be a set of mutually exclusive and collectively exhaustive events, indicated by
Ω = {E1, E2, . . . , Ei, . . . , EN}, where set Ω is called a frame of discernment (FOD). The power set of
Ω is indicated by 2Ω, namely 2Ω = {∅, {E1}, . . . , {EN}, {E1, E2}, . . . , {E1, E2, . . . , Ei}, . . . , Ω}. In D-S
theory, the uncertain information is modelled by mass functions.

Definition 2. Given a FOD Ω, a mass function is a mapping m : 2Ω → [0, 1], such that

m(∅) = 0 and ∑
A∈2Ω

m(A) = 1 (5)

where set A with m(A) > 0 is called a focal element, and the assigned m(A) measures the belief exactly assigned
to A and represents how strongly the evidence supports A. A mass function is also called a basic probability
assignment (BPA).

Considering two pieces of evidence indicated by m1 and m2, Dempster’s rule of combination
can be used to combine them. This rule assumes that these mass functions are mutually independent.
The Dempster’s rule of combination, denoted by m = m1 ⊕m2, is defined as follows:

m(A) =

{ 1
1−K ∑

B∩C=A
m1(B)m2(C) , A 6= ∅

0 , A = ∅
(6)

with
K = ∑

B∩C=∅
m1(B)m2(C). (7)

In order to make decision in terms of a mass function [56], an approach, called pignistic probability
transformation (PPT), is proposed by Smets and Kennes [57] to derive a probability distribution from
a mass function. Let m be a mass function or BPA on FOD Ω, a PPT function BetPm : Ω → [0, 1]
associated to m is defined by

BetPm(x) = ∑
x∈A,A⊆Ω

1
|A|

m(A)

1−m(∅)
, (8)

where m(∅) 6= 1 and |A| is the cardinality of proposition A.
Although D-S theory provides a good framework for uncertainty reasoning, this theory is

also constrained by many strong hypotheses and hard constraints which limit its development and
application to a large extend. For one hand, the elements in the FOD are required to be mutually
exclusive. It is called exclusiveness hypothesis. For another, the sum of basic probabilities of a mass
function must be equal to 1, which is called completeness constraint. To overcome these existing
shortcomings in D-S theory and enhance its capability in expressing uncertain information, a novel
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model, named as D numbers, has been proposed recently [30–33,58]. D numbers relax mass function’s
exclusiveness hypothesis and BPA’s completeness constraint.

Definition 3. Let Θ = {F1, F2, . . . , FN} be a nonempty set satisfying Fi 6= Fj if i 6= j, ∀i, j = {1, . . . , N} ,
a D number is a mapping formulated by

D : 2Θ → [0, 1] (9)

with

∑
B⊆Θ

D(B) ≤ 1 and D(∅) = 0 (10)

where ∅ is the empty set and B is a subset of Θ.

If ∑
B⊆Θ

D(B) = 1, the information is said to be complete; if ∑
B⊆Θ

D(B) < 1, the information is said

to be incomplete. If a D number is of complete information, it means that the D number is generated
from an environment with the close-world assumption. By contrast, a D number with incomplete
information is corresponding to the open-world assumption. With respect to the open-orld assumption,
Smets [57] proposed a transferable belief model (TBM) which allows m(∅) > 0. Compared with the
TBM, in D numbers the open-world environment is implemented by letting ∑

B⊆Θ
D(B) < 1. What’s

more important, in the TBM each mass function is defined on a FOD which requires the internal
elements are mutually exclusive. However, in D numbers the exclusiveness hypothesis is removed,
i.e., the elements in Θ do not require mutual exclusiveness for D numbers.

