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Abstract: Recovering 3D structures from the monocular image sequence is an inherently ambiguous
problem that has attracted considerable attention from several research communities. To resolve
the ambiguities, a variety of additional priors, such as low-rank shape basis, have been proposed.
In this paper, we make two contributions. First, we introduce an assumption that 3D structures lie
on the union of nonlinear subspaces. Based on this assumption, we propose a Non-Rigid Structure
from Motion (NRSfM) method with kernelized low-rank representation. To be specific, we utilize
the soft-inextensibility constraint to accurately recover 3D human motions. Second, we extend
this NRSfM method to the marker-less 3D human pose estimation problem by combining with
Convolutional Neural Network (CNN) based 2D human joint detectors. To evaluate the performance
of our methods, we apply our marker-based method on several sequences from Utrecht Multi-Person
Motion (UMPM) benchmark and CMU MoCap datasets, and then apply the marker-less method on
the Human3.6M datasets. The experiments demonstrate that the kernelized low-rank representation
is more suitable for modeling the complex deformation and the method consequently yields more
accurate reconstructions. Benefiting from the CNN-based detector, the marker-less approach can be
applied to more real-life applications.

Keywords: 3D human pose estimation; monocular reconstruction; non-rigid structure from motion;
kernel low-rank representation

1. Introduction

Most of the video or image data used nowadays are captured by a single RGB sensor, such as
cell phone cameras, which is one of the most widely used sensors. Recovering the 3D structure from
such data is an active research field in computer vision and computer graphics communities. In this
work, we focus on tackling the problem of reconstructing the complex 3D motions, especially for the
3D human poses, from the monocular image sequence. This is an inherently ill-posed problem since
the same projection can be captured from different 3D structures. To resolve the ambiguities, several
approaches relying on additional priors have been proposed. To be specific, lots of methods have
been presented to solve the 3D human pose estimation problem, which leverage more priors from
human bodies.

Sensors 2017, 17, 2019; doi:10.3390/s17092019 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17092019
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2019 2 of 15

The seminal factorization [1] of Non-Rigid Structure from Motion (NRSfM) techniques was
proposed to tackle the non-rigid problem via extending its rigid version [2]. In Xiao et al. [3], the
shape basis constraints is presented to resolve the inherent ambiguities and derived the closed-form
solution. Akhter et al. [4,5] showed the dual approach which modeled 3D trajectories under basis
constraints. In addition, the trajectory-space method was proposed in Gotardo and Martinez [6]. In
Akhter et al. [7], it proved that, even though there is an ambiguity in shape bases or trajectory bases,
non-rigid shapes can still be recovered uniquely. Based on this, a prior-free method [8] was introduced
to estimate the 3D non-rigid structures and camera rotations by only exploiting the low-rank shape
assumption. In Wang et al. [9], they use the low-rank assumption in a similar way, but an Accelerated
Proximal Gradient (APG) algorithm solver is employed to solve the resulting problem. Furthermore,
the method in Gotardo and Martinez [10] combined the shape basis model and trajectory basis model,
and revealed trajectories of the shape basis coefficients. The Procrustean Normal Distribution (PND)
model was proposed in Lee et al. [11], where 3D shapes are aligned and fit into a normal distribution.
Simon et al. [12] exploited the Kronecker pattern in shape-trajectory (spatial-temporal) priors. Then,
Zhu and Lucey [13] combined the convolutional sparse coding technique with NRSfM by using point
trajectory. Nevertheless, it requires learning an over-complete basis of trajectories. Most recently, a
novel part-based method has been proposed in Lee et al. [14]. For most existing approaches mentioned
above, the performance highly depends on the complexity of the 3D non-rigid motions. Generally, the
correspondences between different frames are assumed to be given, by e.g., infrared markers. As a
consequence, they usually fail to handle the reconstruction problem in uncontrolled scenarios with
complex non-rigid motions.

The human body is an important subject in nonrigid reconstruction since reconstruction of
3D human structures has broad applications, such as athletic training, computer animation and
gait analysis. Using multi-camera systems [15,16] can easily resolve the ambiguities in non-rigid
reconstruction problems, and the requirement for dedicated equipment prevents the methods from
applying in more practical scenarios. Using a depth camera can also avoid the ambiguities in
monocular 3D non-rigid reconstruction problems [17]. Since 3D information can be directly obtained
by depth-cameras, the problem of recovering 3D human poses can be formulated as problem of 3D
tracking [18]. However, massive existing videos are captured by the single RGB camera. Therefore,
estimating 3D human structures from monocular image sequence is still an essential task. In
Rádlová et al. [19], a model-based approached was presented. According to Sigal [20], estimating
the accurate pose on single frame is an ill-posed problem, and exploiting all available information
across the sequence can promote performance [21,22]. Latent Variable Models (LVMs) are often used
in the literature [23,24]. Tian et al. [25] proposed a discriminative approach that leverages LVMs, and
successfully addressed the over-fitting and poor generalization problem. In Zhu et al. [26], the human
body is classified into several parts; a pre-defined human model is fitted to the input images; and the
dense reconstruction is yielded. Ek et al. [27] presented a method relying on the Gaussian process
latent variable models (GPLVM), in which a parametric mapping from pose to latent space is learned to
enforce a one-to-one correspondence. In the work of Tekin et al. [28], they employed two convolutional
neural networks to align the bounding boxes of the human in consecutive frames, then created the
data volume and reconstructed the 3D structure from the volume with Kernel Ridge Regression (KRR)
and Kernel Dependency Estimation. With the advent of deep learning, it is obvious that using CNN
to obtain the human joint detection or to estimate the 3D structures directly attracts more and more
attention [29]. For more details, a comprehensive survey can be found in Gong et al. [30].

