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Abstract: Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most
common navigation solution for underwater vehicles. Due to the complex underwater environment,
the velocity information provided by DVL always contains some errors. To improve navigation
accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm
for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast
to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because
of the existence of the water current. In order to leverage the strengths of the ZUPT method
and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for
the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and
INS/ZUPT models are constructed and operated in parallel, with weights calculated according
to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the
proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the
INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly
distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the
effectiveness of the proposed algorithm is also verified.

Keywords: INS/DVL integrated navigation system; IMM; dynamic ZUPT; underwater navigation

1. Introduction

Currently, precise positioning and navigation technology still remains a challenge for underwater
vehicles due to blockages of the global positioning system (GPS). With complementary characteristics,
the inertial navigation system (INS) and Doppler velocity log (DVL) are the most common navigation
solutions for accomplishing underwater positioning tasks [1]. As a self-contained system, the INS
is able to maintain high accuracy in short periods. However, its navigation errors accumulate with
time [2]. To mitigate the degradation, the DVL is always adopted to provide the velocity information,
which is integrated with INS by a Kalman filter (KF) [3].

There are various errors in the INS/DVL integrated navigation system, such as installation error
and scale factor error [4,5]. Normally, the former one can be precisely calibrated off line. Once fixed,
the installation error between INS and DVL changes little, which can be easily compensated. The in
situ calibration can also be conducted with or without additional external information, such as that
from GPS and acoustic navigation systems [6,7]. The scale factor error can also be estimated during the
voyages [8]. However, as the scale factor varies with temperature, water density and salinity, there are
always residual errors in the DVL velocity data, which are difficult to exclude further in the complex
underwater environment [9].

In order to reduce the negative effect caused by the DVL velocity error, in this work zero velocity
update (ZUPT) methodology is introduced to the INS/DVL-integrated navigation system to restrict the
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vehicle’s lateral velocity error. ZUPT is one of the most popular solutions in land vehicles navigation
systems, and well utilizes the characteristics of the land vehicle motion. Static ZUPT was first raised to
utilize the zero velocity condition during every stop to control the navigation error growth. The curve
fitting and KF are two main methods for applying the static ZUPT, while the latter shows a higher
degree of navigation accuracy [10]. When the KF-based ZUPT solution is employed, not only the
velocity error of the vehicle, but also the attitude and positioning errors can be reduced. Besides,
in order to further decrease the navigation errors even when the vehicle is moving, dynamic ZUPT
was proposed [11,12]. According to the vehicle’s dynamic characteristics, when the vehicle does not
jump off or slide on the ground, its velocity is expected to be in the forward direction. The zero velocity
restrictions on the lateral and vertical directions will help restrain the divergence of the positioning
error in the two directions [13,14]. In recent years, ZUPT methodology has also been widely utilized
in the pedestrian navigation system, where external navigation information is unavailable [15,16].
In all the above applications, the ZUPT solution is used to mitigate the accumulative navigation
error in the pure INS mode when the GPS and other navigation data is missing. When the external
information is regained, the whole system will switch into the integration mode, where the ZUPT
method becomes useless.

However, for the INS/DVL-integrated navigation system, where errors can be easily involved in
the DVL velocity information due to the complex underwater environment, the ZUPT solution should
be further explored to mitigate the lateral velocity and positioning errors caused by the DVL velocity
errors. When the water current remains still or the underwater vehicle travels along the current,
the lateral velocity of the vehicle should always be zero. Using the lateral constraint to replace the
observation vector calculated by the DVL, the navigation performance can be improved because a more
accurate observation vector can be constructed to restrict the accumulation of the positioning error.

To employ the ZUPT technology properly, its zero velocity condition needs to be correctly
identified. In most research, the zero velocity condition is indicated by the inertial measurement units
(IMUs). The mean value and standard deviation of IMUs during the static period are calculated to
provide the threshold to judge the zero velocity condition [17]. An adaptive ZUPT algorithm using a
sliding time window is presented to guarantee the zero velocity condition [18]. Fault detection methods
are also used to identify the zero and non-zero velocity conditions [19]. However, the thresholds
among these algorithms need to be carefully selected according to their IMU performance and the
environment. Moreover, some detection methods show the characteristic of time delay, which would
undermine the advantages of the ZUPT solution. For land vehicles, dynamic ZUPT always works
because the carrier seldom jumps off or slides on the ground, and the observation vectors during the
non-ZUPT periods can be regarded as noises. However, for the underwater vehicles, where the water
current often exists during the voyage, the detection of the ZUPT condition is of great importance.
Thus, it is critical to develop some new techniques to ensure a smooth switching process between the
ZUPT and non-ZUPT modes for the INS/DVL-integrated navigation system.