3. Proposed Multi-Sensor Information Fusion Method Based on D Numbers

Let us consider a multiple criteria decision making (MCDM) problem, where each criterion can
be regarded as an independent sensor or information source. Therefore, the process of resolving
the MCDM problem can be treated as a process of multi-sensor information fusion. Assume there
are p alternatives, indicated by Ai, i = 1, . . . , p, and q criteria, denoted as Cj, j = 1, . . . , q, and the
weight of each criterion is wj, j = 1, . . . , q. Due to the uncertainty of decision-making environment,
the evaluation to alternative Ai on criterion Cj is expressed as a D number indicated by Dij, thus the
decision matrix is represented as

M =

C1 · · · Cq

A1
...

Ap

 D11 · · · D1q
· · · · · · · · ·
Dp1 · · · Dpq

 . (11)

In this paper, we assume that each evaluation Dij in the decision matrix M is information-complete,
i.e., ∑

k
Dij(Bk) = 1 for any i = 1, . . . , p and j = 1, . . . , q. Now the overall objective is to find the best

alternative according to the decision matrix M and criteria’s weights mentioned above. In this study,
we develop a new multi-sensor information fusion method based on D numbers to solve that problem.
The key points of the proposed approach are presented as follows.

3.1. Non-Exclusiveness in D Numbers

Since the evaluations are in the form of D numbers and the theory of D numbers is found on
the basis of non-exclusiveness assumption, the first step is to calculate the non-exclusive degrees in
D numbers. The non-exclusiveness is the opposite of exclusiveness, representing a potential connection
between elements in D numbers framework. By contrast, the exclusiveness refers to the characteristic
that one object excludes the others, which is an either-or related thing but not the similarity.
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Definition 4. Let Bi and Bj be two non-empty elements belonging to 2Θ, the non-exclusive degree between Bi
and Bj is characterized by a fuzzy membership function u¬E:

u¬E : 2Θ × 2Θ → [0, 1] (12)

with

u¬E(Bi, Bj) =

{
1, Bi ∩ Bj 6= ∅
p, p ∈ [0, 1], Bi ∩ Bj = ∅

(13)

and
u¬E(Bi, Bj) = u¬E(Bj, Bi). (14)

If letting the exclusive degree between Bi and Bj be denoted as uE, then uE = 1− u¬E.

In our previous study [59], a simple approach was proposed to determine the non-exclusive
degrees in D numbers. In that approach it assumes that all non-exclusive degrees among elements in
FOD Θ have already been determined, then each exclusive degree in the power set space 2Θ can be
calculated by the following formula:

u¬E(Bi, Bj) = max
x∈Bi ,y∈Bj

{u¬E(x, y)}, Bi, Bj ∈ 2Θ. (15)

An illustrative example regarding the calculation of non-exclusive degrees is given as follows.

Example 1. Supposing each evaluation in decision matrix M shown in Equation (11) is defined on a set of
linguistic variables Θ = {VL, L, ML, M, MH, H, VH} in which every linguistic variable is represented by a
trapezoidal fuzzy number given in Table 4 and graphically presented as Figure 2.

Table 4. Linguistic variables for the evaluation.

Linguistic Variables Fuzzy Numbers

Very Low (VL) (0, 0, 1,2)
Low (L) (1, 2, 2, 3)
Medium Low (ML) (2, 3, 4, 5)
Medium (M) (4, 5, 5, 6)
Medium High (MH) (5, 6, 7, 8)
High (H) (7, 8, 8, 9)
Very High (VH) (8, 9,10,10)

0 1 2 3 4 5 6 7 8 9 10

Assessment value

0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

de
gr

ee

VL L ML M MH H VH

Figure 2. Graphically presentation of fuzzy linguistic variables in Table 4.
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The set Θ is seen as the FOD. At first, let us calculate the non-exclusive degrees between elements in FOD
Θ. In this paper, an approach based on fuzzy numbers’ areas is utilized. Assume the areas of fuzzy numbers Ã
and B̃ are respectively denoted as AreaÃ and AreaB̃, and the area of the overlap of Ã and B̃ is AreaÃ∩B̃, then
the non-exclusive degree between Ã and B̃ is defined as

u¬E(Ã, B̃) =
AreaÃ∩B̃

AreaÃ + AreaB̃ − AreaÃ∩B̃
. (16)