In this paper, we present an NRSfM method to tackle the problem of recovering complex 3D
non-rigid motions from a monocular sequence. The term ’complex’ here means that the entire motions
are composed of several different ’primitive’ or ’simple’ actions. The proposed method empirically
shows that the assumption, i.e., 3D shapes lie on the union of nonlinear shape subspaces, is better than
the linear version [31] in modeling complex 3D non-rigid motions. We formulate this assumption as
kenerlized low-rank representation and model the motion recovery as solving an optimization problem.
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The experiments demonstrate that our method has better performance than the state-of-the-art methods,
especially for tackling the complex motions. Moreover, using the outputs, called joint heightmaps in
this paper, of a CNN-based human joint detector [32] can remove the dependency on markers. As a
result, our method can be applied to more practical scenarios. We can conveniently switch between
the joint heightmap based data term and the traditional re-projection term. This yields two versions
of our method—marker-based and marker-less versions—and ensures the method can be applied
more broadly.

2. Motivations

Before we introduce the proposed method, let us give a brief review of two lines of research that
are most relevant to our method. One is the NRSfM based on low-rank shape constraints, and the
other is low-rank representation.

2.1. NRSfM with Low-Rank Priors

In Dai et al. [8], an NRSfM method only relying on low-rank priors was proposed. Given the
tracked feature points, e.g., human joints in images, the reconstruction is modeled as the following
optimization problem:

minX
1
2‖W−RX‖2

F + µ‖X#‖∗
s.t. X# = g(X),

(1)

where X ∈ <3NP×NF is the 3D structure matrix to be estimated, which stacks 3D coordinates of all
the NP feature points at all the NF frames. The first term in Equation (1) is a re-projection term that
encourages projections of the estimated 3D structures to be close to the observations in W. In this
term, W ∈ <2NP×NF and R ∈ <2NF×3NF are observation matrix and rotation matrix, which encode the
camera rotations and 2D positions of tracked feature points (human joints for human pose estimation),
respectively. The second term encourages the 3D structures at all the frames to be low-rank. In other
words, all the 3D structures can be represented by linear combinations of a few 3D structure bases,
the number of which is much smaller than the number of the frames. Note that the shape basis is not
obtained explicitly here. By contrast, the nuclear norm used in the first term ensures that estimated
3D structures should be as low-rank as possible. The relative weight µ is to control how strong this
prior influences the resulting reconstruction. Therefore, this makes the original monocular non-rigid
reconstruction problem well-constrained. However, when motions are complex, 3D structures are
quite different from each other, and the low-rank assumption is broken since 3D structures don’t lie on
a single low-rank linear space. In this case, either a high-rank shape space or multiple subspaces are
needed to represent the 3D structures.

2.2. Low-Rank Representation

Low-rank representation (LRR) [33] was proposed to seek the desired low-rank affinity matrix Z
via solving the optimization problem in Equation (2):

minZ,E ‖Z‖∗ + λ‖E‖2,1

s.t. X = XZ + E,
(2)

where X is data matrix and E is error matrix. In particular, LRR uses the self-expressiveness property of
data, i.e., each data point in a union of subspaces can be efficiently represented as a linear combination
of other points. When pursuing the low-rank affinity matrix, the data points are assigned to different
subspaces implicitly. This property ensures LRR can be an effective regularization to handle the
complex motions in NRSfM problem [31]. To this end, the formulation is as follows:

minX,Z,E ‖Z‖∗ + λ1‖X‖∗ + λ2‖E‖l
s.t. X = XZ, W = RX# + E.

(3)
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Nevertheless, the deformation of non-rigid object, e.g., human body, is often nonlinear.
To better model the nonlinear deformation, the traditional approach is mapping the data point to a
higher-dimension space in which the linear low-rank structure can be obtained. We empirically find
that the kernerlized low-rank representation (KLRR) method [34] has better performance on human
motion clustering than original LRR. To this end, we introduce the KLRR as a regularization to the
NRSfM problem.

3. Formulations

In order to recover the highly complex 3D motions (also named structures, shapes or deformations)
from a monocular image sequence, we map the 3D structures to a space with higher dimension,
as shown in Equation (4)

minX,Z,E ‖Z‖∗ + λ1‖X‖+ λ2‖E‖1 + λ3‖Φ(X)(I− Z)‖2
F

s.t. W = RX# + E,
(4)

X =


x1,1 x1,2 . . . x1,NF

x2,1 x2,2 . . . x2,NF
...

...
. . .

...
xNP ,1 xNP ,2 . . . xNP ,NF

 , X# =


x1,1 x2,1 . . . xNP ,1

x1,2 x2,2 . . . xNP ,2
...

...
. . .

...
x1,NF x2,NF . . . xNP ,NF

 . (5)

We follow the definition of notation above. Assuming the object is human body whose motions
are captured by an orthographic camera, the aim of the proposed method is to recover the 3D position
of its joints from the given 2D location of joints only. X ∈ <3NP×NF is the 3D motion matrix; here, the
3D coordinates are defined in the camera coordinate system. In both matrices X and X#, vector xp, f
stacks the 3D coordinates of pth joint at frame f , but they have different arrangement of these vectors.
R is the <2NF×3NF block-diagonal matrix of NF orthographical camera matrices. The given 2D tracks
of all the joint points are in the observation matrix W ∈ <2NF×NP , and E is an error matrix with the
same dimensions of W. The Φ(X) is the defined mapping, such that the mapped X resides in multiple
linear subspaces. In addition, the matrix Z ∈ <NF×NF is the affinity matrix, i.e., the self-expressive
coefficient matrix. Note that the noise in this problem usually occurs at the tracking or joint detection
process. In this work, the part of tracking or detection is assumed to be given by other existing methods.
Certainly, such tracking or detection approaches could not yield the perfectly accurate results. Thus,
when dealing with the re-projection constraint, we use the matrix E to model the possible re-projection
error. Furthermore, we penalise the more robust L1 norm rather L2 norm of this matrix. It ensures that
the method is relatively robust to the outliers of observation.

