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Abstract: This article presents a self-calibration procedure and the experimental results for
the geometrical characterisation of a 2D laser system operating along a large working range
(50 mm × 50 mm) with submicrometre uncertainty. Its purpose is to correct the geometric errors of
the 2D laser system setup generated when positioning the two laser heads and the plane mirrors used
as reflectors. The non-calibrated artefact used in this procedure is a commercial grid encoder that is
also a measuring instrument. Therefore, the self-calibration procedure also allows the determination
of the geometrical errors of the grid encoder, including its squareness error. The precision of the
proposed algorithm is tested using virtual data. Actual measurements are subsequently registered,
and the algorithm is applied. Once the laser system is characterised, the error of the grid encoder is
calculated along the working range, resulting in an expanded submicrometre calibration uncertainty
(k = 2) for the X and Y axes. The results of the grid encoder calibration are comparable to the errors
provided by the calibration certificate for its main central axes. It is, therefore, possible to confirm the
suitability of the self-calibration methodology proposed in this article.

Keywords: nanopositioning; 2D-stage; self-calibration; calibration; plane mirror laser interferometer;
grid encoder; uncertainty

1. Introduction

The nanotechnology field has grown over recent decades, and the importance of nanotechnology
has rapidly increased with the demand for more accurate positioning systems and larger working
ranges [1,2]. Positioning systems that operate at a nanometre scale are fundamental in devices used
in nanotechnology applications such as nanomanufacturing machine tools or measuring machines.
The performance and usage of these machines depend directly on the accuracy of these positioning
systems and their working ranges [3]. Within this line of research, a novel 2D nanopositioning
platform (NanoPla) has been developed [4,5] with a large working range (50 mm × 50 mm) and a
submicrometre uncertainty.

Several sensor technologies currently exist that are suitable for addressing nanopositioning issues.
Long-range positioning stages can integrate either 1D or 2D encoders or laser interferometer systems
to provide displacement feedback. Spurious motions in out-of-plane positions are typically measured
by short-range devices such as capacitive or inductive sensors [2,6]. As for the NanoPla, a laser
sensor scheme based on plane mirror laser interferometers has been selected as the most suitable
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positioning sensor system. In large working ranges, these sensor systems achieve excellent accuracy
and ensure direct traceability. When working at a nanometre scale, the accuracy of the positioning
sensor system is crucial. The International Organisation for Standardisation (ISO) defines accuracy
as the description of random and systematic errors [7]. Random errors can be quantified by taking
numerous measurements and processing the resulting data by calculating averages and standard
deviations in order to determine the measurement uncertainty. However, systematic errors can be
corrected by using calibration methods; this is one of the goals of this paper.

When addressing error compensation techniques, several methods can calibrate positioning
sensor systems depending on the type of sensors used, the accuracy required, the size of the working
range and the available equipment. Direct calibration methods essentially measure a calibrated
artefact in order to calculate the difference between the known and the measured position as the
systematic error [8]. However, this procedure has a significant disadvantage when working at a
submicrometre scale due to the difficulty in finding a reliable calibrated artefact. This artefact should
be more accurate than the system to be calibrated, which can be complicated and costly when working
at such a small scale. Self-calibration methods provide an alternative option [9] by relating views of
a non-calibrated artefact; a calibrated artefact is not required, thus providing a clear advantage [10].
The only parameter that cannot be obtained through self-calibration is the absolute 1D length scale,
which must be set independently.

This article focuses on the geometrical characterisation of a two-dimensional laser system used
for X-Y positioning with submicrometre uncertainty. Even though the laser heads have already been
separately calibrated by the manufacturer, the correction of the geometric errors existing between
the laser detector heads and plane mirrors arrangement is required, especially for this 2D setup.
The procedure proposed is based on self-calibration methods, and a non-calibrated artefact is therefore
required. This study uses a commercial grid encoder as a non-calibrated artefact. A grid encoder
is a 2D positioning sensor that has multiple applications in metrology and precision engineering;
it utilises a scanning head that reads a geometric pattern (grid) encoded in a plate. The resulting
accuracy is a function of the reference pattern quality. The grid encoder is partially calibrated; the
manufacturer provides a calibration certificate with information on the measurement error along the
main X and Y axes. When considering the various applications of the grid encoder, knowing its error
not only along the main axes but also along the entire 2D working range is beneficial. By applying the
proposed self-calibration procedure, the geometric errors of the 2D laser system setup are obtained, and,
therefore, its measurements are corrected. Next, by comparing them to the grid encoder measurements
obtained from the self-calibration procedure at the same positions, the measurement and squareness
errors of the grid encoder can be calculated along the working range. The uncertainty of the laser
system measurements can thus be determined after the grid encoder calibration is performed, making
it possible to determine the calibration uncertainty of the grid encoder. A similar issue was addressed
by Kim et al. in [11], where a self-calibration method was also applied to calibrate a 2D positioning
system. However, the approach in this study is different because Kim et al. used additional capacitive
sensors to perform the self-calibration.