Thus, to balance the dynamic ZUPT methodology and INS/DVL integration simultaneously, and
to identify the ZUPT condition to realize the smooth switching process properly, an interactive multiple
model (IMM)-aided ZUPT methodology for INS/DVL-integrated navigation system is proposed.
Two integration models, which are denoted as the INS/ZUPT model and INS/DVL model, are
established and updated simultaneously to represent different driving statuses. Given the Markov
chain process for the transition between different models, the IMM algorithm can easily identify the
current driving status and make a trade-off between the estimation performances of the two models
according to their innovations and innovation covariance matrices. Compared to the traditional
single INS/DVL model-based solution, the IMM-aided algorithm makes it possible to employ ZUPT
methodology to deal with the zero velocity condition and the INS/DVL method to deal with the
non-zero velocity condition, which may improve the navigation performance when the underwater
vehicle travels under various patterns. Moreover, the zero velocity detector is no longer needed
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to identify whether the whole system can be operated under the ZUPT conditions or not, as it is
self-contained in the IMM model probability update process.

The IMM algorithm was first widely applied in the target tracking area. To better predict the
position of the target, the constant location (CL), constant velocity (CV), constant acceleration (CA)
and constant turn rate (CT) models are fused by IMM to cover all of the possible motions [20,21].
In recent years, IMM has become popular in high-precision INS/GPS-integrated navigation systems.
With the IMM method, the uncertainty of the KF parameters can be solved, where the process noise
and observation noise can be covered by multiple models [22,23]. In this work, the ZUPT model
is integrated with the INS/DVL model by IMM for the first time to well utilize the dynamic ZUPT
condition in an integrated navigation system, rather than in a pure INS. This is the main contribution
of the proposed method when compared to previous works. The IMM itself can smoothly switch
between different models without other complex identification and switching algorithms. Meanwhile,
when DVL data is unavailable, the proposed IMM-aided ZUPT methodology can continuously denote
the status of the vehicle, which gives an indication of whether the system should be operated under the
ZUPT algorithm, or under pure INS mechanization where no extra ZUPT detector module is required.

The rest of this paper is organized as follows. Section 2 gives an introduction of the ZUPT
solution for the INS/DVL-integrated navigation system. Section 3 illustrates the IMM-aided ZUPT
methodology. Simulations are shown in Section 4 and conclusions are drawn in Section 5.

2. ZUPT for INS/DVL-Integrated Navigation System

In this work, the dynamic ZUPT is explored, which provides the lateral and vertical velocity
restrictions for the moving vehicles. When the water current remains still, it is highly possible that the
underwater vehicle travels along the body-frame-forward direction, which is similar to land vehicles.
Although DVL scale factor error can be estimated by INS/DVL integration, there are still errors left
due to the complex underwater environment. The velocity information provided by DVL may contain
biases, which would contaminate the navigation accuracy of the system. However, as the underwater
vehicles are likely to be under simple motion for the most of the time, dynamic ZUPT is a very practical
and effective method for reducing the accumulation of the lateral and vertical positioning errors. In this
section, INS mechanization is described and its error model is derived. Then, INS/ZUPT is integrated
by KF, where zero velocity in lateral and vertical directions of the vehicle’s body frame is introduced to
the integration mechanization.

2.1. INS Mechanization and Its Error Model

First, define the coordinate frames employed in this work: i-frame: Earth-centered initially-fixed
orthogonal reference frame; n-frame: Orthogonal reference frame aligned with the east-north-up
(ENU) geodetic axes; b-frame: Orthogonal reference frame aligned with the inertial measurement unit
(IMU) axes; n’-frame: Calculated n-frame with small misalignment errors.