The low-rank shape priors is preserved in our framework. In Equation (4), λ1‖X‖∗ is to exploit
the low-rank nature of non-rigid objects, and the constraint W = RX# + E is used to penalize the
re-projection error. Note that nuclear norm, a convex approximation of matrix rank, of X, rather than X#,
is minimized here, as described in Dai et al. [8]. This is because the rank of X is bound by min(NF, 3NP),
whereas the rank of X# is bound by min(3NF, NP). Minimizing the rank of X is preferable as it attempts
to directly learn redundancies among frames.

The information revealing the low-rank subspaces structure exists in the affinity matrix Z.
By applying the spectral clustering to Z, the explicit structure can be obtained. More details about
this process can be found in [33,34]. Nevertheless, our method doesn’t need the explicit subspace
structure. It only needs to ensure that the 3D structures from a lower rank subspaces are preferred by
minimizing the nuclear norm of Z. If the low-rank subspaces assumption holds, this term will be a
proper regularization for NRSfM problem with complex 3D motions. Unfortunately, LRR may not
yield satisfied results when the 3D structures are actually from the nonlinear subspaces, since it is
originally designed to handle the linear case.
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Due to this drawback of LRR, we exploit the kernel-induced mapping X→ Φ(X). We denote the
column in X as {xi}NF

i=1, where xi ∈ <3NP , define the kernel matrix K ∈ <NF×NF , and then the elements
of K are calculated as follows:

Kij = k(xi, xj), ∀i, j = 1, . . . , NF, (6)

where k(xi, xj) = φ(xi)
Tφ(xj) is the kernel function. Defining Φ(X) = [φ(x1), . . . , φ(xNF )] , we have

K(X) = Φ(X)TΦ(X). In the remainder of this paper, we use K to represent K(X) for short. We can
rewrite Equation (4) as follows:

minX,Z,E ‖Z‖∗ + λ1‖X‖+ λ2‖E‖1 + λ3trace((I− Z)TK(I− Z))
s.t. W = RX# + E.

(7)

Equation (7) above is designed for the general purpose. When considering the special case, e.g.,
recovering the 3D motions of human bodies, we can leverage additional particular priors. The exploited
prior is that the length between the connected joints is invariable. Given the set of all the pairs of
connected joints E , the inextensibility constraints can be written as:

R(X, l) = ∑NF
f=1 ∑(p,q)∈E (‖x f ,p − x f ,q‖2 − lp,q)2, (8)

where x f ,p stacks the 3D coordinates of point p at frame f . The l = {lp,q} are unknown, in which lp,q

encodes the length between the pairs of connected joints p and q, and thus act as the auxiliary variables
to be determined by our algorithm. Adding Equation (8) into Equation (7), we have the final objective
function as follows:

minX,Z,E,l ‖Z‖∗ + λ1‖X‖+ λ2‖E‖1 + λ3trace((I− Z)TK(I− Z)) + λ4R(X, l)
s.t. W = RX# + E.

(9)

In this formulation, the observation matrix W is often obtained by setting markers on the subject.
Nevertheless, in some daily-life scenarios, e.g., recovering 3D human motions using a camera on the
mobile phone, markers are usually unavailable. To this end, we provide an optional version of our
method in which an CNN-based human joint detector [32] is employed. By a small modification,
Equation (9) can be conveniently converted to a marker-less version as follows:

minX,Z,E,l ‖Z‖∗ + λ1‖X‖+ λ2‖E‖1 + λ3trace((I− Z)TK(I− Z)) + λ4R(X, l) + λ5H(Ŵ)

s.t. W = RX# + E, W = Ŵ,
(10)

where the function H(Ŵ) is yielded by the CNN-based detector. For arbitrary joint point p and frame f ,
the CNN-based detector provides a heightmap h f ,p with the same size of input image. The pixel in
the heightmap h f ,p takes a non-negative value, which indicates how possible it is the projection of the
joint p at frame f . Therefore, the function H(Ŵ) is calculated as follows:

H(Ŵ) = −
NF

∑
f=1

NP

∑
p=1

h f ,p(ŵ f ,p), (11)

where Ŵ = {ŵ f ,p} is the auxiliary variable introduced for the convenience of optimization. The ŵ f ,p
stacks the 2D image coordinate of the projection of 3D point x f ,p .
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4. Optimization

In the previous section, capturing 3D human motions from monocular images is formulated as
solving the optimization problem (9). We use ALM to solve the yielding optimization problem. By
introducing auxiliary variables C and X̂, the complete Lagrangian formulation is:

minX,X̂,Z,E,C,l maxΓ1,Γ2,Γ3 L = ‖Z‖∗ + λ1‖X̂‖∗ + λ2‖E‖1 + λ3trace(CTKC) + λ4R(X, l)
+ < Γ1, W−RX# − E > + µ

2 ‖W−RX# − E‖2
F

+ < Γ2, C− I + Z > + µ
2 ‖C− I + Z‖2

F
+ < Γ3, X− X̂ > + µ

2 ‖X− X̂‖2
F,

(12)

where Γ1 and Γ2 are the Lagrangian multiplier matrices. In iterations of Algorithm 1, the variables
{X, Z, E, C, l} are alternatively solved. When solving each subproblem, the other fixed variables are
regarded as constants; hence, we ignore the iteration index for these variables. Then, at the end of each
iteration, the penalty factor µ and Lagrangian multiplier matrices Γ1, Γ2 and Γ3 are updated.