This work initially describes the methods and materials used. The mathematical model of
the 2D laser system is then analysed. This identifies the factors that must be calculated by means
of the self-calibration algorithm to correct the laser system geometrical errors. The algorithm is
initially tested using virtual data, thus verifying its performance within the working range. Once the
actual measurements of the laser system and the grid encoder have been obtained experimentally,
the geometric errors of the laser system arrangement are calculated. After the laser system has been
geometrically characterised and the readouts corrected, the grid encoder error is calculated at each
point evaluated. The calibration uncertainty of the grid encoder is then analysed. Finally, the results of
the 2D laser system self-calibration and the error map of the grid encoder are illustrated in order to
demonstrate the suitability of the self-calibration proposed methodology.
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2. Description of the Methods and Materials Used for the Procedure

This work is based on a previous study [12] in which a 2D laser scheme was used as a reference
system to characterise 2D grid encoder performance at different temperatures. The metrology frame
used was manufactured in a very low thermal expansion glass ceramic material (Zerodur). The laser
system was mathematically aligned by using the orthogonality of the grid encoder as the reference.
Therefore, the squareness errors of the grid encoder were neglected. In contrast, the present study
utilises a self-calibration of the 2D laser sensor system by using the grid encoder as an auxiliary
element, and any squareness errors are explicitly considered in the algorithm. To verify this new
procedure, a calibration is performed using an experimental setup where the laser system and the
non-calibrated artefact are mounted on the same metrology frame as in [12]. The 2D laser system
belongs to the Renishaw RLE10 laser interferometer family. It consists of a laser unit (RLU), two sensor
heads (RLD), two plane mirrors (one per axis), and an environmental control unit (RCU). In addition,
an external interpolator is used to reduce the expected resolution of the system from 10 nm to 1.58 nm.
The non-calibrated artefact is a KGM 181 cross-grid encoder (Heidenhain GmbH) with a circular
working range of 140 mm in diameter. The calibration is performed along an area equal to the working
range of the NanoPla (50 mm × 50 mm).

Figure 1 represents a scheme of the work presented through the different sections of this article.
The laser system is encompassed by two laser heads, which have been previously calibrated by
the manufacturer. These laser heads are placed perpendicularly to each other in the setup that is
described in the next part of this Section. To correct the geometrical errors of this 2D assembly (see
Section 3), a self-calibration procedure was performed. A grid encoder is the non-calibrated artefact
used, which has been calibrated by the manufacturer exclusively along its main axes. The laser system
and the grid encoder take measurements simultaneously along a mesh of points in the considered
working range, for different views of the grid encoder. The grid encoder readouts are mathematically
aligned to the laser reference system, and then the self-calibration algorithm described in Section 4 is
applied. Once the results are obtained (see Section 5), the geometric errors of the 2D laser system are
compensated, and the corrected laser system readouts are used to calibrate the grid encoder along the
whole working range. Additionally, the calibration uncertainty of the grid encoder is also calculated
(see Section 6). Finally, the errors of the grid encoder along the main axes obtained after this calibration
are compared to the ones provided by its calibration certificate.
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Figure 1. Scheme of the work presented in this article.

In Figure 1, Lx and Ly represent the laser readouts in X and Y axes, respectively. Similarly, KGMx and
KGMy represent the KGM 181 cross-grid encoder readouts, and Dx and Dy are the real displacements.
View 0, View 1 and View 2 are the different views used for the self-calibration and View 3 is an
additional view measured only for the verification, and that was not used for the self-calibration
procedure. θ− σj is the angular deviation between laser system and grid encoder in View j, for j = 0, 1,
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2. Finally, αxpitch, αypitch and αxy are the geometric error of the 2D laser system. These parameters will
be explained in detail in the following sections of this article.

In a calibration performed at a submicrometre resolution, the design of the experimental setup is
crucial, because it can significantly affect the accuracy of the final result. Figure 2a is a block diagram
of the connections between devices in the setup and Figure 2b represents a sketch of the setup used
for the procedure. As it is shown in Figure 2a, the laser system and the grid encoder are connected to
a host PC that records their readouts at each position. An auxiliary positioning machine is used to
perform the X-Y displacements.
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for the calibration procedure.

The metrology frame consists of two thermally stable parts with different relative motion.
The plane mirrors and the grid encoder scanning head are installed in the upper metrology frame,
which is attached to the arm of the positioning machine and remains static during the tests. The laser
detector heads and the grid base of the 2D encoder are fixed to the lower metrology frame, which
is placed on the X-Y table of the positioning machine. To minimise Abbe errors in the X and Y axes,
the grid encoder scanning head and the X and Y laser sensors are aligned both in Z and, in advance,
at the central position of the measuring range at the XY plane. Figure 3 shows photographs of the
experimental setup.

