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Abstract: Cement-based piezoelectric composite, has been widely used as a kind of smart material
in structural health monitoring and active vibration control. However, transient dynamic loads
such as impact loads may cause serious damage to the composite. Considering the electrode layer
effect, this paper aimed to investigate the theoretical response of a 2-2 cement-based piezoelectric
composite sensor subjected to an impact load. The vibration behaviors are analyzed by using the mode
summation method and the virtual work principle. To simulate the impact load, transient haversine
wave loads are assumed in the numerical simulation. Close agreements between theoretical and
numerical solutions are found for peak transient haversine wave loads larger than 500 kPa, therefore
proving the validity of the theory. Moreover, the influence of the electrode material and geometrical
parameters on the dynamic characteristics of this sensor are considered. The present work should be
beneficial to the design of this kind of sensor by taking into account the electrode layer effect.

Keywords: 2-2 cement-based piezoelectric sensor; impact response; theoretical solutions; electrode
layer effect

1. Introduction

With the advances in smart or intelligent structure technology, piezoelectric composites are widely
used in structural health monitoring [1–3]. These smart devices are sensitive to the influences from
the external environment and have extraordinary compatibility with the most popular construction
materials used in civil engineering such as cement and concrete. The design and fabrication of
composite materials open new avenues for optimizing the electrical, magnetic, and mechanical
properties of sensors for specific applications [4–6].

According to the different connectivity of each phase in the piezoelectric composite, piezoelectric
composites can be divided into 10 basic types such as 0-0, 0-1, 0-3, 2-2 and so on. The first number
represents the piezoelectric phase and the second number represents the non-piezoelectric phase. A 2-2
cement-based piezoelectric composite is the composite where a two-dimensional piezoelectric plate
is embedded in a two-dimensional cement matrix [7]. Li and Zhang fabricated 2-2 cement-based
piezoelectric composites using hardened Portland cement and studied the sensing performance
of such composites at low frequency [8]. Investigation of the dielectric and acoustic impedance
properties of 2-2 barium zirconate titanate-Portland cement composites reveals that the composites
have higher piezoelectric voltage coefficients and lower acoustic impedance values than pure
ceramic [9]. Cheng et al. studied the effects of composite thickness on the dielectric, piezoelectric
and electromechanical properties of the composite [10]. The receiving piezoelectric transducer can be
fabricated by decreasing the thickness. Moreover, mathematical models to describe the deformation
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and electrical behaviors have also been studied by numerous researchers. For example, based on the
theory of elasticity, static analyses of piezoelectric curved composites and multi-layered piezoelectric
cantilevers were performed by Zhang et al. [11–14], who further established an analytical model of
the dynamic properties of the 2-2 cement-based piezoelectric transducer subjected to a uniformly
distributed harmonic load and external harmonic electrical potential [15]. Chen et al. analyzed the
free vibration of laminates beams by using the state space method and the differential quadrature
method [16]. Wang and Shi presented the dynamic behaviors of piezoelectric composite stack
transducers and discussed the influence of the electrode thickness on their dynamic characteristics [17].

Few of the published papers have studied the dynamic performance of piezoelectric composite
sensors subjected to impact loads, especially the theoretical aspect. Zhang et al. studied the dynamic
properties of piezoelectric structures subjected to simpact load and gave theoretical solutions of the
mechanical and electrical behaviors of the piezoelectric structures [18]. Yin et al. presented a mixed
finite element formulation for modelling the behavior of a piezoelectric composite and analyzed the
response of distributed sensors made of PVDF film when the composite was subjected to low velocity
impacts [19]. Ueda studied the transient response of a functionally graded piezoelectric material strip
with a vertical crack under the action of normal impacts [20,21]. In many engineering applications,
piezoelectric composite may experience transient dynamic loads, which could induce certain hidden
damages (matrix cracking, fiber breakage, etc.). It is therefore important to understand the dynamic
behaviors of cement-based piezoelectric sensors.

In the present study, we aim to provide a mathematical model to describe the impact mechanical
response of a 2-2 cement-based piezoelectric composite subjected to impact load. The fundamental
equations and wave equations are summarized in Section 2 based upon piezo-elasticity. In the
following section, the vibration behaviors of the composite are obtained by using the mode summation
method and the principle of virtual work. In Section 4, the transient harversine wave load is used for the
numerical simulation. The numerical results verified the analytical solutions. Moreover, the influence of
the material and geometrical parameters on mechanical and electrical behaviors of sensor is discussed.
It can be seen that the proposed model would provide guidance for sensor structure design, material
selection and impact load design in simulations and experiments.

