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Abstract: We present an investigation consisting of single walled carbon nanotubes (SWCNTs) based
cryogenic temperature sensors, capable of measuring temperatures in the range of 2–77 K. Carbon
nanotubes (CNTs) due to their extremely small size, superior thermal and electrical properties have
suggested that it is possible to create devices that will meet necessary requirements for miniaturization
and better performance, by comparison to temperature sensors currently available on the market.
Starting from SWCNTs, as starting material, a resistive structure was designed. Employing dropcast
method, the carbon nanotubes were deposited over pairs of gold electrodes and in between the
structure electrodes from a solution. The procedure was followed by an alignment process between
the electrodes using a dielectrophoretic method. Two sensor structures were tested in cryogenic field
down to 2 K, and the resistance was measured using a standard four-point method. The measurement
results suggest that, at temperatures below 20 K, the temperature coefficient of resistance average
for sensor 1 is 1.473%/K and for sensor 2 is 0.365%/K. From the experimental data, it can be
concluded that the dependence of electrical resistance versus temperature can be approximated by an
exponential equation and, correspondingly, a set of coefficients are calculated. It is further concluded
that the proposed approach described here offers several advantages, which can be employed in the
fabrication of a microsensors for cryogenic applications.

Keywords: single wall carbon nanotubes; cryogenic microsensor; very low temperature measurement;
electrophoretic alignment; nanoscience

1. Introduction

Temperature is one of the most important parameters to measure, especially when we refer
to the cryogenic field. Cryogenics is the science of attaining very low temperatures and observing
its effect on materials, being widely used in various domains such as aerospace, nuclear, medical,
mechanical, chemical, and electrical technologies, or for studying nature. The units used for
temperature measurements are Kelvin (K) or Celsius (◦C). The relation between them is defined
by the Internationally Temperature Scale of 1990 (ITS-90) as: K = ◦C + 273.16. ITS-90 defines the
thermodynamic temperature scale from 0.65 K to the highest temperature measurable in terms
of the Planck radiation law using monochromatic radiation [1]. It specifies several temperature
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ranges between 0.65 and 1357.77 K, and 17 fixed points, which are the equilibrium states of different
pure substances [2]. Based on different temperature-dependent properties [3], various cryogenic
temperature sensors have been developed. Most of the sensors used in research laboratories, pilot
plants and large cryogenic facilities as temperature measurement equipment are resistors, transistors,
diodes, thermocouples and capacitors. Several other temperature measurement techniques, such as
vapor pressure, gas thermometer, acoustic, magnetic susceptibility and noise, require complicated
measurement methodologies and devices, which severely constrain system design [4]. Furthermore,
some of the semiconductors, such as Germanium and Carbon, have excellent thermometric
properties at low temperatures [5]. In general, temperature sensors based on semiconducting
material have negative temperature coefficient (NTC) resistance, where resistance increases with
temperature decrease.

Temperature sensors miniaturization is a challenging task, especially when the process needs
accurate measurements at a specific location requiring fast response time, high sensitivity, and stability
over time, interchangeability, low cost operation, measurement system simplicity and low power
consumption, which further necessitates low heat dissipation rates [6].

Because of their physical dimensions and superior thermal, electrical and mechanical
properties [7,8], carbon nanotubes (CNTs) are viable candidates to be used as sensing element
in a cryogenic temperature microsensor. Since their discovery [9], CNTs have been extensively
studied, especially in sensor design and for different types of measurement apparatus (e.g., chemical
sensors) [10,11]. Depending on the diameter and chirality, CNTs are either metallic or present
semiconductor behavior [12]. When used as sensors, CNTs can provide accurate measurements
at nanoscale and reduce the possibility of interference due to the proximity effect [7], which is very
important for the cryogenic applications, more so in complicated thermal flow system. In addition, the
small size sensor implies very low power consumption, in the range of fractions of a milliwatt [13].
Notwithstanding abundant investigations on growth and fabrication of SWCNT between electrodes
and its use as gas sensors, use of CNTs as temperature sensor has not been researched much thus far.