Algorithm 1: Solving problem (12) by ALM.
Input: W, R, λ1, λ2, λ3, λ4, µmax, ρ

Output: X, Z, E, C, l
initialization X0, Z0, E0, C0, l0, Γ1 = 0, Γ2 = 0, µ0 = 0, k = 0;
while not converged do

X(k+1) ← arg minX L(X(k), X̂, Z, E, C, l);
X̂(k+1) ← arg minX̂ L(X,X̂(k), Z, E, C, l);
Z(k+1) ← arg minZ L(X, X̂, Z(k), E, C, l);
E(k+1) ← arg minE L(X, X̂, Z, E(k), C, l);
C(k+1) ← arg minC L(X, X̂, Z, E, C(k), l);
l(k+1) ← arg minl L(X, X̂, Z, E, C, l(k));

Γ
(k+1)
1 ← Γ

(k)
1 + µ(k)(W−RX# − E);

Γ
(k+1)
2 ← Γ

(k)
2 + µ(k)(C− I + Z);

Γ
(k+1)
3 ← Γ

(k)
3 + µ(k)(X− X̂) ;

µk+1 ← min(µmax, ρµk);
k← k + 1;

end

4.1. The Solution of X̂ and Z

By a simple derivation, the subproblems of solving Z and X̂ can be written as the following
optimization problems:

minZ ‖Z‖∗ + µ
2 ‖Z− (I−C− Γ2

µ )‖2
F,

minX̂ λ1‖X̂‖∗ + µ
2 ‖X̂− (X + Γ3

µ )‖2
F,

(13)

whose formulation is the same as that of the standard problem in Cai et al. [35]. For this reason, there
are closed-form solutions for Z and X̂. In the iteration k, these variables are updated by

Z(k+1) = D1/µ(I−C(k) − Γ
(k)
3
µ ),

X̂(k+1) = Dλ1/µ(X(k+1) + Γ3
µ ),

(14)

where Dτ(·) is the Singular Value Decomposition operator. The readers can refer to Cai et al. [35] for
mode details.
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4.2. The Solution of X

The subproblem of solving X has no closed-form solution due to the existence of non-convex
terms. It is obvious that the subproblem can be converted to a nonlinear least square problem by
the similar derivation, which is used to get Equation (13). Exploiting the gradient-based iterative
optimization algorithm [36], we get the estimation of X at iteration k:

X(k+1) = argminX λ3trace(C(k)T
KC(k)) + λ4R(X, Ik)

+ µ
2 (‖X− X̂(k) +

Γ
(k)
3
µ ‖2

F + ‖W−RX# − E(k) +
Γ
(k)
1
µ ‖2

F).
(15)

4.3. The Solution of E

Fixing X, X̂, Z, C and l, the cost function is reduced to

minE λ2‖E‖1 +
µ
2 ‖W−RX# − E + Γ1

µ ‖2
F. (16)

The resulting l1 minimization problem has a closed-form solution:

Ek+1 = Sλ2/µ(W−RX#(k+1)
+

Γ
(k)
1
µ ), (17)

where Sτ(·) is the element-wise shrinkage thresholding operator [37].

4.4. The Solution of C and l

Since K is semi-definite positive matrix, both subproblems for solving C and l are convex:

minC λ3trace(CTKC) + µ
2 ‖C− I + Z + Γ2

µ ‖2
F,

minl λ4R(X, l).
(18)

The subproblems have closed-form solutions. Setting the derivatives to zero first, we then solve
the yielded linear least square problems to obtain the solutions:

C(k+1) = (2λ3K(k+1) + µINF )
−1(µ(I− Z(k+1))− Γ

(k)
2 ),

l(k+1)
p,q = 1

NF
∑NF

f=1 ‖x
(k+1)
f ,p − x(k+1)

f ,q ‖2.
(19)

For the existence of non-convex term and multiple blocks in our proposed objective function, the
convergence of ALM is not guaranteed. Nonetheless, the Algorithm 1 successfully converged in our
experiment as shown in Figure 1. For all the experiments, we leverage the resulting X from PTA [5] as
the initialisation.
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Figure 1. Convergence curve. We test our TUNS method on ’56-02’ sequence in CMU MoCap
datasets is used here. We plot the residual of the objective function (left) and the residuals of three
constraints (right).

5. Experiments

We make the quantitative evaluation on two benchmarks: (i) synthetic camera 2D projections
generated from the 3D CMU Motion Capture (MoCap) dataset, (ii) real-world 2D projection from
the 2D point-tracks of video in Utrecht Multi-Person Motion (UMPM) [38] dataset. Furthermore,
the performance of our marker-less algorithm is illustrated on the Human3.6M. We compare our
approach, which is denoted as TUNS (temporal union of nonlinear subspaces) in the remainder
of this section, against six NRSfM baselines: point tracking algorithm PTA [5], the trajectory-sapce
method CSF [6], the block matrix method BMM [8], the temporal union of subspaces TUS [31], the
accelerated proximal gradient optimization APG [9] and the consensus NRSfM of CNR [14]. For
PTA [5], CSF [6], BMM [8], CNR [14], we use authors’ implementation in experiments. For PTA [5] and
CSF [6], we manually set the rank of the subspace to the value yielding the best results. For TUS [31]
and APG [9], since there are not publicly available implementations, our re-implementations are
adopted in comparison. We test such re-implementations and get similar results to what the authors
reported in [9,31].