Taking the local geographical frame as the navigation frame, the differential equations of the
attitude, velocity and position are [24]:

-n
Cy = Cp (w!yx) (1)

V= — Qw! + W) x V' + G" ?)
L =Vn/Ry 3)

A= Vg/(RycosL) (4)

h=Vy ®)
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where

why, = wh, — Cp(wh, + wly) (6)

n . T
w;, = [ 0 QcosL QOsinL } (7)

T
wh = | ~Vn/Rm Ve/Ry Ve/(RytanL) | ®)
T

¢"=[0 0 —g| ©)

C} is the direction cosine matrix of transformation from the body frame b to the local geographic
frame n, from which the attitude of the vehicle can be extracted. wf?b and f’ are the outputs of the
gyroscopes and accelerometers, which represent the angular rate and specific force in frame b with

respect to the inertial frame 7, respectively. V" is the velocity in frame n, where Vg 11 denote the east,

north and upward velocities, respectively. (wzb X ) is the skew-symmetric matrix of wzb, which is the

angular rate of frame b to frame 7 in frame b. wj, is the Earth rate vector, and wy, is the angular rate
vector of frame n to the Earth frame e in frame n. G" is the projection of the gravity vector in frame n,
while Q) is the Earth’s rotation rate. C}, is the transposed matrix of C}. The latitude L, longitude A and
height I are updated according to the velocity, where Rj; and Ry are the radii of the meridian and the
prime vertical, respectively.

The relationship between C} and the attitude of the vehicle is:

cosRcosH +sinRsinHsinP  sinHcosP  sin Rcos H — cos R sin H sin P
C, = | —cosRsinH+sinRcos HsinP cos HcosP —sinRsin H — cos R cos H sin P (10)
— sin R cos P sin P cos R cos P

Let C} = [C;i| (i,j = 1,2,3). The pitch, roll and yaw data can be obtained as:
b j J p y
P =sin"! Csp,
R = tan™!(—C13/Cz), (11)
H = tan! (Cn/sz).

Then, the error model of the INS can be derived [25]:

¢ = —(w! x)p" + dw!, — Clle (12)

SV = (el x) + (8wl )V + CiVP 4 ((wlhx) + (], X))V — (") (13)
5L = 6VN/Ru (14)

6A = 6V /(RycosL) + 6LVg tan L (15)

Sh =8V (16)

where &” is the gyroscope error, and V" is the accelerometer error. wj = wj, + wy,. § denotes the error

of the corresponding parameters.

2.2. INS/ZUPT-Integration by KF

A 15-state KF is employed to complete the integration. The state vector X is defined as:

where ¢f 11 are misalignment angles of the calculated platform in n, and §Vg y 17 are east, north and
upward velocity errors, respectively. 6L, A and 6h denote the latitude, longitude and height errors,
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respectively. V., . and ¢, . represent the accelerometer biases and gyro biases in three directions of
the frame b.
The process model and observation model are:

(18)
Z=HX-+v

{ X =FX+GW
F is the system matrix, which can be obtained according to the error model of INS. G is the system
noise matrix, Z is the observation vector, H is the observation matrix, and W and v are process noise
vector and observation noise vector.
When the dynamic ZUPT condition is satisfied, the lateral and vertical velocity of the body frame
should be zero, and the longitudinal velocity is provided by DVL. The observation vector can be
calculated as [26]:

VﬁIJNS,x 0
Z = Viys — Voupr = V?NS,y -l v (19)
INS,z 0

The relationship between the observation vector and the state vector is derived as follows:
Z = Vins — Vaupr = CiCy Vins — Vie +0 = Ch(@x)V' + CLoV" + 0. (20)
The corresponding observation matrix can be obtained:
H= [ Azxs Bszxz  0O3x9 } (21)
ct(1,3)Vy—Ch(1,2)Vy Ch(1, 1)V —Ch(1,3)Ve  Ch(1,2)Ve — CB(1,1)Vy
A= | c23)Vw—C2,2)Vy Cl@21)Vy—Ci(2,3)Ve Ch(2,2)Ve—Ch(2,1)Vy (22)
ch(3,3)Vy—Ch(3,2)Vy Ch(3,1)Vy—Chi(3,3)Ve CL(3,2) Ve —CL(3,1)VN
B=cCt (23)

Equation (18) is transformed into the discrete time formula:

Xi = Prk—1Xk—1 + G Wi (24)
Z, = H X, + Vi

The update and prediction processes are illustrated as follows [27]:

Xik-1 = Prj1Xc-1, (25)

Pij1 = Pii—1Pr1Pl 1 + Gri-1Q1Gly 4 (26)
T T -1

Ky = P (Hf [HPo 1 HE +Ry| @7)

X = Xip1 + Ke[Z — Hi X 1], (28)

Py = [I — KyHy] Py 1. (29)

X k1 and X, are the predicted state estimate and updated state estimate, respectively. ¢y ;1 is the
state transition matrix, while Py ;_; and Py are the predicted estimate covariance and updated estimate
covariance. Kj is the Kalman matrix, where Q;_; and Ry, are the variance—covariance matrices of the
states and observation, respectively.
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3. IMM-Aided ZUPT Solution

Compared to the land vehicle, the underwater vehicle’s motion is easily influenced by the water
current. When the surrounding water current remains still, applying the dynamic ZUPT solution is
a proper way to mitigate the lateral and vertical velocity errors caused by the DVL velocity errors.
However, when a water current exists, it is quite easy for the underwater vehicle to obtain a lateral or
vertical velocity, where the ZUPT solution no longer works. Thus, the IMM algorithm is introduced into
the underwater INS/DVL-integrated navigation system to ensure the capability of both INS/ZUPT
and INS/DVL models in their applicable environment. Meanwhile, when DVL is unavailable, where
the system is operating under the pure INS mode, the IMM algorithm is also explored to detect the
ZUPT condition and make a balance between the ZUPT mode and pure INS mode.

The essence of the IMM algorithm is to obtain a weighted sum of the estimations of the ZUPT
and non-ZUPT filters, which are updated in parallel. After calculating the innovation and innovation
covariance matrix of each model, the IMM algorithm is able to choose the optimal model to describe the
current driving situation. In prior research, the ZUPT detector was needed to identify the ZUPT driving
condition, where the IMU sensor data is carefully analyzed. In contrast, the proposed IMM-aided
ZUPT solution employs the innovation and innovation covariance information to autonomously
identify the optimal model in the current moment, which avoids the complex identification indicated
by IMU sensors and reduces the time delay.

Based on the Markovian transition probability between different models, the interactive process
of the individual filters can be described in four parts [28].

(1) Interaction:

Each model has its own filter. Given the Markov model transition probability and model
probability calculated at the end of the previous cycle, the state vector and the estimate covariance of
each filter are updated according to the model transition probability:

2

uisj(k—1lk—1) = p;_ui(k—1)/ Zpi_vui(k—l) (30)
i=1

2. 2 2.

Xoj(k—1k—=1) = Y Xi(k— 1k — Du;,j(k — 1]k — 1) (31)

i=1

Pi(k—1k—1) = f{Pi(k —1k—1) 4+ [Xi(k — 1k = 1) — X,j(k — 1|k — 1)] 32
i=1 ’

* (X (k — 1k — 1) — Xoi(k — 1k — 1))} x myyj(k — 1k — 1)

where u;(k —1) is the model probability updated in the last epoch. p; _,j is the Markov
model transition probability from model i to model j. u;,;(k — 1|k —1) is the model transition
probability. X,j(k — 1|k — 1) is the estimated state vector of model j, and P,j(k — 1|k — 1) is the
corresponding covariance.

(2) Model Filtering;:

Given the interacted state vector and covariance matrix of each model, the traditional KF is
operated in individual filters, which are referred to the Equations (25)—(29). The innovations and their

covariance matrices should be recorded to update the model probability in the next step, which are:

ri(k) = Z;(k) — H;(k)X; (k|k — 1), (33)
Sj(k) = H;(k)P;j(k|k — 1)H] (k) + R;(k), (34)

X(k|k — 1) and Pj(k|k — 1) are the predicted state estimate and its covariance of model .
(3) Model Probability Update:
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The model probability is updated according to the innovations and innovation covariance matrices.
Assuming the innovation obeys the Gaussian distribution with a mean value of 0 and a variance of

Si(k), the likelihood function is:

filk) = exp(—;rf(k)s;l(k)rj(k)> /((2m)"|8;(k)]) " (35)

where m is the dimension of the observation vector. The model probability is updated according to the
different f;(k), Markov model transition probability p;_,; and previous model probability u;(k — 1):

2 2 2
(8) = 09 ik =)/ (L £i0) L pic(k = 1) (36)
i= j=

i=1

(4) Output Combination:
Given the newly updated weight, the outputs of individual filters are integrated according to
their different model probability.

