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Abstract: Sleep physiology and sleep hygiene play significant roles in maintaining the daily lives of
individuals given that sleep is an important physiological need to protect the functions of the human
brain. Sleep disordered breathing (SDB) is an important disease that disturbs this need. Snoring
and Obstructive Sleep Apnea Syndrome (OSAS) are clinical conditions that affect all body organs
and systems that intermittently, repeatedly, with at least 10 s or more breathing stops that decrease
throughout the night and disturb sleep integrity. The aim of this study was to produce a new device
for the treatment of patients especially with position and rapid eye movement (REM)-dependent
mild and moderate OSAS. For this purpose, the main components of the device (the microphone
(snore sensor), the heart rate sensor, and the vibration motor, which we named SNORAP) were
applied to five volunteer patients (male, mean age: 33.2, body mass index mean: 29.3). After receiving
the sound in real time with the microphone, the snoring sound was detected by using the Audio
Fingerprint method with a success rate of 98.9%. According to the results obtained, the severity and
the number of the snoring of the patients using SNORAP were found to be significantly lower than
in the experimental conditions in the apnea hypopnea index (AHI), apnea index, hypopnea index, in
supine position’s AHI, and REM position’s AHI before using SNORAP (Paired Sample Test, p < 0.05).
REM sleep duration and nocturnal oxygen saturation were significantly higher when compared to
the group not using the SNORAP (Paired Sample Test, p < 0.05).

Keywords: sleep physiology; snore; sleep apnea; audio fingerprint; heart rate sensor; wearable
sensor; sleep quality

1. Introduction

Sleep physiology and sleep health play very important roles in maintaining the daily lives of
individuals. Sleep is an important physiological need to protect the functions of the human brain.
While sleeping is an activity that must be performed at night, the duration and depth of sleep, and the
number of awakening episodes at night all directly affect sleep quality. High sleep quality leads to
more accurate functioning of healthy individuals’ brains and a high quality of daytime activities.

In general, ventilation decreases during sleep, fluctuates in the tidal volume and as periodic
respiration starts, blood pressure and heart rate decrease [1]. Two different sleep phases have different
effects on respiratory and cardiovascular systems: (a) Non-REM (NREM, calm, synchronized sleep,
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deep-wave sleep); and (b) REM (moving, desynchronized, paradoxical sleep) [2]. Upper airway
resistance, approximately doubles during NREM sleep; and no significant change is expected in
the lower airway resistance. During sleep, the voluntary control of breathing and the stimulation of
alertness are disabled, and breathing control is provided by metabolic stimuli. Respiration becomes
irregular in the REM period: hypotonia develops in skeletal muscles and the sensitivity of
the respiratory center to the nearby carbon dioxide is decreased. Respiratory irregularity is evident in
the period of eye movements [3,4]. In NREM sleep, heart rate and blood pressure fluctuations decrease
and are lower than wakefulness. During the REM period of sleep, blood pressure rises and becomes
irregular, but maintains levels below wakefulness levels [5].

There are many biological, psychological, and social factors that disrupt sleep physiology.
Respiration disorders while sleeping are a very important disease group that disrupts sleep physiology
in the area of sleep medicine. In particular, Snoring and Sleep Apnea Syndrome is a serious threat to
the health of people and society, and most individuals are not concerned with snoring during sleep.
However, individuals with Sleep-Disordered Breathing cannot get enough oxygen during nighttime
sleep, and vital organs such as the brain and heart are not sufficiently oxygenated. Snoring is a stage
that occurs during sleep, usually due to the vibration of the tissues in the upper airway, generally on
inspiration, more rarely on exhalation and sometimes in both phases of respiration [6,7].

Sleep Apnea Syndrome is a clinical condition that affects all body organs and systems that interfere
with sleep quality throughout the night, with recurrent intervals during the night that last at least 10 s
or more and continue with breathing stops and reductions. It is typed based on anatomical location:
(a) Obstructive Type; (b) Central Type; and (c) Mixed Type; according to size of affected by disease:
(a) Mild Degree; (b) Moderate Degree; and (c) Severe Degree; and according to sleeping periods and
position it varies as: (a) REM Dependent; and (b) Position Dependent. REM sleep is a situation when all
skeletal muscles in the body except the diaphragm incur atonia while active, and episodic REM occur
at electroencephalography (EEG). Therefore it is referred to as paradoxical sleep. Skeletal muscles
providing upper airway tone in patients with OSAS incur atonia more frequently; thus, snoring and
apnea attacks increase.