5.1. Subspaces Analysis

We empirically demonstrate why the nonlinear low-rank representation could further help the
reconstruction. To illustrate the effectiveness of utilising LRR and KLRR to recover the low-rank
structures of 3D human motions, we select the motion sequence ’p1_grab_3’ from the UMPM
benchmark. We apply both LRR and KLRR to the 3D motions to get the affinity matrices. Meanwhile,
our reconstruction method also produces an affinity matrix. The difference is that LRR and KLRR
estimate the affinity matrices on the 3D data directly; however, our method jointly estimates the 3D
motions and affinity matrix from the 2D projection. Applying spectral clustering algorithm to these
affinities, the motion clustering results are yielded. Obviously in Figure 2, the colour in the first
row of the colour bars changes more frequently. This phenomenon is not preferable, since the image
sequence is temporally consecutive. In other words, the LRR approach divides quite similar motions
into different categories. Nevertheless, the clustering result based on KLRR, which has high temporal
consistency, is quite close to the result of our method. As shown on bottom right of Figure 2, the
affinity matrix from KLRR has higher clarity of the low-rank structure than the one from LRR. This
experiment demonstrates that the nonlinear low-rank representation is more suitable to model the
complex 3D motions than its linear counterpart.
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Figure 2. Subspace analysis on 3D human motions. On the top of this figure, three colour
bars represent the subspace clustering results. In each bar, the same colour means same cluster.
From the top down, the clustering results are obtained from the affinity matrices yielded by LRR [33],
KLRR citeXiaoTNNLS15 and our method, respectively. For the first two rows, the LRR and KLRR are
applied to the 3D motions ’p1_grab_3’ from the UMPM benchmark. For the third row, the affinity
matrix produced from the reconstruction process is exploited. On the bottom, two rows of 3D motions
and the clustering in a short and consecutive interval are visualized in a dash-line box. The first row is
produced by KLRR and the second one is from LRR. The corresponding affinity matrices are shown on
the right side.

5.2. Quantitative Evaluation

We quantitatively compare our TUNS approach with six baselines on 20 sequences of
subjects 56 and 86, which contain several primitive actions, in CMU motion capture datasets.
The synthetic 2D projections are generated by a randomly rotating orthographic camera, which rotates
with the y-axis of camera and is always pointing at the centre of the body. Our TUNS approach and
baseline methods are employed to reconstruct the 3D motions from the synthetic 2D projections. Since
the monocular reconstruction has a global scale ambiguity, a type of mean relative reconstruction error
emean, which is utilised in [8], is employed in this paper. This error is computed as follows:

emean = 1
σNF NP

∑NF
f=1 ∑NP

p=1 e f p,
σ = 1

3F ∑F
f=1(σf x + σf y + σf z),

(20)

where σf x, σf y and σf z are the standard deviations in x, y, and z coordinates of the original shape at
frame f . For each joint p, e f p is the distance between its reconstructed 3D position and its ground truth
3D position at frame f . Meanwhile, we report the median error which is computed as follows:

emed = median({e f p| f = 1 . . . NF, p = 1 . . . NP}). (21)

As reported in Table 1, our TUNS approach yields more accurate reconstructions than the baselines.
PTA [5] can give a close-form solution that can be easily used as initialization for all the nonlinear
optimization based algorithms. For CSF [6], it is not suitable for recovering the complex motion, since it
has high space complexity with respect to the rank K. BMM [8] utilises no prior but the low-rank
subspace. In such a method, the motions are assumed to lie in a single subspace. Consequently, it
is less effective when recovering the complex motion. APG [9] inherently uses the single subspace,
whereas it performs better than BMM [8] since a more effective rank-minimisation technique is
employed. The part-based method CNR [14], which is more adept at handling complex shape
configurations, yields better reconstruction of subject 86 than the subject 56, since sequences of
subject 86 have more points than subject 56. Nonetheless, for the complex motions, using temporal
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union of subspaces (TUS and TUNS) can yield better reconstruction than the other methods. Benefiting
from the kernel technique, our TUNS yields even more accurate reconstructions than TUS.

Meanwhile, we also evaluate the performance of our approach by reconstructing 3D motion from
real-world 2D projection stemming from 2D point-tracks of videos in UMPM. Our TUNS and baselines
are tested on the three sequences ’p1_grab_3’, ’p3_ball_12’ and ’p1_chair_2’. In Table 2, it shows that
our method produces more accurate reconstructions. It demonstrates that TUNS is suitable for tackling
the long-term sequence with complex motions. The reconstructions of some selected frames from
UMPM datasets are shown in Figures 3–5. Please note that Figure 5 illustrates that our TUNS approach
is even effective in multi-object cases.

frame #475 frame #945 frame #1420 frame #1890 frame #2360

frame #450 PTA CSF BMM TUS APG CNR TUNS

Figure 3. Evaluation on ’p1_grab_3’ sequence in UMPM. For five selected frames, our reconstruction
(red skeleton), ground truth (green skeleton) and the corresponding image are shown on top. On the
bottom, the reconstructions, yielded by all the baselines (blue skeleton) and our TUNS (red skeleton) of
one specific frame, are shown with overlapping ground truth (green skeleton).

frame #433 frame #860 frame #1288 frame #1715 frame #2143

frame #805 PTA CSF BMM TUS APG CNR TUNS

Figure 4. Evaluation on ’p1_chair_2’ sequence in UMPM. For five selected frames, our reconstruction
(red skeleton), ground truth (green skeleton) and the corresponding image are shown on top. On the
bottom, the reconstructions, yielded by all the baselines (blue skeleton) and our TUNS (red skeleton) of
one specific frame, are shown with overlapping ground truth (green skeleton).
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frame #1 frame #705 frame #1410 frame #2110 frame #2815

frame #450 PTA CSF BMM

TUS APG CNR TUNS

Figure 5. Evaluation on ’p3_ball_12’ sequence in UMPM. For five selected frames, our reconstruction
(red skeleton), ground truth (green skeleton) and the corresponding image are shown on top. On the
bottom, the reconstructions, yielded by all the baselines (blue skeleton) and our TUNS (red skeleton) of
one specific frame, are shown with overlapping ground truth (green skeleton).