2
Xi =) ui(k)X;(k|k), (37)
i=1
2
Pe = Y {P;(klk) + [Xi(klk) — K] [Xi (k|K) — X)) (38)
i=1

4. Simulations

Simulations are conducted to evaluate the proposed IMM-aided ZUPT methodology for
underwater INS/DVL-integrated navigation system. Different from the land vehicles, whose lateral
and vertical velocities can be always set zero, the validity of the ZUPT solution of the underwater
vehicles should be researched under the complex water current environment. The traditional
underwater navigation system has no knowledge about whether there is a water current or not.
Thus, the ZUPT solution, which can be easily applied to the land vehicles, cannot be directly employed
in the underwater environment. The proposed IMM-aided ZUPT solution shows its advantages, which
works whenever water current exists or not. First, compared to INS/DVL integration, the effectiveness
of the INS/ZUPT solution is investigated when the underwater vehicle is driving under the no
water current environment. Then, when the water current exists, whether the proposed algorithm
can identify the non-ZUPT condition and navigate with the traditional INS/DVL solution or not is
explored. Besides, the capability of the real time model estimation of the proposed algorithm when
the vehicle travels under different water current conditions is evaluated through the experiments.
In addition, when DVL is unavailable, the effectiveness of the prediction of whether the system should
work under the pure INS mode or ZUPT mode is studied.

The whole experiment lasts for 1500 s, and consists of acceleration, deceleration, uniform motion
and turning motion. The integration experiment, where DVL is available, is operated in the first 900 s.
When DVL is unavailable after 900 s, the performance of the proposed algorithm is also evaluated and
compared with the pure INS solution. The initial position of the carrier is set as 32° in latitude and 118°
in longitude, and the initial velocity is 0 m/s. The initial heading is —90° in the east direction and the
pitch and roll are set as 0°. The INS is assumed installed along the body frame of the vehicle, and the
installation error between DVL and INS is assumed well-compensated off line. The update rate of the
IMU is 200 Hz and the DVL velocity is outputted at 1 Hz. The constant biases and random noises of the
gyroscopes are all set as 0.01 °/h, while those of the accelerometers are set as 50 pg. This is a simplified
assumption of the fiber-optic IMUs, where sensor’s coupling coincident scale factors, installing error,
system error should also exist in real applications. However, these errors can be calculated exactly
and compensated by a calibration test, which is always conducted before the real tests [29]. Thus,
for simplicity, the above-mentioned errors will not be discussed any further here, as they are not the
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focus of this research. Due to the complex underwater environment, there are always errors in the
DVL velocity. To simplify the simulation, a 0.03 m/s constant velocity error and a 0.02 m/s random
noise are assumed in the DVL velocity throughout the whole experiment, which is a medium level
of DVL accuracy to evaluate the universality of the proposed algorithm. A depthometer is involved
to measure the height information, which is the most common sensor in the underwater navigation
system. The water current is assumed static at the beginning. From 250 s, there is assumed to be a
water current towards the southwest direction, which reaches 2.828 m/s. The current vanishes at 370 s
and starts again from 740 s to 810 s and from 1200 s to 1300 s. The velocity of the water current and the
vehicle dynamics are shown Figure 1. The trajectory is presented in Figure 2.

The blue line in Figure 2 denotes the integration period, while the red line indicates the DVL
outage period. Marked with green ellipses in Figure 2, three periods of water current are involved
in the whole voyage, two of which occur during the integration period. It can be seen that during
the three periods, the heading of the underwater vehicle is assumed stable, where only the velocity
is influenced by the water current. Thus, the lateral velocity will be introduced during these three
periods, which is always zero on other occasions. Firstly, the performance of the traditional INS/DVL
integration is shown in Figures 3-5, where the errors of the pitch, roll, yaw, horizontal velocity, vertical
velocity, horizontal position and vertical position are shown successively.
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Figure 1. Water current and vehicle dynamics.
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Figure 3. Attitude error of the inertial navigation system/Doppler velocity log (INS/DVL)-integrated
navigation system.
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Figure 5. Position error of the INS/DVL-integrated navigation system.