2. Basic Equations

The 2-2 cement-based piezoelectric sensor consists of a piezoelectric layer P#3, elastic electrode
layers E#2, E#4 and cement layers C#1, C#5, which are arranged in an alternating manner as shown
in Figure 1.
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Figure 1. Schematic 2-2 cement-based piezoelectric sensor under impact load.
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The thickness of layer i are determined by li+1 − li (i = 1, 2, 3, 4, 5). The composite is excited
longitudinally by the impact load δ(t) at its free end. The piezoelectric layer is polarized along
its thickness direction and the electrode surface is perpendicular to the thickness direction of the
piezoelectric layer. In order to analyze the transient phase of the composite vibration, the following
assumptions are adopted: (1) all of the constitutive materials are linear and the deformations are small;
(2) one-dimensional assumption. When the composite is deformed, the cross-section maintain a plane
and the axial stress is uniformly distributed on the cross-section; (3) damping is not considered. For the
piezoelectric layer P#3, the body force and body charge are neglected, the governing equations can be
expressed as follows: 

∂2wp3
∂t2 = 1

ρp

∂σp3
∂z

σp3 = C33pεp3 − e33Ez

εp3 =
∂wp3

∂z

(1)


Dz = e33εp3 + εS

33Ez

Ez = − ∂φ
∂z

∂Dz
∂z = 0

(2)

where σp3, εp3 and wp3 are the stress, strain, and displacement of the piezoelectric layer P#3 along
z-direction, respectively. Dz and φ represent the electric displacement and electric potential in the
along z-direction. C33p, e33 and εS

33 are the elastic stiffness coefficient, piezoelectric coefficient and
permittivity coefficient of the piezoelectric material, respectively. ρp is the density of the piezoelectric
material. Combining Equations (1) and (2), the following equation are obtained: ρp

∂2wp3
∂t2 = C33p

∂2wp3
∂z2 + e33

∂2φ

∂z2

εS
33

∂2φ

∂z2 = e33
∂2wp3

∂z2

(3)

Combining Equation (3), one gets the following wave equation:

∂2wp3

∂t2 − Ca
2 ∂2wp3

∂z2 = 0 (4)

where Ca =
√

E0/ρp , E0 = C33p + e33
2/εS

33. Ca represents the propagation velocity of the vibration
wave in the piezoelectric material.

For the cement layer C#i (i = 1, 5), the body charge are neglected, and the basic equations can
be expressed as follow: 

∂2wci
∂t2 = 1

ρc

∂σci
∂z

σci = C33cεci

εci =
∂wci
∂z

(5)

where σci, εci and wci are the stress, strain, and displacement of the cement layer C#i along z-direction,
respectively. C33c and ρc are the elastic stiffness coefficient and density of the cement material.
Combining Equation (5), one gets the following wave equation:

∂2wci
∂t2 − Cb

2 ∂2wci
∂z2 = 0 (6)

where Cb =
√

C33c/ρc and represents the propagation velocity of the vibration wave in the
cement material.
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For the elastic electrode layer E#i (i = 2, 4), the body charge are neglected, and the basic
equations can be expressed as follow: 

∂2wEi
∂t2 = 1

ρE

∂σEi
∂z

σEi = C33EεEi

εEi =
∂wEi

∂z

(7)

where σEi, εEi and wEi are the stress, strain, and displacement of the elastic electrode layer E#i along
z-direction, respectively. C33E and ρE are the elastic stiffness coefficient and density of the elastic
electrode material. Similarly, wave equation can be easily obtained:

∂2wEi
∂t2 − Cc

2 ∂2wEi
∂z2 = 0 (8)

where Cc =
√

C33E/ρE and represents the propagation velocity of the vibration wave in the elastic
electrode material.

3. Accurate Vibration Analysis of 2-2 Cement Based Piezoelectric Composite

Figure 1 shows the 2-2 cement-based piezoelectric composite sensor subjected to the impact
load. In order to obtain the accurate vibration solution, we use the mode summation method and the
principle of the virtual work in this section. It is assumed that the solutions for the displacements are:

wpi(z, t) = Zpi(z)Tn(t); i = 3

wci(z, t) = Zci(z)Tn(t); i = 1, 5

wEi(z, t) = ZEi(z)Tn(t); i = 2, 4

(9)

where Zci(z), ZEi(z) and Zpi(z) are normal modes of the cement, piezoelectric and elastic electrode
layers for the longitudinal vibration. Tn is the function of t which can be determined by the
initial conditions.