Table 1. Quantitative evaluation on CMU motion capture sequences. The table reports the mean error
emean and median error emed of 3D reconstructions for the following NRSfM baselines: PTA [5], CSF [6],
BMM [8], TUS [31], APG [9], CNR [14]; and our proposed method TUNS. For each sequence, the best
and the second-best results of, both mean and median errors, are shown in red and blue, respectively.

Data
Method PTA [5] CSF [6] BMM [8] TUS [31] APG [9] CNR [14] TUNS (Ours)

emean/emed emean/emed emean/emed emean/emed emean/emed emean/emed emean/emed

56_02 0.0227/0.0113 0.0500/0.0252 0.0235/0.0147 0.0204/0.0112 0.0215/0.0102 0.0341/0.0240 0.0205/0.0118
56_03 0.0655/0.0301 0.1309/0.0792 0.0748/0.0446 0.0557/0.0254 0.0739/0.0460 0.0605/0.0316 0.0448/0.0219
56_04 0.0720/0.0325 0.1819/0.1199 0.0843/0.0516 0.0637/0.0287 0.0792/0.0487 0.0661/0.0329 0.0538/0.0278
56_05 0.0697/0.0354 0.2056/0.1269 0.0857/0.0596 0.0613/0.0312 0.0741/0.0479 0.0629/0.0341 0.0506/0.0287
56_06 0.0951/0.0483 0.2412/0.1616 0.1085/0.0696 0.0827/0.0402 0.0975/0.0582 0.0829/0.0413 0.0667/0.0321
56_07 0.1259/0.0542 0.3446/0.2144 0.1453/0.0889 0.0959/0.0424 0.1262/0.0789 0.2066/0.0982 0.0790/0.0385
56_08 0.0807/0.0386 0.2015/0.1236 0.1158/0.0822 0.0717/0.0427 0.1415/0.1160 0.1910/0.1041 0.0583/0.0303
86_01 0.0700/0.0321 0.1591/0.0942 0.0832/0.0516 0.0619/0.0267 0.0642/0.0271 0.0607/0.0278 0.0582/0.0237
86_02 0.1817/0.0930 0.3170/0.2125 0.1716/0.0927 0.1521/0.0710 0.1586/0.0750 0.1463/0.0683 0.1449/0.0646
86_03 0.1861/0.1057 0.3696/0.2751 0.1766/0.1018 0.1554/0.0799 0.1578/0.0832 0.1541/0.0795 0.1433/0.0733
86_04 0.0934/0.0464 0.2384/0.1601 0.0975/0.0559 0.0826/0.0391 0.0854/0.0402 0.0783/0.0363 0.0774/0.0351
86_05 0.2267/0.1394 0.3387/0.2595 0.1975/0.1131 0.1821/0.0972 0.1872/0.1008 0.1738/0.0938 0.1784/0.0949
86_06 0.1765/0.0949 0.3724/0.2780 0.1745/0.0995 0.1570/0.0781 0.1617/0.0815 0.1516/0.0761 0.1501/0.0734
86_07 0.1457/0.0854 0.4838/0.3634 0.1447/0.0878 0.1293/0.0702 0.1331/0.0724 0.1254/0.0677 0.1253/0.0688
86_08 0.1333/0.0746 0.3672/0.2562 0.1366/0.0836 0.1191/0.0631 0.1227/0.0657 0.1152/0.0608 0.1157/0.0609
86_09 0.0302/0.0135 0.0728/0.0498 0.0412/0.0237 0.0306/0.0118 0.0310/0.0112 0.0291/0.0107 0.0270/0.0096
86_10 0.0636/0.0334 0.2489/0.1609 0.0681/0.0431 0.0534/0.0257 0.0552/0.0261 0.0516/0.0245 0.0505/0.0232
86_11 0.0727/0.0416 0.4362/0.3212 0.0729/0.0465 0.0605/0.0319 0.0630/0.0329 0.0586/0.0306 0.0569/0.0304
86_12 0.1190/0.0667 0.2714/0.2062 0.1225/0.0735 0.1102/0.0596 0.1131/0.0616 0.1096/0.0597 0.1078/0.0584
86_13 0.0676/0.0420 0.1261/0.0931 0.0777/0.0566 0.0586/0.0361 0.0684/0.0462 0.0584/0.0348 0.0515/0.0276

Average Err. 0.1049/0.0560 0.2579/0.1790 0.1101/0.0670 0.0902/0.0456 0.1008/0.0565 0.1008/0.0518 0.0830/0.0417
Relative Err. 1.2639/1.3429 3.1072/4.2926 1.3265/1.6067 1.0867/1.0935 1.2145/1.3549 1.2145/1.2422 1/1
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Table 2. Quantitative evaluation on UMPM sequences. The table reports the mean error emean and
median error emed of 3D reconstructions for the following NRSfM baselines PTA [5], CSF [6], BMM [8],
TUS [31], APG [9], CNR [14]; and our proposed method TUNS. For each sequence, the best and the
second-best results of, both mean and median errors, are shown in red and blue, respectively.

