ﬂ SCNSors m\py

Article
An Energy-Aware Runtime Management
of Multi-Core Sensory Swarms

Sungchan Kim ! and Hoeseok Yang >*

1 Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-daero, deokjin-gu,

Jeonju-si, Jeollabuk-do 54896, Korea; s.kim@chonbuk.ac.kr

Department of Electrical and Computer Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu,
Suwon-si 16499, Korea

* Correspondence: hyang@ajou.ac.kr; Tel.: +82-31-219-2361

Received: 6 July 2017; Accepted: 22 August 2017; Published: 24 August 2017

Abstract: In sensory swarms, minimizing energy consumption under performance constraint
is one of the key objectives. One possible approach to this problem is to monitor application
workload that is subject to change at runtime, and to adjust system configuration adaptively to
satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core
processors with adjustable clock frequency, we propose to monitor the CPU workload periodically
and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response
to the workload variations. In doing so, we present an online heuristic that determines the most
energy-efficient adjustment that satisfies the performance requirement. The proposed method is
based on a simple yet effective energy model that is built upon performance prediction using IPC
(instructions per cycle) measured online and power equation derived empirically. The use of IPC
accounts for memory intensities of a given workload, enabling the accurate prediction of execution
time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control
knobs, clock frequency adjustment and core allocation. The experiments show that the proposed
technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core
energy management technique.

Keywords: sensory swarm; energy minimization; multi-core processor; dynamic voltage frequency
scaling (DVES); self-adaptation; runtime resource management

1. Introduction

Future computer systems are expected to be networks of mobile and stationary devices
which exchange a huge amount of information between them [1]. At the edge of such distributed
computing frameworks, there are low-end embedded systems referred to as sensory swarms that deal
with the acquisition and pre-processing of data obtained from sensors. As such systems become
smarter, it is expected that more computationally intensive applications will be executed on the
devices [2—4]. In order to handle such heavy computational loads, multi-core processors have now
become common in the design of sensory swarms or wireless sensor networks (WSNs) [5,6].

Even though the multi-core processor design significantly enhances the compute capability, this
benefit comes at the cost of increased energy consumption. Moreover, since most sensory swarm
devices or WSNs are battery-powered, energy minimization with respect to a given performance
requirement is usually considered a top priority in the design of sensory swarms. In general,
it is impractical to design an application that meets the performance constraint for all possible
hardware platforms at design time. Furthermore, as the data collected through sensors affects CPU
workload [7], it is crucial to consider such dynamic computational demand in the optimization

Sensors 2017, 17, 1955; d0i:10.3390/s17091955 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://dx.doi.org/10.3390/s17091955
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1955 20f12

of sensory swarms. Furthermore, the performance requirements are no longer constant for all
operation times in modern sensor swarms or WSNs. As can be seen in context-aware tracking [8] or
surveillance [9], the performance goals that the devices have to meet are dynamically changing. Thus,
we propose to take a runtime approach as a solution to this challenge. That is, we periodically monitor
the runtime performance of a system and reconfigure the system in adaptation to dynamically varying
workload. The number of cores that are used for the execution and their clock frequencies are the
control knobs used for this reconfiguration procedure.

Hoffmann et al. [10] proposed a light-weight and portable software monitoring runtime,
based on which core allocation/scheduling is reconfigured online. Sironi et al. [11] proposed PAFS
(Performance-Aware Fair Scheduler), which is a self-adaptive multi-core scheduler customized from the
Linux CFS (Completely Fair Scheduler). Sarma et al. [12] also proposed a measurement-based adaptive
scheduling policy for multi-core Linux. Al Faruque et al. [13] proposed an adaptive core allocation
technique for multi-core NoCs (networks-on-chips) in reducing the network traffic online as a response
to various hard-to-predict system scenario changes. Hoffman et al. [14] also proposed to reconfigure
software parameters at runtime in order to satisfy performance requirements in varying workload and
power budget. Rangan et al. [15] proposed a thread-level runtime power management technique for
multi-core systems. Similarly, Yun et al. [16] devised a holistic multi-core reconfiguration technique
that deals with power management and core allocation at the same time. Li et al. [17] also proposed the
co-optimization of the dynamic voltage frequency scaling (DVFS) with task allocation/scheduling on
multi-core systems. However, it is different from the previous ones in that it takes a hybrid approach
of static scheduling and dynamic power management.