Substituting the above equations into Equations (4), (6) and (8), we obtain:
Zpi

′′ (z) + λiZpi(z) = 0; li−1 ≤ z ≤ li, i = 3

Zci
′′ (z) + λiZci(z) = 0; li−1 ≤ z ≤ li, i = 1, 5

ZEi
′′ (z) + λiZEi(z) = 0; li−1 ≤ z ≤ li, i = 2, 4

(10)


Tn ′′ (t) + λiCa

2Tn(t) = 0; t ≥ 0, i = 3

Tn ′′ (t) + λiCb
2Tn(t) = 0; t ≥ 0, i = 1, 5

Tn ′′ (t) + λiCc
2Tn(t) = 0; t ≥ 0, i = 2, 4

(11)

where λi are eigenvalues.
By solving Equation (10), the solutions of the normal modes are shown as follow:

Zpi(z) = ain cos
√

λinz + bin sin
√

λinz; li−1 ≤ z ≤ li, i = 3

Zci(z) = ain cos
√

λinz + bin sin
√

λinz; li−1 ≤ z ≤ li, i = 1, 5

ZEi(z) = ain cos
√

λinz + bin sin
√

λinz; li−1 ≤ z ≤ li, i = 2, 4

(12)

where ain and bin will be determined by the boundary conditions.
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In order to solve ain and bin, the boundary and connecting conditions are written as (including
the electrical boundary conditions and the initial conditions):

wc1(0, t) = 0;
∂wc5(l5, t)

∂z
= 0; t ≥ 0 (13a)

wc1(l1, t) = wE2(l1, t); wE2(l2, t) = wp3(l2, t); (13b)

wp3(l3, t) = wE4(l3, t); wE4(l4, t) = wc5(l4, t); t ≥ 0 (13c)

C33c
∂wc1(l1, t)

∂z
= C33E

∂wE2(l1, t)
∂z

; C33E
∂wE2(l2, t)

∂z
= E0

∂wp3(l2, t)
∂z

; (13d)

E0
∂wp3(l3, t)

∂z
= C33E

∂wE4(l3, t)
∂z

; C33E
∂wE4(l4, t)

∂z
= C33c

∂wc5(l5, t)
∂z

; t ≥ 0 (13e)

wpi(z, 0) =
∂wpi(z, 0)

∂t
= 0; i = 3 (13f)

wci(z, 0) =
∂wci(z, 0)

∂t
= 0; i = 1, 5 (13g)

wEi(z, 0) =
∂wEi(z, 0)

∂t
= 0; i = 2, 4 (13h)

φi
∣∣z=l2 = 0 ; D ≡ 0 (13i)

Substitution of Equation (9) into Equation (13) leads to:

Zc1(l1) = ZE2(l2); C33cZc1
′(l1) = C33EZE2

′(l1) (14a)

ZE2(l2) = Zp3(l2); C33EZE2
′(l2) = E0Zp3

′(l2) (14b)

Zp3(l3) = ZE4(l3); E0Zp3
′(l3) = C33EZE4

′(l3) (14c)

ZE4(l4) = Zc5(l4); C33EZE4
′(l4) = C33cZc5

′(l4) (14d)

Zc1(0) = 0; Zc5
′(l5) = 0 (14e)

By combining Equations (11), (13b,c) and (14a–c), one obtains the following relation:√
λ1Cb =

√
λ2Cc =

√
λ3Ca =

√
λ4Cc =

√
λ5Cb (15)

Substitution of Equation (12) into Equation (14) leads to the following equations:

a1n = 0 (16a)

ain cos
√

λin li + bin sin
√

λin li − ai+1,n cos
√

λi+1,n li − bi+1,n sin
√

λi+1n li = 0 (16b)

Ci
√

λin(−ain sin
√

λin li + bin cos
√

λin li)− Ci+1

√
λi+1,n(−ai+1,n sin

√
λi+1,n li + bi+1,n cos

√
λi+1,n li) = 0 (16c)