It can be seen that the attitude error is below 0.005°, 0.005° and 0.05° in pitch, roll, and yaw,
respectively. Due to the erroneous velocity information provided by DVL, the mean value of the
horizontal velocity error is 0.04149 m/s. The vertical velocity is only about 0.01 m/s because a
depthometer is involved in the system to restrict the vertical errors. The horizontal position error
increases monotonically with time, reaching 31.22 m at 900 s, and the vertical positioning error is
within 0.2 m. In an INS/DVL underwater navigation system, where the external velocity data forms
the observation vector, rather than the position information, the positioning error would accumulate
over time without the acquirement of the external position information. Any error suppression method
is significant to the system, as the positioning error in each moment will be introduced to the next
moment. Thus, the dynamic ZUPT solution is investigated to mitigate the lateral velocity error and
decrease the accumulation of the position error. Its performance is shown in Figures 6-8.
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Figure 8. Position error of the INS/ZUPT solution.

From 0 s to 250 s, where no water current exists, the attitude performance of the INS/ZUPT
solution is similar to that of the INS/DVL solution. However, as the lateral velocity is bounded by
the ZUPT condition, the horizontal velocity error of the INS/ZUPT solution is smaller, at around
0.0313 m/s. As a result, the horizontal position error of the INS/ZUPT solution is 7.345 m at 250 s,
while that of the INS/DVL solution reaches 9.108 m. Thus, the INS/ZUPT outperforms the INS/DVL
solution under the no water current environment. However, when the water current occurs at 250 s, the
lateral velocity of the vehicle is no longer zero. The erroneous restriction on the lateral velocity of the
vehicle collapses the whole system, where the attitude, velocity and position errors run within 400 s up
to 4°,3.112 m/s and 438.6 m, respectively. Therefore, the proposed IMM-aided ZUPT methodology for
INS/DVL integration is studied to leverage the strength of both the INS/ZUPT and INS/DVL systems.
The initial model probabilities are 0.9 and 0.1 for INS/DVL and INS/ZUPT models, respectively.
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The attitude, velocity and position errors of the proposed algorithm are shown in Figures 9-11.
It can be seen that the proposed method outperforms both the INS/DVL and INS/ZUPT solutions.
When the water current does not exist, the proposed algorithm shows the similar navigation accuracy
as the INS/ZUPT method. When the water current occurs, the proposed algorithm can identify the
situation rapidly and switch the system into non-ZUPT mode. The mean value of the horizontal
velocity error is 0.03387 m/s for the IMM-aided ZUPT solution, which is smaller than the INS/DVL
solution. At 900 s, the position error of the proposed solution is 17.98 m, which is only about 57% of
the position error of the INS/DVL method. The attitude performance is similar to that of the INS/DVL
solution. Figure 12 shows the model switching process, where the blue dots indicate the model
probability of INS/ZUPT and red crosses denote the model probability of INS/DVL. It is obvious
that the proposed algorithm can clearly identify the proper model for the present moment. When the
water current occurs, the proposed system can figure out the situation without any delays. When the
water current vanishes, the proposed system will return to the INS/ZUPT model in 5 s. Since the false
selection of the INS/ZUPT model is much more serious than that of the INS/DVL model according
to Figures 3-8, the proposed algorithm is fault-tolerant and sensitive to the non-ZUPT mode, and is
reserved to the ZUPT mode.
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Figure 12. Model probability of the IMM-aided ZUPT solution.

It can be concluded that the INS/ZUPT method can mitigate the velocity and position errors
when the underwater vehicle travels with no water current, but fail to navigate when the water current
exists. The proposed IMM-aided ZUPT methodology outperforms both the INS/DVL and INS/ZUPT
methods, which can easily identify the ZUPT and non-ZUPT condition and make a leverage between
the two models. By analyzing the innovations and innovation covariance matrices, the IMM algorithm
can automatically allocate the corresponding weights for the two models.

Furthermore, when DVL is unavailable, the capability of the proposed algorithm is also evaluated.
Normally, the IMM algorithm is only used in the integrated system. In this work, the IMM algorithm
is also employed during DVL outage to identify the proper solution for the standalone INS. The whole
DVL outage period starts from 900 s and ends at 1500 s. The proposed IMM-aided ZUPT algorithm is
utilized to navigate from 0 s to 900 s, which have shown the best performance during the integration
period. A 100 s water current is assumed from 1200 s to 1300 s.