The proposed technique differs from the existing ones in three respects. First, it is more general
and portable. That is, previous approaches mainly limit themselves to only a single control knob
such as core allocation/scheduling [10-13] or clock frequency (and voltage) scaling [15,17], while the
proposed technique considers both at the same time. Furthermore, it does not require any modifications
of scheduling kernel, unlike [11,12] or application codes on the contrary to [14]. Secondly, we
adopt a more practical performance model based on the measurement of IPC (instructions per
cycle) that represents the intensity of memory access, thus enabling more accurate reconfiguration.
The approach proposed by Yun et al. [16] is similar to ours in adapting two control knobs, but
unlike ours its performance model ignores different compute-intensities of applications, resulting
in inaccurate reconfigurations. The third difference is in the fact that the existing reconfiguration
techniques require accurate performance and energy estimations considering the detailed information
of underlying hardware, such as micro-architectural parameters of pipeline structure and multi-level
cache hierarchy [18,19]. However, building such accurate models is not always possible for all target
systems, making the general applicability of those techniques very poor. On the contrary, we devise
a practical and portable performance/energy model which necessitates only instruction count and
simple power equations.

Based on the simple yet effective performance-energy model, we propose a runtime management
technique of processing cores for a multi-threaded (or multi-tasked) application under performance
constraints, aiming at energy minimization. As stated above, two design parameters are considered
as control knobs: the number of cores allocated to an application and the clock frequencies thereof.
This reconfiguration decision is made periodically; thus, the runtime performance of the target
application needs to be periodically measured to capture the current computational demand. In
order to avoid complicating the decision, we devised a lightweight and incremental reconfiguration
algorithm. We show that the proposed approach achieves considerable energy saving of up to 45%
compared to the state-of-the-art presented in [16].

The rest of this paper is organized as follows. In the following section, we show the overall
framework of the proposed technique, including the application and architecture models. As we
consider multiple control knobs at the same time, we propose a novel system adaptation algorithm

Sensors 2017, 17, 1955 3o0f12

in Section 3. Then, in Section 4, we show experimental results with real-life benchmarks, which is
followed by concluding remarks.

2. Proposed Self-Adaptive Framework

In this section, we describe the proposed self-adaptive sensory swarm design. First, in Section 2.1,
we illustrate the task and architecture models assumed in this work. Then, we show how we
dynamically and adaptively change the system configuration in response to workload variations
in Section 2.2.

2.1. System Model

Hardware: We consider a hardware platform that has a homogeneous multi-core processor with
DVES enabled. It is assumed that the clock frequencies of main memory and I/O are fixed.

Application: Following the multi-frame task [20] (a popularly adopted model in real-time
scheduling), we assume that an application consists of a series of execution phases. That is,
an application task T is defined as a finite vector of execution segments, E;, as follows:

T = [Ey, Ep, ., En].)

Note that an application is assumed to be instantiated repeatedly, starting from the beginning
again when it finishes the execution of its last segment. The time interval between the beginnings of
two consecutive instances of T is denoted by epoch, and an application is given a range of throughput
constraints (quality of service (QoS) requirements) as [th,y, thmax] in epochs/s, within which the
reciprocal of the epoch interval time should always be.

Each execution segment is either sequential or parallel; that is, type(E;) = s if E; is a sequential
segment, while type(E;) = p otherwise. When an execution segment only requires a single core
execution, it is referred to as a sequential phase. Otherwise, an execution segment is assumed to have
multi-core workload and called parallel phase. This model can be seen as a general fork-join task
model, which is equivalent to the state-of-the-art multi-processor programming models [21-24].

Figure 1a shows an example of a multi-frame task, [E1, E;, E3,] , Where Ej is a parallel phase.
A parallel phase can be executed simultaneously on multiple cores. Thus, this can be modeled
as diverged and independent execution paths in the task graph as shown in Figure 1b. That is,
if we have multiple processing elements and operating system level supports like multi-threading or
multi-tasking, this segment can be executed on more than one cores, resulting in reduced execution
time. Note that the degree of parallelism—the number of divergent paths for E, in Figure 1b—is
typically larger than the number of cores in the system, and the number of cores to be allocated can
change at runtime.