Data
Method PTA [5] CSF [6] BMM [8] TUS [31] APG [9] CNR [14] TUNS (Ours)

emean/emed emean/emed emean/emed emean/emed emean/emed emean/emed emean/emed

p1_grab_3 0.1036/0.0639 0.1619/0.1127 0.0976/0.0673 0.0882/0.0539 0.0908/0.0558 0.0805/0.0492 0.0781/0.0560
p1_chair_2 0.0763/0.0461 0.1889/0.1281 0.0892/0.0664 0.0736/0.0429 0.0736/0.0433 0.0678/0.0404 0.0628/0.0441
p3_ball_12 0.0431/0.0244 0.0930/0.0682 0.0709/0.0591 0.0423/0.0245 0.0414/0.0225 0.0407/0.0226 0.0286/0.0168

5.3. Qualitative Evaluation of Marker-Less Method

As described above, our method can be easily converted to the marker-less version. Cooperating
with the CNN-based human joint detector, our method obtains accurate results as shown in
Figures 6 and 7. Note that the employed detector is not restricted to the one proposed in [32]. Any
detector that provides the heightmaps can be introduced into our framework. This proves that our
method is effective in more practical scenarios.

Figure 6. Evaluation on ’p3_ball_12’ sequence in UMPM. For five selected frames, our reconstruction
(red skeleton), ground truth (green skeleton) and the corresponding image are shown on top. On the
bottom, the reconstructions, yielded by all the baselines (blue skeleton) and our TUNS (red skeleton) of
one specific frame, are shown with overlapping ground truth (green skeleton).

Figure 7. Evaluation of marker-less method on ’eating’ sequence in Human3.6M datasets.
The visualization of results from nine selected frames are shown from left to right. For each frame,
the heightmaps of all the joints are displayed together in the first row, the projection of our reconstructed
3D human structure is plotted in the second row and the reconstructed 3D structure is shown in the
bottom row.
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5.4. Discussion

Our method is also limited by the reconstructability problem, the same as the previous NRSfM
techniques. When the input sequence has a small range of viewpoints and the human body is extremely
small, the method yields poor reconstructions. In such cases, more additional priors are needed to
obtain the robust 3D reconstructions, such as pre-learned shape basis, trajectory basis or temporal
consistency. Moreover, camera rotation estimation is not taken into account in this paper. Similar to the
method in [31], how to optimize the camera rotations along with estimating the 3D structures under
the assumption, i.e., union of subspaces, is still an open problem.

6. Conclusions

In this paper, an NRSfM approach is proposed to recover complex 3D human motions from
monocular RGB images. Kernelized low-rank representation, which empirically proves to be more
effective to represent complex human motions, is introduced to the NRSfM framework. Combining
with the soft inextensibility constraint, our method produces more accurate reconstruction against
the baseline approaches. The qualitative analysis illustrates that our KLRR-NRSfM method can be
conveniently converted to the mark-less version without dependency on the given tracks. However,
some issues are still open for future research. For example, promoting the reconstruction accuracy
is a challenging task when the range of viewpoints is extremely small, and estimating the camera
rotations under the union of nonlinear shape subspaces assumption is also a future work, which is
crucial for applying the method to more practical real-life scenarios. Additionally, the 2D locations
of joints might be lost due to the occlusion. In the marker-based method, the 2D location of joints is
often obtained by tracking the infrared markers. By contrast, in the marker-less case, the CNN-based
detector is relatively robust. Nonetheless, an explicit mechanism is still needed to handle the occlusion
for future works.

Author Contributions: Xuan Wang presented and implemented the solution; finished and analysed experiments;
Meanwhile wrote and revised the manuscript. Fei Wang proposed the research issue, the idea and the experimental
design. Meanwhile he supervised the research by providing suggestions. Yanan Chen re-implemented the
baselines.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bregler, C.; Hertzmann, A.; Biermann, H. Recovering non-rigid 3D shape from image streams. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA,
15 June 2000; pp. 690–696.

2. Tomasi, C.; Kanade, T. Shape and motion from image streams under orthography: A factorization method.
Int. J. Comput. Vis. 1992, 9, 137–154.

3. Xiao, J.; Chai, J.; Kanade, T. A closed-form solution to non-rigid shape and motion recovery. Int. J. Comput. Vis.
2006, 67, 233–246.

4. Akhter, I.; Sheikh, Y.; Khan, S.; Kanade, T. Nonrigid structure from motion in trajectory space. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009;
pp. 41–48.

5. Ahkter, I.; Sheikh, Y.; Khan, S.; Kanade, T. Trajectory Space: A Dual Representation for Nonrigid Structure
from Motion. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1442–1456.

6. Gotardo, P.F.U.; Martinez, A.M. Computing smooth time-trajectories for camera and deformable shape in
structure from motion with occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2051–2065.

7. Akhter, I.; Sheikh, Y.; Khan, S. In defense of orthonormality constraints for nonrigid structure from motion.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 1534–1541.



Sensors 2017, 17, 2019 14 of 15

8. Dai, Y.; Li, H.; He, M. A simple prior-free method for non-rigid structure-from-motion factorization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,
16–21 June 2012; pp. 2018–2025.

9. Wang, Y.; Tong, L.; Jiang, M.; Zheng, J. Non-Rigid Structure Estimation in Trajectory Space from Monocular
Vision. Sensors 2015, 15, 25730–25745.

10. Gotardo, P.F.U.; Martinez, A.M. Non-rigid structure from motion with complementary rank-3 spaces. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO,
USA, 20–25 June 2011; pp. 3065–3072.

11. Lee, M.; Cho, J.; Choi, C.; Oh, S. Procrustean normal distribution for non-rigid structure from motion. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28
Jun 2013; pp. 1280–1287.