Polysomnography (PSG) is the gold standard method for the diagnosis of OSAS. The assessment
of the sleep stages and respiratory events in sleep was performed as per the guidelines of the American
Academy of Sleep Medicine. Apnea was determined as an oro-nasal airflow cut for at least 10 s.
Hypopnea was defined as a 3% decrease in oxygen saturation with a reduction of at least 50% in
oro-nasal airflow or accompanying arousal. Arousal was defined as waking up while sleeping or
passing to a more superficial sleeping environment. Characteristic PSG findings of OSAS can be listed
as follows: (a) an increase in the duration of superficial sleep, and a decrease in that of deep sleep and
REM is observed; (b) The recurrence of apnea and hypopnea recur frequently; (c) Oxygen desaturations
recur frequently (d) REM sleep increases the frequency and duration of apnea, and the degree and
duration of oxygen desaturation. Supine sleeping position also makes contribution to this increase;
(e) Paradoxal chest and abdominal movements are typically seen during apnea; (f) Heart rate usually
slows down during apnea and accelerates after apnea; arrhythmias can be observed during this period;
(g) Irregular snoring that frequently recurs and interrupted by apnea is heard in respiratory voice
recording. The degree of disease is determined by AHI (apnea hypopnea index; obtained by dividing
the total number of apnea and hypopnea seen in sleep by the time of sleep in hours) value detected
according to PSG result. If this index is greater than 5, sleep apnea syndrome can be a matter. But, the
clinically important value is 15 and above. OSAS classification, based on the AHI values, are given in
Table 1 [8,9].



Sensors 2017, 17, 2006 3 of 17

Table 1. Obstructive Sleep Apnea Syndrome Classification [8,9].

AHI OSAS Degree

<5 Normal
5–15 Mild

16–30 Moderate
>30 Severe

Among these disease groups, Continuous Positive Air Pressure (CPAP) therapy appears as
the gold standard treatment method, especially in moderate and severe degree OSAS. However, both
REM-dependent and position-dependent patients with simple snoring, moderate, and mild OSAS
cannot be proposed with CPAP therapies and cannot be treated completely. However, every grade of
the disease leads to different symptoms that are specific to the person.

Daytime complaints of patients can be listed as “daytime sleepiness (when driving, doing
important work, reading a book), attention and concentration disorders, daydreaming and headache
in the morning, and psychological problems (such as anxiety, depression, emotional disturbances,
etc.)”; and nighttime symptoms are “snoring, discomfort given to the bed partner and other members
of the house due to snoring, chest pain, drowsiness feeling in sleep, poor sleep quality due to short
vigilance, night headache”. All of these symptoms, unfortunately, remain in the patient group, listed
in Table 1, which cannot be fully treated. Our hypothesis was that using the device we developed for
the treatment purposes will be good for the disease groups shown in Table 2.

Table 2. Patient groups that cannot be proposed CPAP and not fully treated.

(a) Simple Snoring Patients (Position dependent 1/REM dependent)
(b) Mild Degree OSAS Diagnosed Patients with Snoring Complaints (Position dependent/REM dependent)
(c) Moderate Severe OSAS Patients with Snoring Complaints (Position dependent/REM dependent)
(d) In normal patient groups (increased snoring and apnea) (Position dependent/REM dependent)

1 Snoring in the supine position is exacerbated.

The purpose of this study was to develop a new device for the treatment of a special group of
patients whose sleep and wakefulness health has been impaired by sleep disorder.

2. Related Works

Recently, studies to find audio fingerprints have become popular, with even large corporate
institutions developing algorithms in this area. The most well-known audio fingerprinting algorithm
is Shazam [10], which is based on local audio fingerprints. With Shazam, people can find songs they
seek using smartphones as the application uses the peaks observed in the spectrogram of the audio
signal as local feature points of the song. Property descriptors are then generated from the attributes of
these pairs of points, and a compact fingerprint time difference forms for each pair of frequencies on
each pair and for each pair [11].

Spectrograms, signal and image processing methods are often used in audio fingerprinting
algorithms. An algorithm based on spectrogram extraction of general fingerprint based audio signal
has been presented by Haitsma and Kalker [12]. Waveprint, a wave-based audio fingerprint algorithm
has also been suggested by Baluja et al. [13] and used recently by the Google voice search system.
The Waveprint key algorithm is based on wavelets, which is robust with respect to codec or a bit rate
change. Zhu et al. [14] introduced a constant scale feature transform-based algorithm. Chunk and Ko [15]
proposed a new method that could reduce the number of fingerprints by using Gaussian difference,
which is used for feature extraction during image signal processing. Cano et al. [16] defined a voice
recognition system with various voice fingerprint features, and Rein and Reisslein [17] proposed
a method for the use of audio fingerprints to identify a classical music composition that could not be
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identified through the use of perpendicular wave dispersion vectors and neural networks. In the study
by Ellis et al. [18], a spectrogram was created and the starting points of the points were found using this
spectrogram. Fingerprints have been produced by using time differences between these points.