−a5n
√

λ5n sin
√

λ5n l5 + b5n
√

λ5n cos
√

λ5n l5 = 0 (16d)

here i = 2, 3, 4, and correspondingly C1 = C5 = C33c, C2 = C4 = C33E, C3 = E0.
By solving the linear Equation (16b,c) with two unknowns, the expressions of ain and bin

are obtained:

ain = ai−1,n(cos
√

λinli−1 cos
√

λi−1,nli−1 +
Ci−1
√

λi−1,n

Ci
√

λin
sin
√

λinli−1 sin
√

λinli)+

bi−1,n(sin
√

λi−1,nli−1 cos
√

λinli−1 −
Ci−1
√

λi−1,n

Ci
√

λin
cos

√
λi−1,nli−1 sin

√
λinli−1)

bin = ai−1,n(cos
√

λi−1,nli−1 sin
√

λinli−1 −
Ci−1
√

λi−1,n

Ci
√

λin
sin
√

λi−1,nli−1 cos
√

λinli−1)+

bi−1,n(sin
√

λinli−1 sin
√

λi−1,nli−1 +
Ci−1
√

λi−1,n

Ci
√

λin
cos

√
λi−1,nli−1 cos

√
λinli−1)

(17)

here i = 2, 3, 4 and we assume that b1n = 1.
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It should be noted that when i = 4, there are three linear Equation (16b–d) with two unknowns:
a5n cos

√
λ5nl4 + b5n sin

√
λ5nl4 = a4n cos

√
λ4nl4 + b4n sin

√
λ4nl4

a5n sin
√

λ5nl4 − b5n cos
√

λ5nl4 = C33E
√

λ4n
C33C
√

λ5n
(a4n sin

√
λ4nl4 − b4n cos

√
λ4nl4)

−a5n
√

λ5n sin
√

λ5nl5 + b5n
√

λ5n cos
√

λ5nl5 = 0

(18)

Nonhomogeneous equations have nontrivial solutions, which requires:∣∣∣∣∣∣∣∣
cos
√

λ5nl4 sin
√

λ5nl4 a4n cos
√

λ4nl4 + b4n sin
√

λ4nl4

sin
√

λ5nl4 − cos
√

λ5nl4
C33E
√

λ4n
C33c
√

λ5n
(a4n sin

√
λ4nl4 − b4n cos

√
λ4nl4)

− sin
√

λ5nl5 cos
√

λ5nl5 0

∣∣∣∣∣∣∣∣ = 0 (19)

By solving the above determinant, we obtain the following equation:

a4n(
C33E
√

λ4n
C33c
√

λ5n
sin
√

λ4nl4 cos
√

λ5nh5 + cos
√

λ4nl4 sin
√

λ5nh5)+

b4n(−C33E
√

λ4n
C33c
√

λ5n
cos
√

λ4nl4 cos
√

λ5nh5 + sin
√

λ4nl4 sin
√

λ5nh5) = 0
(20)

where h5 = l5 − l4.
Based on Equation (15), we define:

√
λ1nCb =

√
λ2nCc =

√
λ3nCa =

√
λ4nCc =

√
λ5nCb =

√
λn (21a)

h1 = l1, h2 = l2 − l1, h3 = l3 − l2, h4 = l4 − l3, h5 = l5 − l4 (21b)

t1 =
l1
Cb

, t2 =
h2

Cc
, t3 =

h3

Ca
, t4 =

h4

Cc
, t5 =

h5

Cb
, T0 = t1 + t2 + t3 + t4 + t5,

√
λnT0 =

√
λn (21c)

By combining Equation (21), one obtains:

√
λ1n =

√
λ5n =

√
λn

A
,
√

λ2n =
√

λ4n =

√
λn

B
,
√

λ3n =

√
λn

C
(22)

where A = T0Cb, B = T0Cc, C = T0Ca.

By substituting Equation (22) into Equation (20), the value of
√

λn is given by:

a4n(
A·C33E
B·C33c

sin
√

λn
B l4 cos

√
λn

A h5 + cos
√

λn
B l4 sin

√
λn

A h5)+

b4n(− A·C33E
B·C33c

cos
√

λn
B l4 cos

√
λn

A h5 + sin
√

λn
B l4 sin

√
λn

A h5) = 0
(23)

After we obtain the value of
√

λn by Equation (23),
√

λ1n,
√

λ2n,
√

λ3n,
√

λ4n, and
√

λ5n can be
obtained by Equation (21a).