Sensors 2017, 17, 1955 40f12

E1 E2 Es
f } } {
sequential phase parallel phase sequential phase
time
(@)

parallel workload

parallel workload

parallel workload
parallel workload

(b)

Figure 1. (a) A multi-frame task example and (b) its fork-join model representation.

sequential workload sequential workload

Execution Time: The execution time of an execution phase E; consists of CPU execution Eicpu
and memory access time E; ,,,,,,. That is,

Ei = Ei,cpu + Ei,mem- (2)

Note that we assume that the performance of memory and I/O buses is fixed at all times.
Thus, E; ., is agnostic to the hardware configuration (though hardware configuration is a general
term that refers to any settings in a device, we use this in a limited sense, in which only clock frequency
and core assignment are adjustable). On the other hand, the CPU execution time, E; ., is dependent
upon computing capability dynamically adjusted by the core configurations. Given a hardware
configuration tuple (clk, m), where clk and m denote the clock frequency of cores and the number of
cores allocated when executing E;, respectively, the CPU execution time of a sequential phase E; can be
approximated as follows:

L 1

VE; s.t. type(E;) = s, Ej cpu(m, clk) ~ (number of cycles taken) - (clock period) = Ok

®G)
where the actual issue width of a superscalar processor is « and the number of instructions within the
segment is Is. As shown in Equation (3), the number of assigned cores does not make any difference in
the CPU execution time of a sequential phase. It is worth mentioning that Is can be easily measured by
means of the integrated hardware performance counter [25].

On the contrary to sequential phases, the CPU execution time of a parallel phase is also affected
by the number of cores m, as follows:

Iy(m) 1
PR 4)

VE; s.t. type(E;) = p, Eicpu(m, clk) =

In the above equation, I,(m) denotes the number of instructions of each of m cores in the
corresponding phase. The more cores assigned to the application, the fewer instructions executed on
each core.

For the brevity of presentation, let us define Es of application T as the sum of all sequential phases
in T. Thatis, E; := Ztype(Ei):sEi' Likewise, we will use simplified notations Escpu, Esmem, Ep,cpus
Ep,mem, and Ej for the rest of this paper.

Sensors 2017, 17, 1955 50f12

2.2. Overall Framework

Figure 2 illustrates the overall framework of the proposed self-adaptive sensory swarm
architecture. The operation of sensory swarms can be modeled as a repetition of the following
three steps as shown in the left-hand side of Figure 2: (1) data acquisition from sensors, (2) data
processing, and (3) triggering actuators or communications based on the processed data. Among them,
we focus on the data processing part, which is the main source of CPU workloads. As described in the
previous subsection, the data processing part is implemented as an ever-repeating loop (while (1) in
the figure) of the multi-frame task segments. At the beginning of each loop execution, the application
records a timestamp using the heartbeat framework [10]. Then, the interval between two consecutive
heartbeats corresponds to epoch and the heartbeat rate is calculated as the reciprocal of epoch duration.
As stated in the system model, the application is given a heartbeat range, [th,in, thmax] in epochs/s,
as a performance constraint.

Camera Application

or sensor) Data while(1){
Acquisitior Heartbeat || MQ

Runtime Manager

— (' > input 0
H e
physical 2) Data g
process Actuator Processing : P
or Network I/F Reconfiguration
- @ 3) Pls)ctessad E (Algorithm 1)
ata
< 12 1
L~ }
o system

call

OperatingS%%

CO00 Core
DI:H:“:‘ Assignment Clock

DDDD LIS Frequency
OO0 <}:|< A : Modulation
Multi-core

Processor
Figure 2. Overall framework of the proposed self-adaptive multi-core sensory swarm node.

\

Other Sensory
Swarm Nodes

Other than the application task (which deals with data processing), there is another task called
runtime manager running in the sensory swarm system. Each time the application records the heartbeat,
the runtime manager checks whether the given performance condition is satisfied or not, and performs
a system reconfiguration if necessary. This reconfiguration procedure is described in detail in the next
section. In order to maintain the general applicability of the proposed technique, we use the existing
Linux commands or system calls without any modifications for the reconfiguration. To be more specific,
we use the taskset command for core assignment and the cpufreq file for frequency modulation.