Various studies have been carried out to measure sleep apnea diagnosis and sleep quality. In their
study, Lazaro et al. used signal processing to predict sleep apnea and respiration rate [19], while Nam et al.
demonstrated a new monitoring system to measure sleep quality [20]. In their study, Adnane et al.
presented a new method for detecting apnea periods by using signal processing packages [21]. Recently,
different techniques for sleep apnea monitoring have been widely developed [22]. Additionally, Nam et al.
suggested the estimation of the correct respiration rate from a smartphone by using breath sound
recordings from the nose: the proposed method detects the nasal airflow by using an interior smartphone
microphone or a headphone microphone placed under the nose [23]. Nguyen et al. used heart rate
complexity measures to classify OSA events [24]. Le et al. proposed a wireless placeable model in
their studies to anticipate sleep apnea attacks in advance. They developed an approach to provide
an early warning of 1–3 m for the oncoming sleep apnea area .They calculated the accuracy of offline
OSA classification as 88%,that of predict it 1 m ahead as 83%, that of predict it 3 m ahead as 77% [25].
Bukkapatnam et al. took out a patent on a wireless wearable sleep apnea treatment system. This patent
includes a wearable sensor vest for use in the treatment of sleep apnea. It also includes an EKG monitor
and a wireless signal receiver card, being in touch with EKG monitor and computer, and allows for
electricity reading from EKG monitor to computer, and a patient’s stimulus controlled in order to receive
the patient signal [26]. Afrin et al. developed a home sleep tester, clinically almost equivalent to PSG
system, low cost and easy to use and buried in an electronical sleep pillow [27].

3. Proposed Hardware Platform

The SNORAP device was designed to prevent snoring and apnea (stopping breath for at least
10 s in sleep), one of the most common and important causes of disturbance to an individuals’ sleep
health. Our device operated as real time as a wearable device. As shown in Figure 1, our device
consisted of six parts. The display uses the Display Serial Interface (DSI) connector on Raspberry Pi
and shows the results of our application visually so that on-screen heartbeats and snoring sounds can
be displayed instantly.

Raspberry Pi is a mini-computer the size of a credit card. The technical specifications of
the Raspberry Pi include: 1.2 GHz 4-core 64-bit quad-core ARMV8 processor, 1 GB RAM memory,
Bluetooth 4.1, 40 GPIO, four USB 2 ports, full size HDMI port, CSI camera port for connecting
the Raspberry Pi camera, DSI display port for connecting the Raspberry Pi touch screen display, micro
SD socket. Grove is a shield card that allows Raspberry Pi to connect to Grove sensors. There are
15 Grove sensor connections on the card. A grove sensor card has 15 4-pin Grove sensor connections on
it. Grove Pi + is fixed on Raspberry Pi without the need of any other connection. The communication
between them is carried out over I2C interface. All Grove modules are connected to the Grove Pi + card
via the universal 4-pin connector cable. Grove modules with analog or digital output, are connected
to an ATmega 328 micro controller (Microchip Technology, Chandler, AZ, USA) on the grove Pi + card.
The micro controller acts as an interpreter between Raspberry Pi and Grove sensors. It issues and receives
commands and runs commands that are issued by the Raspberry Pi. The screen produced by the 7-inch
Raspberry Pi official manufacturer uses the DSI connector on Raspberry Pi, and thus, it does not occupy
the HDMI port and GPIO pins. Its features: RGB 800 × 480 resolution, 60 fps support, 24-bit color depth,
touch support up to 10 points by means of FT5406 touch-operated controller, 70◦ visual angle [28,29].