To solve the expressions of Tn(t) in Equation (9), we consider the initial condition of the sensor.
By substituting Equation (9) into Equation (13f–h), we have:

Tn(t) =
.
Tn(t) = 0 (24)

At t = 0, there are three forces, namely the inertia forces, the elasticity force due to the
deformation in each element of the composite, and the impact force δ(t) loaded at the free end.
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By taking any displacement δu satisfying the boundary and connecting conditions as a virtual
displacement, according to Equation (12), δu can be given as follows:

δupi = Zpi(z) = ain cos
√

λinz + bin sin
√

λinz; li−1 ≤ z ≤ li, i = 3 (25a)

δuci = Zci(z) = ain cos
√

λinz + bin sin
√

λinz; li−1 ≤ z ≤ li, i = 1, 5 (25b)

δuEi = ZEi(z) = ain cos
√

λinz + bin sin
√

λinz; li−1 ≤ z ≤ li, i = 2, 4 (25c)

The virtual work δWi of the inertia force on the virtual displacement is expressed as follows:

δWi =
l1∫
0
(−ρc Adx)· ∂

2wc1
∂t2 ·δuc1 +

l2∫
l2

(−ρE Adx)· ∂
2wE2
∂t2 ·δuE2 +

l3∫
l2

(
−ρp Adx

)
· ∂

2wp3
∂t2 ·δup3

+
l4∫

l3

(−ρE Adx)· ∂
2wE4
∂t2 ·δuE4+

l5∫
l4

(−ρc Adx)· ∂
2wc5
∂t2 ·δuc5

(26)

By substituting Equations (9) and (25) into Equation (26), δWi can be obtained as:

δWi = −A
..
Tn(t)·

(
ρcB1 + ρEB2 + ρpB3 + ρEB4 + ρcB5

)
(27)

where Bi =
∫ li

li−1

(
ain cos

√
λinz + bin sin

√
λinz

)2dz, i = 1, 2, 3, 4, 5.
The virtual work δWE of the elastic force on the virtual displacement is expressed as follows:

δWE =
l1∫
0
(C33c Adx)· ∂

2wc1
∂z2 ·δuc1 +

l2∫
l2

(C33E Adx)· ∂
2wE2
∂z2 ·δuE2 +

l3∫
l2

(E0 Adx)· ∂
2wp3
∂z2 ·δup3

+
l4∫

l3

(C33E Adx)· ∂
2wE4
∂z2 ·δuE4+

l5∫
l4

(C33c Adx)· ∂
2wc5
∂z2 ·δuc5

(28)

By substituting Equations (9) and (25) into Equation (28), δWE can be obtained as:

δWE = −ATn(t)·(λ1nC33cB1 + λ2nC33EB2 + λ3nE0B3 + λ4nC33EB4 + λ5nC33cB5) (29)

In order to obtain the virtual work δWδ(t) of the impact load δ(t), by substituting l5 into
Equation (25b) to obtain the virtual displacement at the free end, δWδ(t) is expressed as:

δWδ(t) = δ(t)A
(

a5n cos
√

λ5nl5 + b5n sin
√

λ5nl5
)

(30)

Summation of δWi, δWE and δWδ(t) gives the total virtual work, equating it to zero:

δWi + δWE + δWδ(t) = 0 (31)

Substituting Equations (27), (29) and (30) into Equation (31), one obtains:

..
Tn(t) + λnTn(t) =

δ(t)
Mn
·(a5n cos

√
λ5nl5 + b5n sin

√
λ5nl5) (32)

where Mn = ρcB1 + ρEB2 + ρpB3 + ρEB4 + ρcB5 and the Dirac function δ(t) can be expressed as:

δ(t) =

{
∞, t = 0
0, t 6= 0

(33)
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Writing the solution of the Equation (32) in the form of the Duhamel’s integral, one obtains:

Tn(t) = (a5n cos
√

λ5n l5+b5n sin
√

λ5n l5)

Mn
√

λn
·
∫ t

0 δ(τ) sin
√

λn(t− τ)dτ

= (a5n cos
√

λ5n l5+b5n sin
√

λ5n l5)

Mn
√

λn
· sin

√
λnt

(34)

Therefore, the accurate vibration analysis of the 2-2 cement-based piezoelectric composite sensor
excited by the impact load can be obtained as:

Displacement functions:

wci(z, t) =
∞
∑

n=1

Dn√
λn
· sin

√
λnt(ain cos

√
λinz + bin sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 1, 5

wEi(z, t) =
∞
∑

n=1

Dn√
λn
· sin

√
λnt(ain cos

√
λinz + bin sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 2, 4

wpi(z, t) =
∞
∑

n=1

Dn√
λn
· sin

√
λnt(ain cos

√
λinz + bin sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 3

(35)

where Dn = (a 5n cos
√

λ5nl5 + b5n sin
√

λ5nl5
)
/Mn;

Stress functions:

σci(z, t) =
∞
∑

n=1

C33c Dn
√

λin√
λn

· sin
√

λnt(bin cos
√

λinz− ain sin
√

λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 1, 5

σEi(z, t) =
∞
∑

n=1

C33E Dn
√

λin√
λn

· sin
√

λnt(bin cos
√

λinz− ain sin
√

λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 2, 4

σpi(z, t) =
∞
∑

n=1

E0Dn
√

λin√
λn
· sin

√
λnt(bin cos

√
λinz− ain sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 3

(36)

Strain functions:

εci(z, t) =
∞
∑

n=1

Dn
√

λin√
λn
· sin

√
λnt(bin cos

√
λinz− ain sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 1, 5

εEi(z, t) =
∞
∑

n=1

Dn
√

λin√
λn
· sin

√
λnt(bin cos

√
λinz− ain sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 2, 4

εpi(z, t) =
∞
∑

n=1

Dn
√

λin√
λn
· sin

√
λnt(bin cos

√
λinz− ain sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 3

(37)

Velocity functions:

vci(z, t) =
∞
∑

n=1
Dn· cos

√
λnt(ain cos

√
λinz + bin sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 1, 5

vEi(z, t) =
∞
∑

n=1
Dn· cos

√
λnt(ain cos

√
λinz + bin sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 2, 4

vpi(z, t) =
∞
∑

n=1
Dn· cos

√
λnt(ain cos

√
λinz + bin sin

√
λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 3

(38)

Acceleration functions:

aci(z, t) = −
∞
∑

n=1
Dn
√

λn· sin
√

λnt(ain cos
√

λinz + bin sin
√

λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 1, 5

aEi(z, t) = −
∞
∑

n=1
Dn
√

λn· sin
√

λnt(ain cos
√

λinz + bin sin
√

λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 2, 4

api(z, t) = −
∞
∑

n=1
Dn
√

λn· sin
√

λnt(ain cos
√

λinz + bin sin
√

λinz); t ≥ 0, li−1 ≤ z ≤ li, i = 3

(39)
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The electric potential of the piezoelectric layer:

φ(z, t) =
∞
∑

n=1

e33Dn

εS
33

√
λn
· sin

√
λnt[a3n(cos

√
λ3nz− cos

√
λ3nl2) + b3n(sin

√
λ3nz− sin

√
λ3nl2)]; t ≥ 0, l2 ≤ z ≤ l3 (40)

Electric field intensity of piezoelectric layer:

E(z, t) =
∞

∑
n=1
− e33Dn

√
λ3n

εS
33

√
λn
· sin

√
λnt(b3n cos

√
λ3nz− a3n sin

√
λ3nz); t ≥ 0, l2 ≤ z ≤ l3 (41)

Till now, all the mechanical and electrical solutions have been obtained by using the mode
summation method and the principle of virtual work.

4. Comparisons and Discussions

In this section, by comparing the theoretical and the numerical solutions, the modal interception
of the mode summation method, and the critical impact load value in the numerical simulation are
discussed. We also analyze the influence of the material and geometrical parameters on the mechanical
and electrical behaviors of the sensor.