As an extension of research efforts towards development of cryogenic temperature
sensors [6,14–17], taking advantage of the metallic or semiconducting nature of the purified
SWCNTs [18], we studied a SWCNT based cryogenic temperature sensor, which can measure
temperatures in a very low temperature domain, viz. 2–77 K. Therefore, we first studied the
temperature dependence of CNT layers resistance between 2 K and 77 K. Subsequently, using the
results thus obtained, we present the technique to form bonding bridges of single walled carbon
nanotubes between two electrodes. We also describe our experimental findings on the resistance vs.
temperature (R-T) characteristics of the proposed sensor structures. As research expands in this field,
it is anticipated that the CNTs based sensors for temperature measurement, especially in the cryogenic
field, will be intensely studied and new devices will be developed. The CNTs may emerge as the
structure pillars of the future branches of nanoscience: nanoelectronics and nanodetection [14].

2. Materials and Methods—Sensors Preparation

In a similar manner as described in [14], commercially produced CNTs (single-walled, purchased
from Sigma Aldrich, Munich, Germany, 60% purity) were mixed together with isopropyl alcohol
(proportion 1/10). The resulted solution was rigorously mixed using a sonication bath with controlled
inside temperature of 30 ◦C to avoid alcohol evaporation effect. After 60 min, the solution was
considered as being completely homogenized and then was filtered and dried.

Before deposition of the platinum nanoclusters on the above-mentioned SWCNTs, the nanotubes
suffered a functionalization and drying process. For the deposition process, a solution of H2PtCl6,
1% concentration, was obtained by dissolving chloroplatinic acid hexahydrate in distilled water.
One milliliter of H2PtCl6 solution was extracted and introduced over SWCNTs together with high
purity Hydrogen (5.0). A special bubbling device was used to limit the gas flow and the dimension of
bubbles, as shown schematically in Figure 1.
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Figure 1. Schematic view of sensing fabrication unit with gas distribution system.

For the following experiments, two sensor structures were obtained by employing a dropcast
technique of a small quantity of solution (20 µL) between the electrodes. The first structure (here called
Sensor 1) consists of two copper electrodes on a ceramic substrate with a distance of 1.25 mm between
electrodes. The second structure (here called Sensor 2) consists of two gold electrodes on a Sitall
substrate (crystalline glass-ceramic with ultra-low coefficient of thermal expansion) with a distance of
0.25 mm between electrodes. To align the SWCNTs and to form multilayers of nanotubes between the
two electrodes [19,20], the structures that we prepared were subjected to a dielectrophoresis process by
applying 1 VDC potential, for 1 min, over the electrodes. During this time, dry air at 60 ◦C was blown
over the structures. Further, the sensors were subjected to a high temperature treatment (200 ◦C for
60 min) for achieving structure stability of the sensitive active layer.

3. Characterization—Results and Discussion

3.1. Characterization Methods

The two sensor structures prepared in this investigation were tested at very low temperature in a
refrigeration unit Quantum Design Physical Property Measurement System (PPMS) with EverCool-II®

Cryogen-Free Cooling Technology, model P935A (referred as PPMS, Quantum Design, Inc., GmbH,
Darmstadt, Germany). The PPMS provides a flexible automated workstation that can perform a
variety of experiments requiring precise thermal control in the range 1.9 K to 400 K. The temperature
measurement accuracy is ±0.5%, and temperature stability is ≤0.2% for temperatures ≤10 K and
≤0.02% for temperatures >10 K.

To measure the resistance by the four-wire method, the structures (Sensor 1 and Sensor 2) were
mounted on a standard PPMS sample puck (see Figure 2). Then, the sample puck was introduced
in the PPMS sample chamber, the cold region of the refrigeration unit under investigation, which is
constructed of copper to provide uniform temperature region. The sample puck is connected to the
PPMS acquisition system using 12-pin connector placed on the bottom of the sample chamber. In a
four-wire resistance measurement general configuration, the current is passed through a sample via
two current leads, and two separate voltage leads measure the potential difference across the sample.
To maintain a minimum value of the current adsorbed by the voltage leads, the internal voltmeter
used has a very high impedance.
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Figure 2. Device under test (DUT)—Four point connection to measure resistance.

Scanning electron microscopy (SEM) image, as shown in Figure 3, reveals the alignment, between
the electrodes, of the carbon nanotubes with Pt nanoparticles deposited on them. The role of
the Pt is to facilitate the adherence of the SWCNTs between gold/copper and between individual
SWCNTs, knowing that the length of nanotubes is much shorter than the distance between electrodes.
Strong adherence is expected to be obtained, which is formed during the drying process.
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Figure 3. SEM image of a section of the sensor structure (mag: left: 31 and right: 60 KX).