Figure 3 (right) shows the following geometric relationships between the laser system, the grid encoder
and the positioning machine for this arrangement: the angular deviation between the reference axes of
the positioning machine and the laser system (θ), and the angular deviation between the reference
system of the positioning machine and the encoder (σ). The angular deviation between the grid
encoder and the laser system is the difference between θ and σ. The values of these angles depend on
the assembly and are not expected to be higher than ±0.01 rad.
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3. Mathematical Model of the 2D Laser System

This section analyses the mathematical model of the 2D laser system. The laser system essentially
consists of two beams and two plane mirror interferometers (one per axis) that are theoretically
orthogonal to each other and coplanar with the X-Y plane of movement. Based on this laser
arrangement, two different geometric errors must be compensated. The first is a 1D error present in
every plane mirror interferometer; it appears when the laser beam is not coplanar to the X-Y plane of
motion. This study refers to this as pitch error (i.e., αxpitch, αypitch shown in Figure 4). The second is a
2D error caused by the non-orthogonality of the X and Y plane mirror interferometers (αxy in Figure 4).
This study refers to this as squareness error, similar to [11]. As shown in Figure 4, the model assumes
that the incident and reflected laser beams are coincident lines. In other words, each laser beam can
be considered orthogonal to its respective plane mirror. This simplifies the problem by making it
possible to describe it in a 2D level. This assumption is justified because the manufacturer defines a
tight alignment tolerance between the laser beam and the normal vector of the plane mirror (±25 arc s).
It applies to both pitch and yaw between laser beam and plane mirror. Considering 100 mm as the
maximum possible distance between the mirror and the laser head in the setup, any deviations caused
by the orthogonality error between the laser beam and plane are negligible (<<1 nm).
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In Figure 4, the angle αxpitch represents the pitch error in the X-Z plane; similarly, there is a
αypitch contained in the Y-Z plane. The angle αxy represents the non-orthogonality between the X
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and Y plane mirrors, i.e., the squareness error. Dx and Dy are the actual displacements of the moving
part, whereas Lx and Ly are the laser readouts of the X and Y axes, respectively. In Figure 4, there
is a real displacement of the plane mirrors in the X direction (Dx 6= 0), but in the Y direction there
is no movement (Dy = 0). However, after correcting the pitch error of the Y laser interferometer
readout (Ly∗), the squareness error (δort) persists and requires correction. The geometric relations of
the model are listed below, where the measurement errors in the X and Y axes are represented by δx

and δy, respectively.

Dx= Lx∗ =
Lx

cos (αxpitch )
(1)

Dy =
Ly∗

cos(αxy)
+δort =

Ly

cos (αypitch )cos(αxy)
+δort (2)

δort =
tan(αxy)Lx

cos (αxpitch )cos(αypitch)
(3)

δx= Dx − Lx =

(
1

cos (αxpitch )
− 1

)
Lx (4)

δy= Dy − Ly =

(
1

cos (αypitch )cos(αxy)
− 1

)
Ly+δort (5)

Therefore, the target values that should be obtained through the self-calibration are αxpitch, αypitch
and αxy. Once these angles are known, it is possible to correct the laser system readouts.

4. Self-Calibration Procedure

Performing a calibration at a submicrometre scale presents difficulties. The most significant
difficulty is determining a calibrated artefact at least one order of magnitude more accurate than the
target accuracy of the laser system—ideally, the same size as the working range. The application of
self-calibration techniques can solve this problem [9], thus making self-calibration a suitable procedure
for optimising the performance of nanopositioning systems in a large working area [13,14]. A method
based on reversal techniques is selected as the best option for this study, where the goal is to obtain
submicrometre uncertainty along the working range.

A self-calibration procedure essentially consists of a non-calibrated artefact with measurement
features whose geometrical relationships remain invariable. These features are measured by the
system and calibrated by using different views. Because the non-calibrated artefact is assumed to be a
rigid body, the pattern of the measurement features remains invariant over the different views [15].
The only calibrated pattern required is a 1D-length scale to correct the scale factor of the system to
be calibrated [9]. To address this inconvenience, other authors have proposed a calibrated reference
rod [16]. In the case of this study, the wavelength of the laser beam has already been calibrated by the
manufacturer. Therefore, it is not necessary to correct the scale factor of the laser system. Nevertheless,
a 1D scale reference is needed to measure the displacements of the grid encoder in the translation
views, as it will be explained in the following subsection.

At any point, the observed error is, then, an addition of the system error and the non-calibrated
artefact error. By combining the different equations for the three views, it is possible to isolate the laser
system error. As a novelty, this paper selects a different approach based on the use of a measuring
instrument as a non-calibrated artefact. In the following, the self-calibration algorithm is explained in
detail, and its performance is verified using virtual data.

4.1. Definition of the Self-Calibration Algorithm

The case in this study is very specific, as the non-calibrated artefact is a grid encoder that uses
a measuring grid and a scanning head instead of measuring features to provide X-Y coordinates.
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The input data, then, become the readouts of the laser system and the grid encoder at the same positions.
Nevertheless, these measurements are taken in different reference axes. Hence, these two axes must be
virtually aligned to allow a comparison of both measurements. A measurement from point to point
along each of the main axes of the grid encoder can be corrected by using the information from its
calibration certificate. This measurement can be used during the calibration as an absolute length.