4.1. Comparions between the Theoretical Solutions and the Numerical Solutions

The thickness of the sensor is taken as 0.02 m. The material properties used in Li’s experiments [22]
are adopted and are listed in Table 1. ANSYS is used for the numerical simulation, where an analytical
model of the size 0.001 m × 0.001 m × 0.02 m is considered. The piezoelectric layer is defined as
a Solid5 unit, cement layers and electrode layers are both defined as Solid45 units. The interlayer
contact is glue. The unit partition of the model is divided into five segments along the x-axis and y-axis,
and 100 segments along the z-axis by using the free meshing method. The upper and lower surfaces of
the piezoelectric layer in the z-axis direction are subjected to the piezoelectric coupling. The electric
potential of the lower surface of the piezoelectric layer is set to zero. The model is loaded and solved
after the symmetrical boundary conditions are set on the four sides of the model. The impact load
Q(t) used in the numerical simulation has the form of a transient haversine wave and is shown in
Figure 2. The relation

∫ +∞
−∞ Q(t)dt = 1 holds. The theoretical solutions are worked out by using

common programming language with only about 6s. The calculation time of ANSYS simulation is
13 min.

Figure 3a,b show the influences of the number of modes n involved in the summation on the
displacement. It is found that the participation of the high-order modes would cause slight increase in
the displacement amplitude and longer vibration duration. There are not much dramatic changes in
the modal curves when high-order modes join in. The theoretical solutions of the electric potential and
stress are plotted in Figure 3c,d, where n = 3.

Table 1. Properties of piezoelectric ceramics, elastic electrode and cement.

Material Thickness Density Elastic Stiffness
Coefficient

Poisson’s
Ratio

Piezoelectric
Coefficient

Permittivity
Coefficient

Ordinary
Portland Cement 0.004 m 2500 kg/m3 2.5× 1010 Pa 0.2 / /

Piezoelectric
Ceramics 0.010 m 5700 kg/m3 6.0× 1010 Pa / 0.75 C/m2 52.5ε0

1

H62-Brass 0.001 m 8430 kg/m3 10.0× 1010 Pa 0.34 / /
1 ε0 = 8.85 × 10 −12 F/m is the vacuum dielectric constant.
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; (c) Electric potential φ(l 3, t); (d) Stress σp(l 3, t
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In order to obtain the critical impact load value in the numerical simulation, comparisons between
theoretical solutions and the numerical solutions with different peak value of the impact load Q(t) are
shown in Figure 4. The peak value of Q(t) takes 300 kPa, 400 kPa, 500 kPa and 600 kPa respectively.
It is observed that the numerical solution is closer to the theoretical solution as the peak value of Q(t)
becomes larger. In particular, the electric potential amplitude in the simulation with 300 kPa peak value
is approximately 50 V less than the theoretical amplitude, and the stress amplitude with 400 kPa peak
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value is less about 400 kPa than the theoretical amplitude (see Figure 4c,d). Therefore, it is appropriate
to use the impact load Q(t) with 500 kPa or larger peak value in the numerical simulation.
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4.2. Material and Geometrical Parameters of Composite Properties

It is assumed that three types of elastic electrode layers are made of H62-brass, aluminum
and (gold-tin, 80% wt % Au-20 wt % Sn), respectively. The material constants of H62-brass [17],
aluminum [23] and (gold-tin, 80% wt % Au-20 wt % Sn) [24] are listed in Table 2.

Table 2. Properties of elastic electrode.

Material Density Elastic Stiffness Coefficient

H62-Brass 8430 kg/m3 10× 1010 Pa

Aluminum 2536 kg/m3 7.0× 1010 Pa

Gold-tin 80% wt % Au 20 wt % Sn 16, 900 kg/m3 13.73× 1010 Pa

Figure 5 demonstrates the displacement wc(l 5, t0), electric potential φ(l 3, t0) and stress σc(l 3, t0)

versus the thickness ratio h3/h2. Here t0 = 0.70 × 10−5 s, the first displacement amplitude appeared
at t0 (shown in Figure 2a). h3 and h2 are the thickness of the piezoelectric layer and electrode layer,
respectively. Meanwhile, the influence of the elastic electrode material on the displacement, electric
potential and stress are also shown. By keeping the total thickness l5 and the thickness of piezoelectric
layer h3 constant, it is observed that when h3/h2 = 4, the internal stresses and electric potential
are minimal. The tip displacement is larger with a thinner electrode layer. This is an indication that
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the mechanical and electrical characteristics can be enhanced by tailoring the geometry of the sensor.
The impact of aluminum on the mechanical and electrical behaviors are relatively larger.Sensors 2017, 17, 2035 13 of 19 
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Figure 6 shows the displacement wc(l 5, t0), electric potential φ(l 3, t0) and stress σc(l 1, t0) as
functions of C33p respectively. The tip displacement and electric potential both decrease, while the
internal stress increases, as C33p grows. It can be concluded that a sensor with smaller value of C33p
can provide larger displacement and electric potential, therefore further causing smaller internal stress.
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functions of ε33
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increases and the trend flattens when ε33
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Figure 7 illustrates the displacement wc(l 5, t0), electric potential φ(l 3, t0) and stress σc(l 1, t0) as
functions of e33 respectively. It can be easily seen that the influence of e33 on the electric potential is
more obvious. The larger e33 is, the larger the electric potential generated is.
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Figure 8 plots the displacement wc(l 5, t0), electric potential φ(l 3, t0) and stress σc(l 1, t0) as
functions of εS