The heart rate sensor module can measure the variation in human blood movement in the veins
thanks to optical technology. It has CMOS with high performance and low power consumption, using
PAH8001El-2G (PixArt Imaging Inc., Hsin-chu, Taiwan) in the sensor measuring heart beat via a finger
clip. Since the heart rate sensor chip should have a high processing speed for the algorithm of heart
rate data, STM32 (STMicroelectronics, Geneva, Switzerland) is integrated into this module. The heart
rate sensor performance was calculated in real-time, and was found to have an average difference
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of 0.55 bpm compared to the PSG system. The microphone was used to receive and process voice in
the environment, and the vibration motor sent a warning to the user to perceive touch. The vibration
sensor is in the size of a coin with a DC motor. It will vibrate when its entrance is logic High, in other
words, the vibration motor is activated when a snoring sound occurs. It produces a very low- decibel
sound that will not awake the patient. The vibration sensor included in SNORAP can be set according
to individual’s perception characteristics of tactile stimulus. Thus, patients who need more stimulation
are sent stimuli by increasing the severity of the vibration. The snoring sound detection success was
98.9%. The 98.9% accuracy rate assigned for the SNORAP device, the study’s subject, corresponds to
the snoring volume. Our device does not directly measure the duration or severity of apnea periods,
but rather it indirectly reduces or eliminates OSA periods that occur after snoring periods.
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As shown in Figure 2, if the heart rate sensor connected to the user (with a finger clip) was above
or below the specified reference value (40–120/min), the user sent frequent vibrations. Here, our goal
was to alert patients with a heart rhythm problem during sleep.
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Particularly for patients with mild and moderate sleep apnea (position and REM dependent),
the snoring and apnea prevention device is very well operated by the snoring intensity and frequency
of the person. The intensity and frequency of the snoring voice also points to the apnea, which may
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actually occur, especially when the patient is in a supine position and in REM, increased snoring
attacks are sensed and vibration stimuli are sent to the body. The person then changes position so that
snoring is decreased and the apnea that may occur afterwards can be eliminated.

SNORAP is a real-time-operating device, which can be used for about 10 h during the night,
and is easily placed on the patient’s arm. The device is suitable for long-time use, and its lifelong
use is recommended for patients. The electrical stimulus (delay time) issuing time of the device after
perceiving a snoring sound is approximately 3.4 s. The severity of the stimulus is adjusted depending
on the perception threshold of the patient, to whom stimuli are issued by sending vibrations to
the patient’s arm in three 3-s bursts with 1-s intervals. This process, which lasts for 11 s in total,
disappears spontaneously when the snoring noise is removed. When snoring attacks occur again,
the same function is once again activated.

4. Method

An audio fingerprint is a short summary of an audio file [30]. Recently, many voice search
sites (especially Google) have used audio fingerprint technology to search for the same voice.
Audio fingerprints are often used for similar audio files and for content-based rotation of the same.

As shown in Figure 3, the Fingerprint detection module converts the perceptual characteristics of
the sound recording into a solid short form (fingerprint). This module consists of three sub-modules:
pre-processing, feature extraction, and fingerprinting modules. The pre-processing module provides
the signal converting into ready-to-process format by performing some operations on the signal
such as conversion from analog to digital, dropping single channel, and changing the sampling rate.
The feature extraction module measures some predefined, distinctive values related to the signal.
Measurements of a predetermined, distinctive value of the signal transformed into the frequency
domain are made. A wide variety of methods can be used at this stage. Our aim was to reduce the
dimension and increase the endurance against the distortion of the fence. The fingerprint modeling
section also reveals the last fingerprint form of these measurement values. When a fingerprint is
given, the fingerprint matching module compares this fingerprint with other fingerprints defined in
the database and finds the best match.
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Figure 3. Sound/Speech Recognition System.

In this study, the Audio Fingerprint method was used for snoring sound detection. One of
the factors that determines the usability of a recognition system is so that it can effectively compare
an unknown audio track with millions of known audio tracks. The Audio Fingerprint extracts
the summary of the audio content and stores it in the database. In addition, the fingerprinting system
must also be efficient in terms of calculation. Efficiency has a critical effect on both the calculation
of fingerprints of unknown voices and in real practice, and even more so in the search for the best
match in a large fingerprint database. Calculation costs are related to fingerprint size, search algorithm
complexity, and fingerprint extraction complexity. The general approach is to create an index structure
to reduce the number of distance accounts that will be made when a query is given. Many indexing
methods group similar classes, ignore some classes, and search for the rest of the classes. The duration
of an audio data database should be as short as possible, especially for real-time applications where it
is important that the duration of the call is short. It is expected that call duration will not increase too



Sensors 2017, 17, 2006 7 of 17

much if the number of audio fingerprints in the database increases too much. In our real-time system,
it took 3.4 s for our system to find out if there was no snoring sound or other sounds.

Audio fingerprint techniques aim to deliver successful results when content-based audio
recognition is performed, even when audio signals are mildly or severely broken. In order for audio
fingerprint to be successful, first, it is necessary to significantly reduce the size of the input audio signal.
Second, resulting properties must be robust against possible degradation of the entrances. For example,
if the songs playing on the radio are to be detected, the system must be robust against any non-linear
distortions that most stations identify to the pre-broadcast signal. Third, the resulting features should
be informative: for sound identification, different sound clips must be matched to distant features in
some appropriate metrics. Finally, the calculation in the feature extraction process must be efficient [31].