In a self-calibration procedure, the global error at each position is expressed as the addition of the
positioning error of the calibrated system plus the intrinsic errors of the non-calibrated artefact plus the
alignment errors of the non-calibrated artefact at each view. In this case, the alignment errors are not
present because the grid encoder readouts are previously mathematically aligned to the laser system
axes. For the initial view (View 0), the global error V0 at each point is expressed as in Equation (6):

V0(xi, yj) = M0(xi, yj) + E0(xi, yj) (6)

where M0 is the laser system positioning error at the point (xi, yj) at its own reference axes, and E0 is
the grid encoder positioning error at the point (xi, yj) rotated to the laser system reference axes (θ− σ,
in Figure 3) and displaced to the laser system origin. The grid has N × N points, thus i, j = 1, 2, . . . , N.

As it can be observed in Equation (6), once the laser system positioning errors, M0, are calculated
by the self-calibration procedure, the grid encoder positioning errors, E0, can also be deduced
(Section 6).

According to the mathematical model presented in Section 3, three factors must be calculated by
the self-calibration algorithm. At least three different views of the artefact are required to cancel the
systematic errors of the non-calibrated artefact. In this particular case, a system of three equations
is obtained by combining the expressions of the initial view and two additional translation views.
Therefore, three different positions of the grid encoder are sufficient to perform this calibration
(see Figure 5): the initial view (View 0), the X axis translation view (View 1) and the Y axis translation
view (View 2). View 1 is obtained by moving the grid encoder approximately 5 mm (∆x) along its
X axis, and View 2 is achieved by moving the grid encoder approximately 5 mm (∆y) along its Y
axis (see Figure 5). The real value of these displacements (∆x and ∆y) needs to be known, for this
purpose, the calibrated main axes of the grid encoder are used. Given this particular setup, the relative
position between the laser system and the positioning machine remains invariant for all the views
as does the angular deviation θ between the positioning machine and the laser system. The relative
position between the grid encoder and the positioning machine changes when the encoder is moved.
Hence, the angular deviation σ between the positioning machine and the grid encoder may be slightly
different for View 0, View 1 and View 2. As previously noted, the non-calibrated artefact provides
coordinates for each measuring point. The displacement to reach the positions of each measuring point
is given by the positioning machine that has been programmed to measure a mesh of points covering
the entire working range. Due to the errors of the positioning machine and the variation of the σ angle
from View 0 to View 1 and View 2, the points measured in each view may not be exactly the same.
However, it has been observed that the maximum deviation between the points in different views
is 0.05 mm. According to the calibration certificate of the grid encoder, nearby points have similar
error values (with differences in the range of a few nanometres). Thus, it is possible to assume that the
artefact errors can be compensated by relating the views.

A mesh of 11 × 11 points separated 5 mm from each other is measured for each view covering the
working range. By combining Equations (4)–(6), the Expressions (7)–(10) are obtained, where V0x and
V0y are the global errors for View 0 in X and Y axes, respectively. Similarly, V1x, V1y and V2x, V2y are
the global errors in X and Y axes, for View 1 and View 2, respectively. In every case, the global errors
of each view (V0, V1, V2) are experimentally obtained. δx and δy are the laser system errors in X and Y
axes. Likewise, Ex and Ey are the non-calibrated artefact errors in X and Y axes.

V0x(xi, yj) = δx(xi) + Ex(xi, yj) (7)
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V0y(xi, yj) = δy(xi, yj) + Ey(xi, yj) (8)

V1x(xi+∆x, yj) = δx(xi+∆x) + Ex(xi, yj) (9)

V1y (xi+∆x, yj) = δy(xi+∆x, yj) + Ey(xi, yj) (10)

V2x(xi, yj+∆y) = δx(xi) + Ex(xi, yj) (11)

V2y(xi, yj+∆y) = δy(xi, yj+∆y) + Ey(xi, yj) (12)

View 0 and View 1 provide two linearly independent equations each, and View 2 just one because
Equations (7) and (11) are linearly dependent, that is 5 linearly independent equations in total: (7)–(10)
and (12). There are 5 unknown variables: the geometric errors αxpitch, αypitch and αxy and the systematic
encoder errors Ex and Ey. Therefore, three views are enough to perform the calibration. It is worth
noting that the squareness error of the laser system αxy is decoupled from the squareness errors of the
grid encoder that is considered in its systematic error E(x, y).Sensors 2017, 17, 1992  8 of 17 
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The global error at the initial view, consisting of the positioning error of the laser system and the
grid encoder at a particular point, is compared to the global error at the translation view, consisting of
the positioning error of the encoder at the same point and the positioning error of the laser system
at a point displaced a distance equal to ∆. Therefore, the positioning errors of the grid encoder are
cancelled, but not the ones of the laser system. The positioning errors of the laser system, δx and δy,
are replaced by Equations (1)–(3). Finally, considering the following property, Equations (13)–(15):

Lx(xi+∆X)− Lx(xi) = Lx(∆x) (13)

Ly(xi+∆x, yj)− Ly (xi, yj) = Ly(∆x, 0) (14)