33/ε, respectively. It can be described that the electric potential decreases as εS
33/ε

increases and the trend flattens when εS
33/ε is larger than 50. Figures 6–8 also reveal the influence

of the thickness ratio h3/l5 on the mechanical and electrical behaviors. Composites with thicker
piezoelectric layers can generate larger electric potential as well as larger internal stresses and smaller
tip displacements. A composite with a thinner piezoelectric layer has better mechanical behaviors.
h3/l5 of 0.50 is a relatively good geometrical parameters for the sensor.
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The influence of the piezoelectric material on the displacement w(z, t0) electric potential φ(z, t0)

stress σ(z, t0) are shown in Figure 9. PZT-5H, PZT-4 and PVDF [25] are discussed as common
piezoelectric materials, and a comparison with Li’s experiments [22] is presented. The material
constants of PZT-5H, PZT-4 and PVDF are listed in Table 3.

Table 3. Properties of piezoelectric materials.

Material Density Elastic Stiffness Coefficient Piezoelectric Coefficient Permittivity Coefficient

PZT-5H 7500 kg/m3 11.7× 1010 Pa 23.3 C/m2 1470ε0
1

PZT-4 7500 kg/m3 11.5× 1010 Pa 15.1 C/m2 635ε0
1

PVDF 1780 kg/m3 0.25× 1010 Pa 0.16 C/m2 13ε0
1

1 ε0 = 8.85 × 10 −12 F/m is the vacuum dielectric constant.

For PVDF, obvious differences in mechanical and electrical behaviors are observed as compared
to the case for PZT, as shown in Figure 9. z is the direction along the thickness direction of the
composite. The tip displacement and electric potential are large enough for the sensor under impact
load. Meanwhile, the resulting stress is relatively small compared with PZT.
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with the mode summation method and the principle virtual work. Through comparisons with 
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summate the first three modes. Numerical simulations have good agreement with the theoretical 
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5. Conclusions

Based on the theory of piezo-elasticity, an accurate mechanical and electrical analysis of the
2-2 cement-based piezoelectric sensor are presented in this paper. Theoretical solutions are obtained
with the mode summation method and the principle virtual work. Through comparisons with
numerical solutions, the following conclusions can be drawn:

(1) For theoretical solutions, the vibration modal curves of the sensor subjected to the impact load
have no obvious change after the addition of high-order modes. It’s sufficient to analyze and summate
the first three modes. Numerical simulations have good agreement with the theoretical solutions when
the peak value of impact load Q(t) is larger than 500 kPa.

(2) By keeping the total thickness of the sensor and the thickness of piezoelectric layer h3 constant,
the sensor shows good mechanical properties with a thickness ratio h3/h2 = 4 and good electrical
property with a thickness ratio h3/h2 = 2. Aluminum as the elastic electrode material has a relatively
large impact on the tip displacement, electric potential and internal stress.

(3) Through adjusting the thickness of layers and material parameters, the displacement, electric
potential and stress of the sensor could be optimized. The coefficient C33p has obvious influence on
wc(l 5, t0), σc(l 1, t0) and φ(l 3, t0); while e33 and εS

33/ε have larger influence on φ(l 3, t0). For the sensor,
smaller C33p and εS

33/ε, larger e33 would provide better mechanical and electrical behaviors. PVDF as
piezoelectric material can provide stronger electric power as well as causing smaller internal stress.

(4) The frequency of the composite could also be controlled by choosing different materials and
tailoring the geometry of the composite. The thicker the piezoelectric layer, the greater the effect of the
piezoelectric coefficients on the frequency (lager changing rate).

By analyzing the dynamic characteristics of the sensor, the present work would provide certain
guidance for the sensor structure design, material selection and impact load design, both in simulations
and experiments.
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