As shown in Figure 4, spectrographs were obtained especially from the audio data. Next, the peaks
were found and a summarization fingerprint was generated. Then, our system determined whether this
voice was a snoring voice or other sound. Our system detected a snoring voice at 98.9%. After the snoring
sound was detected, it sends out vibrations to the person, so that extraction from snoring was provided
and he was prevented from entering sleep apnea.
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4.1. Preprocessing and Sampling

In the front processing section: first, the sound was converted into digital form and brought into
a common, designated form. In the case of audio recording, the accepted rule is that human ears
miss frequencies above 22,050 Hz. For this reason, there were 44,100 samples in the second as per
the Nyquist-Shannon Sampling Theorem.

4.2. Spectrograms and Peak Finding

As the samples were a kind of signal, the Fast Fourier Transform was repeatedly used in small
time windows from the samples of the sound to form the sound spectrogram. Peak points were
preferred in this study given the high possibility of peak protection in cases of audio distortion. As they
were highly resistant to noise and signal distortion, they used spectrogram peaks as their fingerprints.
Fingerprints were created using the frequency values and time differences of the peaks found.

Figure 5 shows the spectrogram of the snoring sound, which was a 2-dimensional array
with a wave amplitude as the time and frequency function. The applied FFT showed the special
frequency signal by providing a column at the end. Sufficient windowing was required to obtain
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a 2-dimensional array spectrogram. The spectrogram was used to describe the uniqueness of a voice.
As various sounds cause noise in the outdoor and indoor environment, our goal was to catch the most
discriminating fingerprint of the audio signal. First, we had to find the amplitude peak points from
the spectrogram of the audio signal. The time corresponding to the amplitude of the largest amplitude
from the neighborhood around the peak was frequency, which lowers the amplitudes of the other pairs
around it and reduces this noise. Even if new peak points occur due to noise, the other peaks will not
be affected much as the peaks are locally independent of each other. If peaks are deleted in a similar
way, most of them will be preserved. The display of the summit points is called a constellation map.
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It is a slow process to find the right audio records and starting point by using the peak points
directly as they do not have enough dependency. Instead, fingerprints were obtained by pairing
the peaks in the constellation map in binary combinations. The anchor point was selected and each
anchor point had a target region. Each anchor point was sequentially paired with the peak points
remaining in the target region.

4.3. Fingerprint Hashing

As there may be similar peaks when peaks are found, we found the appropriate trace for that
sound by combining the peaks with fingerprints by using a hash function. The summarization function
took an integer as input and converted it to another integer as output. By looking at the peaks of
the spectrograms and the time differences between peak frequency combinations, we could create
a summation to distinguish sounds. This study was developed based on Shazam’s method [10], where
the fingerprint having more detailed entropy (in other words, containing more information), was
formed by accounting for more than one peak. In this study, the SHA-1 summarization algorithm was
used for summarization.

Some match-up was obtained with some audio tracks as a result of the search in the database.
The distance account methods were used in order to express the matching amount with audio tracks.
The audio tracks with the shortest distance are the most probable candidates. The audio features
used in audio analysis can be basically divided into two groups: high-level features and low-level
features [32]. The high-level features include the kinds of knowledge that an individual obtains while
listening sound. The features such as timbre, melody, rhythm, pitch, harmony, structure, and lyrics can
be included in this group. The high-level features can be used for snoring-sound detection. However,
the sound events that we considered in further studies and the spectrogram peaks, more resistant to
noises, were used as the fingerprint feature in this study. A time-frequency point in a spectrogram is
the peak point if it has a higher energy level than all neighbors in a region around it.

4.4. Experimental Protocol

SNORAP is a wearable device designed for home use. The present study consists of two parts:
The first stage was the design and construction of the SNORAP device, which lasted about 1 year.
The second stage was an experimental process that was conducted within 2 months at a sleep disorders
center, operated by a medical doctor who received education in sleep medicine, accredited according to
international rules, and having received its ethical approvals. Collection of data from volunteer patients
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was done in real-time during their night sleeps. The SNORAP application has been used on diagnosed
patients by means of PSG findings belonging to volunteers staying at the lab for the first night after
5 days. Thus, the situations of patient before and after the use of SNORAP have been easily compared.
The data collection period for each volunteer is 7 days. The volunteers were examined by a medical
doctor (MD, specialist physiologist) and their one-night tests were conducted in company with sleep
medicine technicians. Before doing this study, the volunteer patients were trained in sleep medicine
and examined by a medical doctor; the recorded PSG results were analyzed by the same physician in
charge of the laboratory, and the diagnosis of OSAS was made in compliance with American Academy
of Sleep Medicine (AASM) criteria.