Ly(xi, yj+∆y)− Ly (xi, yj) = Ly(0, ∆y) (15)

The following equation system of three unknown variables (αxpitch, αypitch and αxy) and three
equations is obtained:

V1x(x
1
i +∆x, y1

j )−V0x(x
0
i , y0

j ) =

(
1

cos (αxpitch )
− 1

)
Lx(∆x, 0) (16)

V1y(x
1
i +∆x, y1

j )−V0y(x
0
i , y0

j ) =
tan(αxy)

cos (αxpitch )cos(αypitch)
Lx(∆x, 0) (17)
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V2y(x
2
i , y2

j +∆y)−V0y(x
0
i , y0

j ) =

(
1

cos (αypitch )cos(αxy)
− 1

)
Ly(0, ∆y) (18)

where (x0
i , y0

j ), (x
1
i +∆x, y1

j ) and (x2
i , y2

j + ∆y) for i, j = 1, . . . , 11 are the coordinates of the points
measured along the working range in View 0, View 1 and View 2, respectively, while Lx(xi, yj) and
Ly(xi, yj) are the laser readouts in X and Y axes at those points.

4.2. Validation of the Self-Calibration Algorithm

The proposed method should work within all the expected ranges for the angles. Therefore, the
values should be calculated with the required precision in order to obtain the actual displacements
(Dx and Dy) with submicrometre uncertainty (see Table 1). As it was previously explained, before
starting the self-calibration, the algorithm mathematically aligns the grid encoder readouts to the
laser system reference axes. As long as the squareness error of the laser system is sufficiently small,
this mathematical alignment does not have a significant effect on the estimation of the geometrical
errors of the laser system. By mathematical simulations, the acceptable range has been defined to
be ±1 × 10−2 rad. In order to achieve submicrometre uncertainty in the 2D positioning, αxy should
be determined with an error of ±1 × 10−6 rad. However, for the setup used for the experiment, the
orthogonal error of the laser system, αxy was measured and corrected using a CMM. The maximum
accuracy achieved during the setup depends directly on this CMM and it was±5× 10−3 rad. Therefore,
the proposed self-calibration procedure is needed to determine the value of αxy with an uncertainty of
±1× 10−6 rad. With regards to pitch errors, the proposed self-calibration procedure is able to calculate
and correct them, even if the range of αxpitch and αypitch is unbounded, independently of their value.
To obtain the desired uncertainty, they should be determined with an error of ±1 × 10−3 rad.

Table 1. Factors of the considered 2D geometric model calculated by the self-calibration algorithm.

Parameter Required Uncertainty Description

αxy ±1 × 10−6 rad Squareness error
αxpitch ±1 × 10−3 rad Pitch error in X-axis
αypitch ±1 × 10−3 rad Pitch error in Y-axis

θ− σ ±1 × 10−4 rad
Angular deviation between the reference systems

of the grid encoder and the laser system

Before beginning the experiment and measuring actual data, the proposed algorithm is validated
using virtual data. To create the virtual data, the readouts of the grid encoder and the laser system at
the same positions are simulated along the working range of 50 mm × 50 mm. The actual positions
(Dx and Dy) are initially defined in a mesh of 11 × 11 points. The positioning machine movement is
simulated with steps of 5 mm from −25 mm to +25 mm along the X and Y axes, covering the entire
working range. The grid encoder readouts include linear errors of [5 × 10−5]·Dx and [5 × 10−5]·Dy in
the X and Y components, respectively. The laser system readouts (Lx and Ly) are obtained according to
the geometric relations of Figure 4 by selecting values inside the expected range for αxpitch, αypitch and
αxy. Readouts for the three views (View 0, View 1 and View 2) are simulated, taking into account that
the angle between the reference system of the laser system and the reference system of the grid encoder
(θ− σ), which is different for each view because, as previously noted, σ is not constant. In a previous
work [4], the random error of the laser system was calculated by considering the laser resolution,
the wavelength instability, beam mixing, and environmental influences. The combination of these
errors resulted in 7 nm. In this virtual validation of the algorithm, the laser system readouts, as well as
the grid encoder readouts, include a random uniform error of 20 nm. The method used to validate the
self-calibration algorithm proceeds as follows: firstly, the laser system readouts are corrected using the
values obtained for αxpitch, αypitch and αxy; secondly, the grid encoder error is isolated and compared
to the one set at the beginning; and finally, if both errors are equal the self-calibration algorithm is
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validated. This simulation verifies that the error of the grid encoder is linear along the X and Y axes
as initially set. In addition, by defining different values for the random error, this simulation also
provides a clear insight of the good theoretical repeatability of the system, in the range of ±25 nm.
Therefore, the algorithm is considered to be valid.

By performing different simulations and including random errors of the expected order in the
readouts of the laser system and the grid encoder, it is possible to estimate the expanded uncertainty
(k = 2) of the resulting values given by the algorithm. It is observed that the accuracy depends on
the value of αxy; when its value is inside the expected acceptable range, the goal of submicrometre
uncertainty is achieved (see Table 1).