12. Simon, T.; Valmadre, J.; Matthews, I.; Sheikh, Y. Separable spatiotemporal priors for convex reconstruction
of time-varying 3D point clouds. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 204–219.

13. Zhu, Y.; Lucey, S. Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal.
Mach. Intell. 2015, 37, 529–540.

14. Lee, M.; Cho, J.; Oh, S. Consensus of non-rigid reconstructions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

15. Burenius, M.; Sullivan, J.; Carlsson, S. 3D pictorial structures for multiple view articulated pose estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–28 June 2013; pp. 3618–3625.

16. Oh, H.; Cha, G.; Oh, S. Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks.
Sensors 2014, 14, 5516–5535.

17. Tsai, M.H.; Chen, K.H.; l-Chen, L. Real-time Upper Body Pose Estimation from Depth Images. In Proceedings
of the IEEE International Conference on Image Processing, Quebec City, QC, Canada, 27–30 September 2015.

18. Michel, D.; Panagiotakis, C.; Argyros, A.A. Tracking the articulated motion of the human body with two
RGBD cameras. Mach. Vis. Appl. 2015, 26, 41–54.

19. Rádlová, R.; Bouwmans, T.; Vachon, B. Models Used by vision—Based motion capture. In Proceedings of the
Computer Graphics and Artificial Intelligence (3IA), Limoges, France, 23–24 May 2006.

20. Sigal, L. Human pose estimation. In Computer Vision: A Reference Guide; Springer US: New York, NY, USA,
2014; pp. 362–370.

21. Andriluka, M.; Sigal, L. Human context: Modeling human-human interactions for monocular 3D
pose estimation. In Proceedings of the Articulated Motion and Deformable Objects, Mallorca, Spain,
11–13 July 2012.

22. Andriluka, M.; Roth, S.; Schiele, B. Monocular 3D pose estimation and tracking by detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June
2010; pp. 623–630.

23. Yao, A.; Gall, J.; Gool, L.V.; Urtasun, R. Learning probabilistic non-linear latent variable models for tracking
complex activities. In Proceedings of the Advances in Neural Information Processing System, Granada,
Spain, 12–17 December 2011; pp. 1359–1367.

24. Taylor, G.W.; Sigal, L.; Fleet, D.J.; Hinton, G.E. Dynamical binary latent variable models for 3D human pose
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco,
CA, USA, 13–18 June 2010; pp. 631–638.

25. Tian, Y.; Sigal, L.; De la Torre, F.; Jia, Y. Canonical locality preserving latent variable model for discriminative
pose inference. Image Vis. Comput. 2013, 31, 223–230.

26. Zhu, H.; Yu, Y.; Zhou, Y.; Du, S. Dynamic Human Body Modeling Using a Single RGB Camera. Sensors 2016,
16, 402.

27. Ek, C.H.; Torr, P.H.; Lawrence, N.D. Gaussian process latent variable models for human pose estimation. In
Proceedings of the Machine Learning for Multimodal Interaction, Utrecht, The Netherlands, 8–10 September
2008; pp. 132–143.

28. Tekin, B.; Rozantsev, A.; Lepetit, V.; Fua, P. Direct prediction of 3D body poses from motion compensated
sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016.



Sensors 2017, 17, 2019 15 of 15

29. Elhayek, A.; de Aguiar, E.; Jain, A.; Tompson, J.; Pishchulin, L.; Andriluka, M.; Bregler, C.; Shiele, B.;
Theobalt, C. Efficient ConvNet-based marker-less motion capture in general scenes with a low number of
cameras. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
8–10 June 2015; pp. 3810–3818.

30. Gong, W.; Zhang, X.; Gonzàlez, J.; Sobral, A.; Bouwmans, T.; Tu, C.; Zahzah, E.-H. Human Pose Estimation
from Monocular Images: A Comprehensive Survey. Sensors 2016, 16, 1966.

31. Zhu, Y.; Huang, D.; De La Torre, F.; Lucey, S. Complex non-rigid motion 3D reconstruction by union of
subspaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 Jun 2014; pp. 1542–1549.

32. Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional Pose Machines. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 4724–4732.

33. Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation.
IEEE Trans Pattern Anal. Mach. Intell. 2013, 35, 171–184.

34. Xiao, S.; Tan, M.; Xu, D.; Dong, Z.Y. Robust kernel low-rank representation. IEEE Trans. Neural Netw.
Learn. Syst. 2015, 27, 2268–2281.

35. Cai, J.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim.
2010, 20, 1956–1982.

36. Moré, J.J. The Levenberg-Marquardt Algorithm: Implementation and Theory. Numerical Analysis, Lecture
Notes in Mathematics 1977, 630, 105–116.

37. Lin, Z.; Chen, M.; Wu, L.; Ma, Y. The augmented Lagrange multiplier method for exact recovery of corrupted
low-rank matrices. arXiv 2009, arXiv:1009.5055.

38. Aa, N.; Luo, X.; Giezeman, G.; Tan, R.; Veltkamp, R. Utrecht multi-person motion (umpm) benchmark: A
multiperson dataset with synchronized video and motion capture data for evaluation of articulated human
motion and interaction. In Proceedings of the International Conference on Computer Vision Workshop
HICV, Barcelona, Spain, 6–13 November 2011.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivations
	NRSfM with Low-Rank Priors
	Low-Rank Representation

	Formulations
	Optimization
	The Solution of  and Z
	The Solution of X
	The Solution of E
	The Solution of C and l

	Experiments
	Subspaces Analysis
	Quantitative Evaluation
	Qualitative Evaluation of Marker-Less Method
	Discussion

	Conclusions