According to Equation (16), each non-exclusive degree between elements in FOD Θ therefore can be
obtained as shown in the following matrix

VL L ML M MH H VH
VL
L

ML
M

MH
H

VH



1 0.1111 0 0 0 0 0
0.1111 1 0.0909 0 0 0 0

0 0.0909 1 0.0909 0 0 0
0 0 0.0909 1 0.0909 0 0
0 0 0 0.0909 1 0.0909 0
0 0 0 0 0.0909 1 0.1111
0 0 0 0 0 0.1111 1


Having the above non-exclusive degree matrix of between elements in Θ , according to Equation (15),

we can easily calculate the non-exclusive degree of any pair of elements in 2Θ. For example, as for {L} and
{ML, M}, we have

u¬E({L}, {ML, M}) = max {u¬E({L}, {ML}), u¬E({L}, {M})}
= max {0.0909, 0}
= 0.0909.

3.2. Fusing the Evaluations to the Same Alternative on Different Criteria

In order to implement the overall assessment to each alternative, all evaluations belonging to the
same alternative on different criteria should be combined according to the perspective of multi-sensor
information fusion. In this paper since the evaluations are given in the form of D numbers, it becomes
the fusion of D numbers. In our recent study [59], a D numbers combination rule (DNCR) has been
proposed from a perspective of conflict redistribution. The proposed DNCR is shown as follows.

Definition 5. Let D1 and D2 be two D numbers defined on Θ with ∑
B⊆Θ

D1(B) = 1 and ∑
C⊆Θ

D2(C) = 1,

the combination of D1 and D2, indicated by D = D1 � D2, is defined by

D(A) =



0, A = ∅
1

1−KD

(
∑

B∩C=A
u¬E(B, C)D1(B)D2(C)+

∑
B∪C=A
B∩C=∅

u¬E(B, C)D1(B)D2(C)

 , A 6= ∅

(17)

with
KD = ∑

B∩C=∅
(1− u¬E(B, C)) D1(B)D2(C). (18)

The above rule for D numbers is a generalization of Dempster’s rule for the model of D numbers,
because it can totally reduce to the classical Dempster’s rule when u¬E(B, C) = 0 for any B ∩ C = ∅.
Different from the D-S theory, in this rule the impact of of non-exclusiveness in D numbers is taken
into consideration.
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Although the rule defined in Definition 5 provides a solution for the combination of D numbers,
it must point out that such rule does not preserve the associative property, i.e., (D1 � D2)� D3 6=
D1 � (D2 � D3) 6= (D1 � D3)� D2, and it is only suitable for the combination of two D numbers.
In order to implement the effective combination of multiple D numbers, a novel combination rule
for multiple D numbers is developed in this paper by utilizing the idea of induced ordered weighted
averaging (IOWA) operator [60] which imports an order variable compared with other aggregation
operators [61,62].

Definition 6. Let D1, D2, . . . , Dn be n D numbers, and vj be an order variable for each Dj, j = 1, . . . , n,
therefore each piece of information is indicated by tuple < vj, Dvj >. The combination operation of these
information represented by D numbers is defined as a mapping AggD, such that

AggD(D1, D2, · · · , Dn) = [· · · [Dλ1 � Dλ2 ]� · · · � Dλn ] (19)

where Dλi is the corresponding Dvj in tuple < vj, Dvj > having the i-th largest order variable vj.

In this paper, for the MCDM problem the weight of each criterion is regarded as the order variable
of corresponding D numbers so as to fuse the evaluations to each alternative on multiple criteria.
For each alternative Ai, i = 1, . . . , p, the obtained aggregated evaluation is denoted as Di which is
defined over the FOD Θ consisting of fuzzy linguistic variables.