5. Geometrical Characterisation of the Laser System Setup

Self-calibration can be performed once the setup used for the calibration is defined and the
self-calibration algorithm has been explained and verified. Before starting the experiments, the stability
of the laser system was studied by performing static repeatability tests inside the working range.
A total of 9000 readouts were recorded at each point during 60 s. The resulting stability (2σ) was 24
nm, which was considered acceptable. During the calibration procedure, in order to minimise random
errors of both, the laser system and the grid encoder, 100 readouts were recorded and averaged at each
measured point.

To perform the self-calibration, it is necessary to know the real displacement of the grid encoder in
the translation views (View 1 and View 2). The grid encoder has been calibrated by the manufacturer
along its central X and Y axes. Therefore, this calibration is used as an absolute length reference to
measure these translations in X and Y axes. The readouts of the laser system and the grid encoder are
subsequently taken at the same time and the same positions in the defined mesh of 11 × 11 points.
Once all the points are measured, the data obtained are the coordinates of 121 points in two different
reference systems (the laser system and the grid encoder) and three different views (View 0, View 1
and View 2). Initially, the self-calibration algorithm mathematically aligns both reference systems; by
applying Equations (16)–(18), the algorithm cancels the grid encoder systematic error and obtains the
correction factors (αxpitch, αypitch and αxy) as well as the angle between the reference system of the
laser system and the grid encoder (θ− σ) for each View. The obtained results can be seen in Table 2.
They are given with the required uncertainty specified in Section 2 and αxy is inside the expected
range of ±5 × 10−3 rad. To obtain the actual displacements (Dx and Dy), it is necessary to correct
the laser system readouts (Lx and Ly) by applying the correction factors (αxpitch, αypitch and αxy) into
Equations (1) and (2).

Table 2. Geometric parameter results of the experimental self-calibration procedure and virtual alignment.

Parameter Required Uncertainty Resulting Value Description

αxy ±1 × 10−6 rad 4.010 × 10−3 rad Squareness error

αxpitch ±1 × 10−3 rad 9 × 10−3 rad Pitch error in X-axis

αypitch ±1 × 10−3 rad 10 × 10−3 rad Pitch error in Y-axis

θ− σ0 ±1 × 10−4 rad −4.9 × 10−3 rad Angular deviation between the reference systems
of the grid encoder and the laser systemθ− σ1 ±1 × 10−4 rad −4.6 × 10−3 rad

θ− σ2 ±1 × 10−4 rad −4.6 × 10−3 rad

6. Calibration of the Grid Encoder

As previously explained, the grid encoder calibration certificate compares the central axes with
the measurement of a calibrated laser interferometer. These calibrated axes have been used as a length
reference to calculate the real displacements of the grid encoder in X and Y axes, for View 1 and
View 2, before starting the self-calibration procedure. However, the grid encoder is used in many
applications that require a high accuracy not only in the central axes but throughout the entire grid.
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Some approaches for grid calibrations can be found in the literature, as the one presented in [17].
This work proposes an alternative solution to this issue; once the readouts of the laser system are
corrected, it is possible to compare them with the grid encoder readouts in order to calculate the
error of the grid encoder at each measured point. Thereby, the systematic error of the non-calibrated
points that were not part of the main axes will be known. Additionally, this procedure validates the
effectiveness of the self-calibration by comparing the error obtained for the central X and Y axes with
the error provided in the calibration certificate by the manufacturer.

It is important to note that, even if the systematic errors of the grid encoder were present in
Equations (7) to (12), they were cancelled by reversal techniques. Thus, they were not present in
Equations (16) to (18), which were applied in the self-calibration algorithm. Once the laser system
readouts are corrected, it is possible to use them to calculate the error of the grid encoder readouts.

The following sections initially explain how the grid encoder is calibrated and confirm the
effectiveness of the self-calibration of the laser system. The error map of the grid encoder is then
presented, and the uncertainty of its calibration calculated.

6.1. Calibration Procedure of the Grid Encoder Using the Laser System

Initially, the proposed procedure mathematically aligns the corrected laser readouts with the
reference system of the grid encoder; the grid encoder error is then calculated as the difference
between the two measurements. The rotation angle to align both reference systems is θ− σ (see
Figure 3), as calculated in the previous section by means of an optimisation process. The grid encoder
measurements may be affected by the grid squareness errors in addition to linear errors; therefore,
the rotation angle is calculated by matching the X axis of the encoder to the X axis of the laser system,
taking the orthogonality error of the grid encoder to its Y axis. For this reason, the Y component of the
grid encoder errors is higher than the X component. This situation is illustrated in Figure 6. The mesh
of points measured by the laser system after correction (Figure 6a) exhibits neither squareness nor
linear errors, but the mesh of points measured by the grid encoder exhibits both (Figure 6b). Once the
two meshes are aligned, and because the laser system measurements have already been corrected
through self-calibration, the difference between the coordinates of the same point measured by the grid
encoder and the laser system is the grid encoder error (see Figure 6c). By comparing these two meshes,
it is also possible to determine the squareness error of the grid encoder.Sensors 2017, 17, 1992  12 of 17 
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Figure 6. (a) Mesh of points measured by the laser system after correction; (b) Mesh of points measured
by the grid encoder; (c) Their alignment and comparison.