3.2. Analysis and Interpretation of Results

Both sensors have been cooled several times from room temperature (approximately 300 K) down
to approximately 2 K, until resistance reached a constant value with error less than 1%. This procedure
can be considered as an ageing process. The resulting variations of resistance with temperature for
the studied structures, for two different run tests, initial (Test 1) and after five runs (Test 5), during
heating/cooling cycles, are shown in Figure 4.
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Figure 4. Resistance vs. Temperature (R-T) curves for: Sensor 1 (a); and Sensor 2 (b).

The nanotubes based structures showed sensitivity and fast response at temperature variations,
having the initial resistance, after the ageing, approximately 7.69 kΩ for Sensor 1 and 55.06 kΩ for
Sensor 2. The mechanism of conductivity in SWCNTs structures can be explained by the percolation
theory [21,22] and can be calculated as: σ = 1

LZ , where L is a characteristic length, which depends of
the concentration of sites, Z is the resistance of the path with the lowest average resistance. With a
decrease in temperature, the charge concentration (electrons and holes) decreases, resulting in a
reduced number of charge carriers available for recombination, and, statistically, the conductivity of
the CNTs decreases, whereas the resistivity of the CNTs increases [23].

Using a nonlinear fitting algorithm, from the Origin software package, we investigated several
mathematical expressions capable of describing the experimental data. For both, Sensor 1 and Sensor
2, the experimental data can be well approximated by the following equation:

R(x) = a0 + a1e
−x
b1 + a2e

−x
b2 + a3e

−x
b3 (1)

The value of the coefficients a0, a1, a2, a3, b1, b2, b3 and R2 (Root Mean Square) for Sensor 1 and
Sensor 2, corresponding to Test 1 and Test 5, respectively, are listed in Table 1.

Table 1. The fitting parameters of the Equation (1) corresponding to the experimental data for Sensor 1
and Sensor 2, respectively.

Sensor 1 Sensor 2

Test 1 Test 5 Test 1 Test 5

a0 19,222.98068 7.39290915 21,950.90322 48,419.38356
a1 88,043.71776 37,752.81212 253,217.90828 142,239.71845
a2 254,698.97717 287,769.67141 143,146.18497 142,310.06541
a3 801,570.01493 1,555,450 17,913,000 1,092,000
b1 94.79632 62.17684 26.24794 77.20495
b2 19.37641 7.64496 152.14679 77.21681
b3 6.42804 1.49455 1.19707 8.40832
R2 0.99997 1 0.99291 1

The differences between the experimental results and fitted data, Test 1 and Test 5, for Sensor 1
and Sensor 2, are plotted in Figure 5.
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In Figure 5, it is shown that the differences between the fitted data and experimental data are
very small, suggesting that the empirical equation estimates are almost 100% comparable with the
experimental results, especially after undergoing the ageing process (R2 = 1).

The R-T characteristics are almost linear in temperature domain from 300 K to 77 K, suggesting an
ohmic contact, this being confirmed by [6,7,14,24,25]. Further, our attention was focused on the sensor
characterization after ageing process, on the temperature domain below liquid nitrogen temperature
(77 K). As the temperature moved down from 77 K to approximately 2 K, the sensor structure resistance
increased from 18.3 kΩ to 623 kΩ for Sensor 1, and increased from 153 kΩ to 979 kΩ for Sensor 2,
having an allure that suggests a semiconductor behavior (p-type semiconductor) [14,26,27].

One of the parameters used to characterize a temperature sensor is the Temperature Coefficient of
Resistance (TCR), defined as the relative change of a physical property (resistance) that is associated
with a given change in temperature

TCR =
R − R0

R0(T − T0)
(2)

where R is the resistivity of the sensor structure at temperature T and R0 is the resistivity at a reference
temperature T0 = 0 ◦C [28]. The plotted results for TCR are presented in Figure 6.

Sensors 2017, 17, 71  6 of 10 

 

  

(a) (b) 

Figure 5. The difference between experimental results and simulated results for: Sensor 1 (a); and 

Sensor 2 (b). 

In Figure 5, it is shown that the differences between the fitted data and experimental data are 

very small, suggesting that the empirical equation estimates are almost 100% comparable with the 

experimental results, especially after undergoing the ageing process (
2R  = 1). 