3.3. Decision-Making Based on the Aggregated Evaluations under Fuzzy Environment

In this paper, each aggregated evaluation is also a D number, indicated by Di, i = 1, . . . , p,
which is defined on FOD Θ composed by fuzzy linguistic variables. Assume Θ = {θt, t = 1, . . . , l},
and each element θt is represented by a trapezoidal fuzzy number θt = (at1, at2, at3, at4). Each Di is
firstly transformed to a distribution of pignistic probabilities, denoted as BetPi, by means of the PPT
as follows

BetPi(θt) = ∑
θt∈B,B⊆Θ

Di(B)
|B| , t = 1, . . . , l. (20)

Once the BetPi is obtained, it then be transformed to a fuzzy aggregated evaluation F̃i to express
the overall assessment to alternative i, represented as

F̃i = ( fi1, fi2, fi3, fi4), i = 1, . . . , q (21)

in which

fik =
l

∑
t=1

BetPi(θt)× atk, k = 1, 2, 3, 4. (22)

At last, these fuzzy aggregated evaluation F̃i, i = 1, . . . , p, are converted to crisp values through
a defuzzification process in order to rank all alternatives. Among existing defuzzification techniques,
the centroid defuzzification approach is a common used one. Given a fuzzy number F̃ with membership
function µF̃(x), in terms of the centroid defuzzification approach we can have

CF̃ =

∫
xµF̃(x)dx∫
µF̃(x)dx

, (23)

where CF̃ is the defuzzified value of F̃. In terms of the study in [63], while F̃ is a trapezoidal fuzzy
number indicated by ( f1, f2, f3, f4) the centroid-based defuzzified value turns out to be

CF̃ =
1
3

(
f1 + f2 + f3 + f4 −

f3 f4 − f1 f2

( f3 + f4)− ( f1 + f2)

)
. (24)
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Via the defuzzification process, for each fuzzy aggregated evaluation F̃i, a defuzzified value
CF̃i

can be derived. The best alternative is finally determined by finding the one with the largest
defuzzified value.

4. The Proposed Model for Fuzzy Risk Evaluation in FMEA

In terms of the multi-sensor information fusion method based on D numbers as presented above,
a novel model for fuzzy risk evaluation in FMEA is proposed in this section. The flowchart of the
proposed model is shown in Figure 3, which briefly contains four phases, namely identification,
evaluation, preprocessing and ranking. The final output is the risk ranking of potential failure modes.

1. Identify potential failure modes 

2. Identify possible risk factors 

3. Determine fuzzy linguistic variables for the evaluation

4. Evaluate failure modes and the weights of risk factors 

using fuzzy linguistic variables

5. Calculate the weights of risk factors and transform the 

fuzzy evaluations of failure modes to D numbers

6. Rank the failure modes using the proposed multi-

sensor information fusion method

Phase 2: 

Evaluation

Phase 3: 

Preprocessing

Phase 4: 

Ranking 

Output

Phase 1:

Identification

Fuzzy risk evaluation in FMEA

Risk ranking of failure modes

Figure 3. Flowchart of the proposed model for fuzzy risk evaluation in FMEA.

• Step 1: Identify all potential failure modes according to the practical FMEA environment.
• Step 2: Identify all possible risk factors for the risk evaluation task. In the RPN approach, the risk

factors are probability of occurrence (O), severity of failure effect (S), and probability of a failure
mode not being detected (D).

• Step 3: Determine fuzzy linguistic variables for the evaluation including evaluating failure modes
and evaluating the weights of risk factors.

• Step 4: Evaluate failure modes and the weights of risk factors using fuzzy linguistic variables
determined in the above step. These are usually given by domain experts of FMEA risk evaluation.

• Step 5: Calculate the weight of each risk factor and transform the fuzzy evaluations of failure
modes on different risk factors to D numbers. This is a process of data preprocessing.