Figures 13-15 show the attitude, velocity and position errors of the system under the pure INS
mode during the DVL outage. It can be seen that without DVL, the horizontal velocity error increases
immediately, and reaches 0.439 m/s at 1500 s. As a result, the horizontal position error accumulates to
162.2 m in the end. ZUPT is the most common algorithm for the land vehicles to mitigate the error
divergence, which could reduce the accumulation of the velocity and position errors in the lateral
direction of the vehicle. However, for the underwater vehicles, where the zero velocity condition is
easily unsatisfied, the ZUPT solution should be used carefully to avoid the divergence of the navigation
errors. Similar to the INS/DVL integration period, the direct usage of ZUPT will cause a failure during
the DVL outage period, and it will not be further discussed.
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The IMM-aided ZUPT solution is evaluated during DVL outage. The observation vector of
the former INS/DVL model is set zero to represent the pure INS model. The longitudinal velocity
observation element of former INS/ZUPT model is set zero as no DVL velocity is provided, while
the observation element of the lateral velocity remains the difference between the lateral velocity
calculated by INS and the zero velocity. The performance of the proposed algorithm during the
DVL outage is shown in Figures 16-19. Compared to the pure INS mode, the proposed IMM-aided
ZUPT solution can largely restrain the divergence of the velocity and position errors and improve
the navigation accuracy. The velocity error is about 0.2 m/s at the end of the experiment, while the
position error is 92.93 m after the 600 s DVL outage. The attitude error is similar to that of the pure INS
mode. The model probability is shown in Figure 19. It can be seen that the proposed algorithm is also
able to identify the proper model at the present moment when DVL is unavailable. Compared to the
existing ZUPT detecting algorithms for the standalone INS, the proposed IMM-aided ZUPT solution
can successfully identify the ZUPT condition and employ the ZUPT solution properly simultaneously
and autonomously. Its structure remains the same for both the INS/DVL integration and standalone
INS, which is easy to switch when DVL outage occurs.
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Figure 19. Model probability of the IMM-aided ZUPT solution during DVL outage.

5. Conclusions

In this work, an IMM-aided ZUPT algorithm is proposed for INS/DVL integrated navigation
system to take the advantages of both ZUPT method and INS/DVL traditional method under the
complex underwater environment. Due to the unstable temperature, water density and salinity, the
residual errors in the DVL velocity data will influence navigation accuracy of the underwater vehicles.
To reduce the negative effect of the DVL velocity error on the whole system, the ZUPT solution is
introduced to mitigate the lateral velocity and position errors. However, as a water current often
exists, the performance of the ZUPT method would be largely influenced. Thus, IMM algorithm is
introduced to form a novel IMM-aided ZUPT methodology to deal with the complex underwater
navigation situations.

In the proposed algorithm, both INS/DVL model and INS/ZUPT model are constructed and
operated in parallel. Through the IMM algorithm, the weights of the two model are calculated
according to their innovations and innovation covariance matrices. Thus, the system can employ the
two models properly and simultaneously. Meanwhile, the proposed IMM-aided ZUPT solution can
also be used when DVL information is unavailable. By setting the corresponding elements of the
observation vector to zero, the INS/DVL model turns into the pure INS model, while the ZUPT model
for the integration turns into the ZUPT model for the standalone INS. The proposed methodology can
continuously improve the navigation accuracy whenever DVL is available.

Simulations are conducted to evaluate the proposed algorithm under both the integration period
and standalone INS period. It can be seen that the proposed algorithm can leverage the strength of both
the INS/DVL model and INS/ZUPT model. It is also effective during DVL outage. The proper model
can be clearly seen by the model probability, where the non-ZUPT period can be clearly identified
for both the integration period and standalone INS period. To conclude, in the complex underwater
environment, where the water current often occurs, the proposed algorithm innovatively employs
the ZUPT solution using the IMM algorithm, which is designed and is suitable for the land vehicle
and ineffective when lateral velocity exists. From the simulation results, it can be seen that the
solution will relieve the difficulties of the underwater navigation to some extent. In the future, the
field tests need to be further carried out to validate this technique in various trajectories in the real
underwater environment.
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