The R-T characteristics are almost linear in temperature domain from 300 K to 77 K, suggesting 

an ohmic contact, this being confirmed by [6,7,14,24,25]. Further, our attention was focused on the 

sensor characterization after ageing process, on the temperature domain below liquid nitrogen 

temperature (77 K). As the temperature moved down from 77 K to approximately 2 K, the sensor 

structure resistance increased from 18.3 kΩ to 623 kΩ for Sensor 1, and increased from 153 kΩ to 979 

kΩ for Sensor 2, having an allure that suggests a semiconductor behavior (p-type semiconductor) 

[14,26,27]. 

One of the parameters used to characterize a temperature sensor is the Temperature Coefficient 

of Resistance (TCR), defined as the relative change of a physical property (resistance) that is 

associated with a given change in temperature  

 
0

0 0

R R
TCR

R T T





 (2) 

where R  is the resistivity of the sensor structure at temperature T  and 0R  is the resistivity at a 

reference temperature 
0 0 CT    [28]. The plotted results for TCR are presented in Figure 6. 

 

 

 

(a) (b) 

Figure 6. Temperature coefficient of resistance for: Sensor 1 (a); and Sensor 2 (b). 
Figure 6. Temperature coefficient of resistance for: Sensor 1 (a); and Sensor 2 (b).

In Figure 6, it can be further seen that Sensor 1 has a bigger change in resistance than Sensor
2, especially at temperatures below 20 K, where the TCR average for Sensor 1 is 1.473%/K and for
Sensor 2 is 0.365%/K. The CNTs resulted films used in the structures of Sensor 1 and Sensor 2, and
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the contacts between them together with the terminal electrodes were not affected or destroyed by
temperature variations occurring because of possible mismatches at the device interfaces [6]. The
sensors, which were tested in the domain 2–300 K with slow heating–cooling cycles, proved to present
very good stability. To intensely investigate the R-T curves, we plotted the dimensionless sensitivity
(as shown in Figure 7) and absolute temperature resolution (Figure 8) for each structure.

The dimensionless sensitivity SD =
(

T
R

)(
dR
dT

)
gives the relative temperature sensitivity of the

sensor at temperature T. SD ranges from 0.2 to 6 for most common cryogenic temperature sensors,
depending on temperature and sensor type [29]. A large specific sensitivity allows the resolution of
small temperatures relative to the temperature measured [4], but the temperature range is dependent
and, in some situations, is limited by the resistance measurement system accuracy.
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where εT is the temperature resolution of a sensor measuring a temperature T, εV = 19.07 nV is the
measurement system resolution, I = 1 mA is excitation current and dR
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From graphics in Figure 7, it is evident that the effect of temperature on the sensor resistance
is about the same for both sensor structures. In the domain analyzed here, viz. 2–77 K, Sensor 2
is more sensitive to temperature change than the Sensor 1 due to the nanotube density between
the structures’ electrodes and due to the gap dimension between Cu electrodes (Sensor 1) and gold
electrodes (Sensor 2).

Additionally, we studied the influence of the magnetic field on the Sensor 1 in the temperature
range 2–77 K. Figure 9 shows the temperature dependence of the resistance under the influence
of a magnetic field of B = 2 T (Tesla), compared with the characteristic measured at zero field.
We conclude that the sensor is sensitive to the magnetic field with steeper drop in resistance, especially
at temperatures below 15 K.
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4. Discussion and Conclusions

We have investigated resistance vs. temperature characteristic for two different temperature
sensors with SWCNTs as sensing element. The sensors were obtained by dropcasting the nanotubes
from a solution between two electrodes of a support structure, followed by a dielectrophoresis
alignment process and high temperature annealing. Using this methodology, stable layers of aligned
SWCNTs were obtained. For temperature range under investigation, i.e., from 300 K to 2 K, we have
established an empirical equation for the sensors characteristics R(T) in the form of an exponential
equation, consisting of sum of three exponential terms and one constant. This is indicative of
a semiconductor behavior for the SWCNTs, and fit the existing data. The differences between
experiments and fitted data are very small, thus confirming a very good mathematical approximation
of the experimental results. In addition, the structures’ specific sensitivity, thermal coefficient of
resistance and absolute temperature resolution are presented. These experimental results show a good
reproducibility over the entire temperature range. We highlighted that the SWCNTs based structures
were very sensitive, especially in the temperature range 2–77 K. The R(T) characteristic obtained here
proves that CNT-based sensors can be successfully used for cryogenic temperature measurements and
we expect that it will be intensely studied for temperature measurements for future application.
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