The test protocol consisted of two steps. The first consisted of the PSG recording and diagnosis
phase; the second consisted of the phases where PSG and SNORAP applications of diagnosed patients
were performed together. SNORAP was easily compatible with the PSG sensors proposed by AASM.
It was also observed that snoring attacks occurring during the night are detected by PSG sensors;
in addition, the SNORAP device simultaneously and in real time detected the same snoring attacks.
The decrease in and removal of snoring and apnea attacks when SNORAP perceives snoring and issues
a tactile stimulus to the patient was clearly monitored with the PSG sensors recommended by AASM.

The experimental procedure for the device was tested on a total of five volunteer patients with
a respiration disorder during sleeping (male, mean age: 33.2, body mass index average: 29.3), and only
five polysomnographies (standard method for determining sleep disturbances) were recorded by the
five volunteers. PSG records were taken with the application of the prototype device shown in Figure 6.
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PSG included six channels of EEG, two channels of electrooculography (EOG), one channel of
submental muscle electromyography (EMG), two channel of EMG placed on both anterior tibial
muscles, one channel of oro-nasal airflow cannula, one channel of oro-nasal thermal sensor, inductive
plethysmography to demonstrate the two-channel chest and abdominal breathing effort, a channel of
“body position” sensor, a channel of finger probe and pulsoximeter to measure arterial oxyhemoglobin
saturation (SpO2), and simultaneous video recording.

5. Experimental Results

5.1. Snoring

Using the PSG, the number and severity of snoring for each patient were compared. Snoring
severity and number of the group using SNORAP were found to be statistically lower (Paired Sample
Test, p < 0.05) than when compared to the group not using SNORAP. A volunteer patient from study
groups in Figures 7 and 8 was shown a sample PSG recording before and after using SNORAP.
6-channel EEG (A) and snoring trace (B) are given in Figure 7. The high amplitude snoring packets
(C) are seen in the snoring trace in Figure 7. Figure 8 shows the PSG recording of the same volunteer
patient when the SNORAP was applied to that patient. When his snoring trace in these conditions
is reviewed, it is seen that the high amplitude snoring packets are completely removed. No wave of
being awake was observed in his sleep EEG.
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5.2. Apnea-Hypopnea Index

In the PSG analyses performed on each patient, the apnea-hypopnea index (AHI), apnea index,
hypopnea index, AHI in REM and AHI in supine position were compared. As seen in Table 3, the values
of SNORAP group were found to be low and statistically significant (Paired Sample Test, p < 0.05)
when compared to the group not using SNORAP. As seen in Figure 9, the AHI value of patients using
SNORAP seriously decreased.
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Table 3. List of p values of statistically significant parameters.

Index Parameters p Value

A/H Index 0.003
Hypopnea Index 0.006

Supine AHI 0.056
REM AHI 0.046

5.3. Total Apnea/Hypopnea Count

As seen in Figure 10, the total apnea/hypopnea count of patients using SNORAP seriously decreased.
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5.4. Rapid Eye Movement Sleep Time and Nocturnal Oxygen Saturation

When the results of PSG were examined, REM sleep duration and nocturnal oxygen saturation
were compared (Figures 11 and 12). Rear sleep duration and nocturnal oxygen saturation were
found to be statistically significant (Paired Sample Test, p < 0.05) when compared to the group not
using SNORAP.
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6. Discussion

To improve the impaired sleeping health of people with mild and moderate SDB through the tactile
stimulus system that we created, we first diagnosed the individual’s diseases as polysomnographical
before setting up a five-person experimental group where the probable effects of the device (named as
SNORAP) on the patients and the diseases detected. According to the obtained results, snoring severity
and number of patients using SNORAP were found to be significantly lower than the experimental
conditions before using SNORAP in the apnea-hypopnea index, apnea index, hypopnea index, supine
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position AHI and REM. The REM sleep duration of the group using SNORAP and nocturnal oxygen
saturation were found to be significantly higher when compared with the group not using SNORAP.

6.1. Detection of Snoring Sound

The snoring sensor, which was the most important part of our device, was developed with
the right methods and easily perceived the snoring sound. If you are working with a high sensitivity
to snoring, your contribution to the treatment of sleep related respiration disorders is high.

In Ke et al. [33], computer vision techniques were used for voice recognition where the sound
wave signal was converted into two-dimensional representation as time-frequency, and 33 Bark-frequency
cepstral coefficients (BFCC) tape was used. In our study, the peak points were found after the time-frequency
conversion and fingerprints were generated.

In their study, Baluja and Covell [13] used image processing methods to first create a spectrogram,
before the Haar Wavelet was applied to the spectrogram images. As a result of this process, the wavelet
coefficient of the number of pixels in the spectrogram picture appeared and the authors decided that
only the most powerful t-wave would be sufficient. Ellis et al. [18] divided the spectrogram into
eight bands where note starts and fingerprints were calculated for each band. In our study, after
the spectrograms were generated, they were obtained by pairing the peaks, fingerprints, and peaks in
the constellation map in binary combinations.