The error of the grid encoder can be calculated by using the readouts of the initial view (View 0) or
the translation views (View 1 and View 2). The results should be very similar in all the cases. However,
it is expected that they are not coincident since the random errors of the laser system and the random
error of the grid encoder are still present. In addition, as previously stated, the measuring points are
slightly different in each view. The error maps of the grid encoder calculated for View 0 and View 1
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and the difference between the two error maps are represented in Figure 7. It can be observed that
both maps have similar error trends and orders of magnitude (the three maps use the same scale factor,
equal to 1000), and in both cases, the error is smaller near the central axes. These presented results are
similar to the error map calculated for View 2.
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To validate the calibration procedure, the errors of the grid encoder are also calculated in an
additional view, named View 3, which was not used during the self-calibration procedure. View 3
is only used for this verification. The grid encoder errors should be similar to the ones calculated
for the previous views because the grid encoder errors are independent of the views. In View 3,
the grid encoder was rotated 180 degrees around its Z axis, and similarly to the other views, the
measurements were taken simultaneously by the grid encoder and the laser system along the same
mesh of 11 × 11 points separated 5 mm from each other. Because the setup of the laser system
remains invariant, the readouts can be corrected using the parameters calculated in the self-calibration.
In Figure 8, the error maps of the grid encoder in View 0 and View 3 are represented and compared
(the three maps use the same scale factor, equal to 1000). It can be observed, as in the previous case,
that both error maps have similar trends and orders of magnitude and the difference is due to the
random errors of the laser system and the grid encoder and to the fact that the measured points are
not the same in both views.Sensors 2017, 17, 1992  13 of 17 
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The squareness error of the grid encoder calculated for View 0 is almost coincident with that
calculated for View 1, View 2 and View 3: 1.36 × 10−4 rad. The resulting squareness error is very small
and can be considered negligible in this working range with a submicrometre uncertainty.
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The calibration certificate information includes the error along the two main axes in a range of
140 mm. The middle point, where the error is equal to zero, is coincident with the zero position in
the experimental self-calibration, where the error is also equal to zero. The X component of the grid
encoder error along the central X axis and the Y component of the error along the Y axis for View 0
and View 1 are represented in Figure 9. They can be easily compared to each other and to the error
given by the calibration certificate of the grid encoder, also represented in Figure 9. The error provided
by the calibration certificate is represented only for the working range of the laser system (±25 mm).
It can be seen that the errors calculated experimentally for View 0 and View 1 and the errors provided
by the calibration certificate are highly comparable, with the same linear trend and order of magnitude.
Therefore, the self-calibration procedure for the grid encoder calibration can be considered validated.
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6.2. Calibration Uncertainty of the Grid Encoder

The error of the grid encoder at each point is calculated as the average between the resulting
errors of View 0, View 1 and View 2. The expanded uncertainty of the calibration system (U95) is
evaluated according to [18]. All the error sources and their contributions to the uncertainty of the
system are examined, and the uncertainty is calculated with a coverage factor of k = 2, thus providing
a level of confidence of approximately 95%, as shown in Equation (19).

UKGM(k = 2) = k

√
u2

laser+u2
T +

S2
Cal.KGM

nCal.KGM
+u2

KGMResolution+u2
ResidualError (19)

The standard uncertainty is calculated as the square root of the quadratic sum of the contributions
of the uncertainty sources. These sources are listed below:

• The uncertainty of the calibration system, i.e., the laser sensors, represented as ulaser.
• The uncertainty of the expansion and contraction of the grid encoder due to small changes in the

temperature uT.
• The repeatability of the grid encoder measurements during the calibration SCal.KGM. The term

nCal.KGM represents the number of repetitions of each measurement.
• The uncertainty of the grid encoder resolution uKGMResolution.
• The error that could not be corrected by the calibration is uResidualError and is dependent on the

distance of the calibrated point to the main central axes.
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The uncertainty of the laser system is calculated according to Equation (20); its contributors are
listed below:

U2
Laser= u2

estimatedLaser +
S2

Laser
nLaser

+u2
mirrors+u2

LaserResolution+u2
SelfCalibration (20)

• The standard uncertainty of the laser according to its manufacturer, denoted as the estimated
uncertainty uestimatedLaser.

• The repeatability of the laser measurements SLaser. The term nLaser represents the number of
repetitions of each measurement.

• The uncertainty of the flatness of the mirrors umirrors.
• The uncertainty of the resolution of the laser uLaserResolution.
• The uncertainty of the self-calibration procedure of the laser system uSelfCalibration.

The estimated uncertainty of the laser system, as well as the uncertainty of the flatness of the
mirrors and the laser resolution, were previously calculated in [12] for the same laser system. Therefore,
the same values can be applied to this calculation. The repeatability of the laser system depends on the
measurements taken during the calibration procedure of the grid encoder and is thus particular to this
study. The uncertainty of the self-calibration procedure depends on the uncertainty of the calculation
of the correction factors. As previously mentioned, a submicrometre uncertainty is achieved after
the calibration; the uncertainty of the laser system measurements after applying the self-calibration
is ±25 nm.