• Step 6: Rank the failure modes using the proposed multi-sensor information fusion method in
above section so as to generate the risk ranking of all failure modes.
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5. Illustrative Example

In the section, an illustrative example is given to show the effectiveness of the proposed model
for fuzzy risk evaluation in FMEA. This example is original from literature [28]. In [28], the authors
developed an extended VIKOR method for risk evaluation in FMEA under fuzzy environment. In this
paper, we will solve the problem by using our proposed model and compare the obtained result with
that of literature [28].

Step 1: Identify all potential failure modes. By following literature [28], a hospital wants to rank
the most serious failure modes during general anesthesia process, and six potential failure modes are
identified which are denoted as FM 1, FM 2, FM 3, FM 4, FM 5, FM 6.

Step 2: Identify all possible risk factors. In this application, the risk factors are consistent with the
RPN approach, therefore there are three risk factors, namely O, S, D.

Step 3: Determine fuzzy linguistic variables for the evaluation. As for the evaluation of failure
modes, a set of linguistic variables including Very Low (VL), Low (L), Medium Low (ML), Medium
(M), Medium High (MH), Very High (VH) is used as shown in Table 4. In addition, for the evaluation
of risk factors’ weights, the fuzzy linguistic variables are given in Table 5.

Table 5. Linguistic variables for evaluating the weights of risk factors.

Linguistic Variables Fuzzy Numbers

Very Low (VL) (0, 0, 0.1, 0.2)
Low (L) (0.1, 0.2, 0.2, 0.3)
Medium Low (ML) (0.2, 0.3, 0.4, 0.5)
Medium (M) (0.4, 0.5, 0.5, 0.6)
Medium High (MH) (0.5, 0.6, 0.7, 0.8)
High (H) (0.7, 0.8, 0.8, 0.9)
Very High (VH) (0.8, 0.9, 1,1)

Step 4: Evaluate failure modes and the weights of risk factors using fuzzy linguistic variables.
As given in literature [28], a FMEA team of five decision makers, DM 1, DM 2, DM 3, DM 4,
DM 5, is employed to evaluate failure modes and the weights of risk factors. With respect to risk
factors’ weights, all five decision makers’ evaluations are given in Table 6. For the six failure modes,
the evaluations from the FMEA team are given in Table 7.

Table 6. The evaluations to the weights of risk factors from the FMEA team.

Risk Factor FMEA Team Member

DM 1 DM 2 DM 3 DM 4 DM 5

O H H VH H MH
S VH VH H VH VH
D MH MH M H MH

Table 7. The evaluations to failure modes from the FMEA team.

FM 1 FM 2 FM 3 FM 4 FM 5 FM 6

O

DM 1 M H VH M M MH
DM 2 M MH MH M ML H
DM 3 M H VH L M M
DM 4 MH MH VH M M MH
DM 5 M MH VH M M M
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Table 7. Cont.

FM 1 FM 2 FM 3 FM 4 FM 5 FM 6

S

DM 1 ML H MH M M H
DM 2 ML MH MH M MH H
DM 3 ML H MH ML MH H
DM 4 M H MH M M H
DM 5 M H MH M M H

D

DM 1 M M MH VL L L
DM 2 ML M M ML ML M
DM 3 ML ML MH VL L L
DM 4 ML M MH ML L L
DM 5 ML M M VL L VL

Step 5: At this step, the weight of each risk factor is calculated at first. Since the calculation of risk
factors’ weights is not the core concern of this paper, we simply continue to use the weights obtained in
literature [28]. The importance of O is 0.768, and S 0.878, and D 0.650, therefore the weights of these risk
factors are wO = 0.768/(0.768 + 0.878 + 0.650) = 0.3345, wS = 0.878/(0.768 + 0.878 + 0.650) = 0.3824,
wD = 0.650/(0.768 + 0.878 + 0.650) = 0.2831. Secondly, let us transform the fuzzy evaluations of
failure modes on risk factors to D numbers. In this example since multiple decision makers are
included so as to form a group decision making environment, we use the proportion of each evaluation
to construct the D numbers. For example, for FM 1 on risk factor O, five decision makers respectively
give evaluations M, M, M, MH, M, hence we can construct a D number D(M) = 0.8, D(MH) = 0.2.
In terms of this means, the evaluations to failure modes are transformed to the form of D numbers,
as shown in Table 8.