In the work of Burges et al. [31] a perceptually aggravated log spectrogram was used and
the Distortion Discriminant Analysis (DDA) method was used to produce tolerance fingerprints for
this spectrogram noise. In our study, the peak points were used to reduce noise. Several methods
have been used in the study of snoring sound detection [34–39]. These studies, while trying to find
the feature for voice in general, all tried to find the distinguishing feature of the voice and determined
that the classifier and voice were snoring sounds.

In our study, the distinguishing features of snoring sounds were detected by taking fingerprints,
thus at good classification success was ensured even in noisy situations. A number of methods have
been developed to detect the vocalization of the soft tissues of the upper airway during sleep. As shown
in Table 4, our method achieved better success than the other methods.

Table 4. Method comparison using snoring sounds.

Accuracy Method

Wang, C et al. [34] 94% Sample Entropi + Support Vector Machine

Dafna et al. [35] 98.2% AdaBoost-based method

Yadollahi [36] 93.2% Fischer Linear Discriminant + Bayesian

Karunajeewa et al. [37] 96.7% Zero crossings + energy of the signal + linear predictive
coding analysis + noise reduction techniques

Cavusoglu et al. [38] 86.8% Energy and zero crossing rate

Duckitt et al. [39] 89% Hidden Markov models + spectrally based features

Our study 98.9% Audio Fingerprint

6.2. Snoring

Snoring is an important complaint seen in 44% of the middle-aged male population and 28% of
the female population. It is a social problem that causes shame in society, and even affects marriages.
The volume of the snoring can vary between patients and between nights in the same patient; it can be
continuous or intermittent. Simple snoring is a condition that does not lead to regular sleep breaks;
however, if awakened by a bed-mate, it causes sleep disturbances and insufficient sleep. Sleep apnea
syndrome is the most common symptom. In males with snoring, the risk of developing OSAS within
10 years has risen [40]. In multivariate analysis, hypertension was predicted to be 1.4 times higher,
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myocardial infarction 1.34 times, and stroke 1.67 times more severe than the other variables, regardless
of age, gender, body mass index, diabetes, education level, smoking and alcohol consumption [41].
The position with snoring and in the case with REM dependent, mild and moderate sleep apnea
syndrome is mostly untreatable. In our study, the snoring and apnea attacks were stopped by using
the SNORAP device, which had a very high sensitivity to the snoring sound, the prototype of which
we designed, leading to a decrease in the severity and the number of snoring.

6.3. Apnea-Hypopnea Index

It is typical that snoring in OSAS patients is interrupted by frequent recurrent apneas.
Patients often refuse to snore, although there is a common finding in almost all OSAS patients.
Weight gain and alcohol intake are important predisposing factors [42]. AHI is the number of apnea
and hypopnea occurring during sleep, divided by the number of days spent in sleep. This index
determines the degree of sleep apnea syndrome. In the treatment of OSAS of a mild (AHI: 5–15) and
moderate (AHI: 15–30) degree (especially for position-dependent type), it is advisable to classically
put a hard tennis ball on the back of the nightgown and lie sideways. As a group disease, snoring
and accompanying apnea attacks increase when the person stays in the supine position during sleep.
The approaches recommended to the patients and position trainings were not performed by the patients
or they remained insufficient. However, this situation, which is the subject of this study, was removed
by means of the prototype device that we created. Patients come to the lateral position from the supine
position, thanks to SNORAP, which attaches to the arms and sends tactile stimuli depending on snoring
sound intensity. The apnea index, the hypopnea index, especially the AHI index at the supine position,
were at the desired levels thanks to the device, which had a high patient compliance.