Once the uncertainty of the laser system is calculated, it is possible to proceed with the calculation
of the expanded calibration uncertainty of the grid encoder. The calculation of the laser system
uncertainty is represented in Table 3, and the contributions of the uncertainty sources of the grid
encoder calibration and the resulting value are represented in Table 4.

Table 3. Calculation of the standard uncertainty of the laser system.

Uncertainty Source Justification X-Axis
Contribution [nm]

Y-Axis
Contribution [nm]

Estimated uncertainty of
the laser system

According to the manufacturer, for a
distance of 60 mm 76 76

Laser repeatability Calculated for the readouts of
this experiment 6 3

Planarity of the mirrors According to the manufacturer 63 63

Laser resolution Resolution of 1.58 nm, achieved by
external interpolators 1.58/

√
12 1.58/

√
12

Self-calibration
procedure

Self-calibration algorithm maximum
error = ±25 nm, according to the

virtual validation
25/
√

3 25/
√

3

Standard uncertainty of
the laser system 99 99

As shown in Table 3, the expanded uncertainty (k = 2) is U95,x[nm] = 226 + 4 x [mm] and
U95,y[nm] = 410 + 15 y [mm] for errors in the X and Y axes, respectively, in a working range of
±25 mm. The variables x and y represent the distance of the calibrated point to the X or Y main
axes, respectively, and must be introduced in millimetres. The calibration certificate specifies that the
position error along the entire range of the grid encoder (a circular area 140 mm in diameter) is ±2 µm,
so it can be assumed that the position error inside the area of study (±25 mm) is approximately 0.8 µm.
It is thus confirmed that the calibration procedure of the grid encoder performed in this study reduced
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the uncertainty of the grid encoder measurement. This reduction was achieved because the calibration
was performed at every point of the mesh and the uncertainty sources were examined in detail.

Table 4. Calculation of the expanded calibration uncertainty (U95) of the grid encoder.

Uncertainty
Source Justification X-Axis Contribution [nm] Y-Axis Contribution [nm]

Laser system Calculated in Table 3 99 99

Thermic variation Thermal variation of ±0.40 ◦C
during the experiment 48 48

Grid encoder
repeatability

Calculated for the readouts of
this experiment 5 3

Grid encoder
resolution Resolution of 1 nm 1/

√
12 1/

√
12

Residual error [nm]
Calculated by comparing the

grid encoder error obtained in
View 0, 1 and 2

24.5 + 2 x[mm] *
* It is dependent on the position

in X-axis expressed in mm

173 + 7.5 y[mm] **
** It is dependent on the position

in Y-axis expressed in mm

U95 of the grid
encoder [nm] 226 + 4 x[mm] 410 + 15 y[mm]

7. Discussion and Conclusions

This study defined a self-calibration method and applied to the geometrical characterisation of a
two-dimensional laser sensor system. Self-calibration eliminates the difficulty of finding a calibrated
artefact with better accuracy than the system to be calibrated because the calibration is performed
using a non-calibrated artefact. In this study, the non-calibrated artefact was a grid encoder. Thus,
once the laser system was geometrically characterised, it was also possible to use it to calibrate the
grid encoder.

The setup and the mathematical model of the 2D laser system were analysed in order to establish
the geometrical errors that needed to be calculated through the self-calibration. The self-calibration
algorithm and the setup were described in detail. After applying the calibration algorithm and
correcting the readouts of the laser system, it was possible to determine the measurement error of
the grid encoder at each measured point of the calibrated range by comparing the corrected laser
readouts and the grid encoder readouts, obtained from the previous application of the self-calibration
procedure. The calibration uncertainty of the grid encoder calibration was calculated, thus obtaining a
result of U95,x[nm] = 226 + 4 x [mm] and U95,y[nm] = 410 + 15 y[mm] for errors in the X and Y axes,
respectively. The suitability of the self-calibration procedure was verified in different ways in this
work. First, the proper performance of the procedure was checked by using virtual data. Second,
the experiment was carried out, and actual data were measured. The measurements were taken in
three different views. Thus, once the laser system readouts were corrected, the grid encoder error map
was calculated by using the readouts of the three views, verifying that the grid encoder errors remain
invariant independently of the view. The error map of the grid encoder of one of the views used
for the self-calibration procedure was compared to the error map calculated for an additional view
that was not part of the self-calibration procedure, in order to validate the experimental procedure.
Though the maps were not the same, they exhibited the same trend and order of magnitude. Their
small differences could be due to random errors of the laser system and the grid encoder. Finally,
in order to confirm the proper function of the self-calibration procedure with a different approach,
the error calculated along the central axes was compared to the calibration certificate error; as expected,
both were linear errors with the same trend and order of magnitude. Therefore, the self-calibration
procedure described in this paper could be considered as valid and presents many advantages over
direct calibration.
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