Table 8. The evaluations to failure modes in the form of D numbers.

Failure Mode O S D

FM 1
D({M}) = 0.8,
D({MH}) = 0.2

D({ML}) = 0.6,
D({M}) = 0.4

D({M}) = 0.2,
D({ML}) = 0.8

FM 2
D({H}) = 0.4,
D({MH}) = 0.6

D({H}) = 0.8,
D({MH}) = 0.2

D({M}) = 0.8,
D({ML}) = 0.2

FM 3
D({VH}) = 0.8,
D({MH}) = 0.2 D({MH}) = 1 D({MH}) = 0.6,

D({M}) = 0.4

FM 4
D({M}) = 0.8,
D({L}) = 0.2

D({M}) = 0.8,
D({ML}) = 0.2

D({VL}) = 0.6,
D({ML}) = 0.4

FM 5
D({M}) = 0.8,
D({ML}) = 0.2

D({M}) = 0.6,
D({MH}) = 0.4

D({L}) = 0.8,
D({ML}) = 0.2

FM 6
D({M}) = 0.4,
D({MH}) = 0.4,
D({H}) = 0.2,

D({H}) = 1
D({L}) = 0.6,
D({M}) = 0.2,
D({VL}) = 0.2

Step 6: Rank the failure modes using the proposed multi-sensor information fusion method.
At first, the fuzzy linguistic variables in Table 4 form a FOD Θ = {VL, L, ML, M, MH, H, VH}.
Each exclusive degree between elements in Θ has been obtained in Example 1. According to
Equation (15), the non-exclusive degree of any pair of elements in 2Θ can be easily obtained. Secondly,
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for every failure mode the evaluations on O, S, and D can be fused based on the proposed combination
operation in Definition 6. For FM 1, the aggregated evaluation is

D1({M}) = 0.558,
D1({ML}) = 0.263,
D1({ML, M}) = 0.175,
D1({ML, M, MH}) = 0.004.

For FM 2,
D2({M, MH}) = 0.702,
D2({M, MH, H}) = 0.298.

For FM 3,
D3({MH}) = 0.943,
D3({M, MH}) = 0.057.

For FM 4,
D4({ML}) = 0.236,
D4({ML, M}) = 0.756,
D4({VL, L, ML}) = 0.008.

For FM 5,
D5({ML}) = 0.178,
D5({ML, M}) = 0.714,
D5({ML, M, MH}) = 0.043,
D5({L, ML, M}) = 0.065.

For FM 6,
D6({M, MH, H}) = 1.000.

Thirdly, by using the PPT, we have: BetP1({ML}) = 0.3516, BetP1({M}) = 0.6471,
BetP1({MH}) = 0.0013 for FM 1; BetP2({M}) = 0.4504, BetP2({MH}) = 0.4504, BetP2({H}) =

0.0993 for FM 2; BetP3({M}) = 0.0286, BetP3({MH}) = 0.9714 for FM 3; BetP4({VL}) = 0.0026,
BetP4({L}) = 0.0026, BetP4({ML}) = 0.6168, BetP4({M}) = 0.3780 for FM 4; BetP5({L}) = 0.0216,
BetP5({ML}) = 0.5712, BetP5({M}) = 0.3928, BetP5({MH}) = 0.0144 for FM 5; and BetP6({M}) =
0.3333, BetP6({MH}) = 0.3333, BetP6({H}) = 0.3333 for FM 6. Fourthly, these pignistic probabilities
are then transformed to fuzzy aggregated evaluations according to Equations (21) and (22) which are

F̃1 = (3.2982, 4.2982, 4.6511, 5.6511),

F̃2 = (4.7482, 5.7482, 6.1986, 7.1986),

F̃3 = (4.9714, 5.9714, 6.9429, 7.9429),

F̃4 = (2.7480, 3.7454, 4.3648, 5.3648),

F̃5 = (2.8072, 3.8072, 4.3928, 5.3928),

F̃6 = (5.3333, 6.3333, 6.6667, 7.6667).