6.4. REM Sleep Time and Nocturnal Oxygen Saturation

Characteristic findings of OSAS as polysomnographical are the increase in superficial sleep and
deep sleep, and decrease in REM duration. REM sleep increases the frequency and duration of apnea
and the degree and duration of oxygen desaturation. The SNORAP device is not designed to detect the
REM phase of sleep. Moderate and mild OSAS-diagnosed patients (i.e., only occurring during REM),
were detected in company with PSG in our laboratory. Our goal is not to determine the REM period via
SNORAP. Rather, our aim was to observe polysomnographic changes that occurred, by applying this
vehicle, measuring snoring successfully, to the patient groups for whom we already know that attacks
of snoring and apnea/hypopnea increase during the REM period. As seen in the findings of our study;
although our device did not detect the REM period, it reduced the number and severity of snoring and
subsequent apnea attacks. The supine position also contributes to the increase. Oxygen levels that fall
overnight during recurrent episodes of apnea-hypopnea (which frequently divides severe snoring and
snoring in the supine position), especially in REM sleep, can lead to heart related problems. Heart
rate usually slows down during apnea and accelerates after apnea; therefore, arrhythmias can be
seen [43]. The SNORAP prototype used in our study was prevented by stimuli sent by respiratory
and cardiac events, which seriously increases in the supine position, especially at REM. The heart rate
monitor also stimulated a person in situations where the heart rate had risen below 40/min up to
120/min, and helped prevent a possible heart event. SNORAP, which prevented all these events led to
the extension of the REM sleep period and therefore REM removed complaints such as “forgetfulness,
loss of attention, daytime sleepiness” due to sleep deprivation. Furthermore, complaints of “morning
headache and tired wake up” are due to inadequate oxygenation as desaturation overnight.

6.5. Time Relationship between Snoring and Apnea

The volume of snoring can vary across patients and across nights for the same patient; it can
be continuous or discontinuous. According to acoustic analysis, it may be at a frequency of 200 Hz
at the palate level, and of 1000 Hz at the tongue base [6]. It is typical that snoring that occurs in
OSAS patients is interrupted by frequent recurrent apnea. Because, although snoring is intermittently
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interrupted, and air intake and delivery in the mouth and nose stop; abdominal and chest movements
paradoxically continue, which has been revealed by our study [44]. Of course, with the SNORAP,
the subject of study, we tried to measure real-time snoring volume. Here, we did not intend to
measure the time difference between snoring and apnea formation. Besides, we did not also aim to
identify NREM and REM phases by the SNORAP device. This is because we observed the recurred
apnea/hypopnea attacks of the patients in our study group as polysomnographic, occurring when
the patients were in supine position and/or during their REM times during snoring and subsequent
periods. Accordingly, SNORAP’s task is to give a tactile stimulus hat will not awaken the individual
during the night sleep but causes him to change his sleeping position. Thus, independently of the time
difference between snoring and apnea attacks, the severity and number of snoring episodes decrease,
and subsequently, the severity and number of apnea/hypopnea episodes decrease.

7. Conclusions

As a result of this study, snoring and sleep apnea syndrome were shown to cause harm to both
general and sleep health. A group of diseases which can cause damage, but cannot be fully treated have
been described, and a device called SNORAP was proposed for the improvement of these diseases.
designed by prototyping all of these physiological mechanisms, and demonstrated in the following
cases: (a) simple snoring; (b) OSAS with mild and moderate severity; (c) OSAS with REM Dependent
Mild and Moderate Degree; (d) OSAS with Mild and Moderate degree; and (e) Patients who received
CPAP therapy, but had position-dependent mild and moderate apnea attacks.

Sleep, which accounts for a third of our lives, is a physiological need for our brain and body health.
The deterioration of this need, that is, changes in sleeping patterns and duration, diminishes the quality
of individual activities during the day. Therefore, the maintenance of sleep health or the correction of
the disrupted sleep quality causes the individual and society to lead a higher quality of life.

The most distinguished characteristics of our study, when compared to other studies, is the benefit
to certain disease groups as shown by our experimental studies. The second important feature of
our study is that snoring sensor has a high success rate. The third important feature of our study is
that we are able to monitor heartbeat. Our device increases the intensity and number of vibrating
stimuli when the pulse or heart rate drops below 40/min or exceeds 120/min. The fourth important
feature of our study is that device is coin-sized, and a device of such size can easily be placed on one of
the individual’s anatomical regions with a bandage so as to provide optimal comfort for individual.
Our primary goal is to help a special group of patients who we have observed to not get very good
help. It has been recommended that a tennis ball be stitched into their night clothes so that patients
with the diagnosis of Position-Dependent Mild and Moderate Level OSAS/Snoring can avoid entering
the supine position during their night sleep. Moreover, considering patented products with this aim
in the world, there is a product designed with belts to hang on the lower back and whose usages are
difficult [45]. However, SNORAP is a new, easy to use, minimally invasive (requiring only a wrist or
arm band) product giving doctors and patients much more information. At the same time, the AF
method described in the method section has been developed. The AF method has been developed in
the summarization phase to use less space.

Experimental works on patients at the sleep and electrophysiology lab are still continuing. In order
to develop SNORAP, we are trying to integrate an airflow sensor into the system. Thus, in case there is
no airflow, SNORAP can recognize it and the patient is warned more effectively by more accurately
identifying apnea attacks. At the same time, we want SNORAP to determine REM periods. That is why,
our works on EEG are continuing. In particular, we want to ensure in future works that the SNORAP
device can determine a PSG sensor’s mission in the home environment.
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