These fuzzy aggregated evaluations are graphically shown in Figure 4. At last, in terms of the
centroid defuzzification approach we can have CF̃1

= 4.4746, CF̃2
= 5.9734, CF̃3

= 6.4571, CF̃4
= 4.0559,

CF̃5
= 4.1000, CF̃6

= 6.5000. Therefore, the risk ranking of all failure modes from high to low is
FM 6 � FM 3 � FM 2 � FM 1 � FM 5 � FM 4. From the result, it is found that the failure mode
with the highest risk is FM 6 and that having the lowest risk is FM 4.
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Figure 4. Graphically presentation of fuzzy aggregated evaluations.

The above steps have clearly shown the process of using the proposed model to do the risk
evaluation in FMEA under fuzzy environment. Now we compare the result obtained by the proposed
model with that from other method. In literature [28], Liu et al. dealt with the risk evaluation in
FMEA with an extended VIKOR method. The results of the risk ranking are given in Table 9. In [28],
the failure modes are ranked in terms of three indicators S, R, Q. By S, the failure modes with the
highest and lowest risk are FM 3 and FM 4; By R, the failure modes having the highest and lowest risk
are respectively FM 6 and FM 4; By Q, the failure modes with the highest and lowest risk are FM 3
and FM 4, respectively. Comparing the proposed model and the extended VIKOR method in [28],
the ranking obtained by the proposed model is basically same with that of R. In addition, both the
two methods have identified FM 4 is the failure mode of lowest risk. In addition, as a whole the
failure modes can be classified into two groups by S, R, Q, and the first group which has higher risk
is composed by FM 3, FM 6, FM 2, the second group having lower risk includes FM 1, FM 5, FM 4.
By using the proposed model, we also obtain the same classification that FM 6, FM 3, FM 2 are in the
group with higher risk and FM 1, FM 5, FM 4 constitute the group with lower risk. Through the above
analysis and comparison, therefore it shows that the proposed model is effective for risk evaluation
in FMEA.

Table 9. Risk ranking of failure modes by using the extended VIKOR method in [28].

Failure Mode

FM 1 FM 2 FM 3 FM 4 FM 5 FM 6

By S 4 2 1 6 5 3
By R 5 3 2 6 4 1
By Q 5 3 1 6 4 2

6. Conclusions

In this paper, the risk evaluation of failure modes in FMEA has been studied in an environment
involving fuzzy uncertainty. A novel model is proposed for the fuzzy risk evaluation in FMEA.
Within the proposed model, a D numbers based multi-sensor information fusion method has been
presented to evaluate potential failure modes and rank the risk levels of failure modes. Since the use of
D numbers which is a new model of extending classical D-S theory, the non-exclusiveness between the
evaluations of fuzzy linguistic variables has been taken into consideration in the proposed method.
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Compared with some existing risk evaluation methods in FMEA, the proposed method overcomes the
shortcomings of traditional RPN approach to some degrees and obtains comparable performances
relative to other MCDM technologies used in FMEA. This study provides a new solution for the risk
evaluation in FMEA under fuzzy environment and it is especially suitable for the case that contains
non-exclusive fuzzy evaluations. In the future research, on one hand we hope to seek more practical
applications with read data to analyze the proposed D numbers based multi-sensor information fusion
method, on the other hand we will explore other technologies such as Physarum-inspired model [64]
to improve the risk evaluation in FMEA.
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