3. Proposed Self-Adaptive Reconfiguration Policy

Algorithm 1 illustrates how the proposed technique responds to a throughput requirement
violation. The adaptation is performed when the heartbeat rate violates the constraint. The optimal
adjustment of the control knobs may require an exploration of too many possible cases, leading to
substantial runtime computational overhead. Thus, we confine ourselves to incremental adjustments
such as adding (or releasing) a core or scaling clock frequency a single step higher (or lower). In case the
performance is under the lower bound of the constraint (lines 3-10), either increasing clock frequency
or allocating one more core is chosen. On the other hand, if the performance monitored is above the
upper bound of the constraints (lines 11-18), either decreasing clock frequency or releasing a core is

Sensors 2017, 17, 1955 6 of 12

considered as a response to less computational workload. Note that one of the two control knobs (i.e.,
clock frequency or core assignment) is to be chosen as a reconfiguration solution each time Algorithm 1
is called. Thus, we need to quantitatively compare them in terms of performance per energy gain in
gainyg and gain. as shown in lines 4-5. In what follows, we explain how we estimate the effect of each
adjustment decision.

Algorithm 1 Self-adaptive reconfiguration procedure.

1: while an application is running do

2: h < heartbeat rate of the current epoch
3: if i < th,,;, then
4: gaing <— EFF; y + EFF,
5: gaine < EFF, .
6: if gain, < gainy then
7: Scale up clock frequency by a single step
8: else
9: Allocate one more core unless all cores are busy
10: end if
11: else if h > th;,,, then
12: lOSSf — EFFS,f + EPFp/f
13: loss; < EFFy ¢
14: if loss < loss. then
15: Scale down clock frequency by a single step
16: else
17: Release one core unless only one core is busy
18: end if
19: end if

20: end while

3.1. Predicting Enerqy Impact of Core Allocation Policy

We use the predicted performance gain per increased energy as an indicator for choosing a
suitable adjustment. Similarly, the performance loss per energy saving should also be quantitatively
considered in case of slowing down. It is worth mentioning that performance per power or energy
consumption is a popular metric to quantify energy efficiency [26,27]. We first examine the effect of
frequency scaling. Let AEN; ¢(n, clk, clk’) be the increment in energy consumption for the sequential
phase due to scaling up the clock frequency from clk to clk’ while preserving the number of assigned
cores as 1.

That is,

AEN; ¢ (n, clk, clk') = Es(n, cIk') - P(clk') — Es(n, clk) - P(clk), (5)

where P(clk) is the power consumption of a core running at clk. The core power consumption model
is empirically derived as detailed in the next section.

Similarly, the increment in energy consumption of parallel phases due to the frequency scaling
AEN,, ¢ can also be formulated as follows:

AEN, ¢(n,clk, clk') = n - (Ep(n,clk’) - P(cIk') — Ep(n,clk) - P(clk)) . (6)

Note that the parallel phases affect the energy consumption of multiple n cores. It is worth
mentioning that the proposed energy model is only concerned with the computational workload of the
CPU. As the proposed technique does not consider the memory DVFS and the core allocation does not
make any significant differences in memory accesses, this modeling is valid enough to tell the relative
energy consumptions of the two control knobs.

Sensors 2017, 17, 1955 7 of 12

In order to assess the effectiveness of the frequency scaling, we define EFF; ; and EFF), as the
predicted performance gains per unit energy increase in sequential and parallel phases, respectively.

That is,
_ Es(n,clk) — Es(n, clk")
EFEy = AEN; ¢ (n, clk, cIK') @

and
_ Ep(n,clk) — Ep(n, clk’)

FEEwf = TREN, (n,clk, k)

®)

Now, we have an indicator of the effectiveness of the frequency scaling, gainy, as the sum of
Equations (7) and (8).

We basically follow the same principle in quantifying the effectiveness of the core assignment.
The only difference is that we do not need to use more than a core in sequential phases; i.e., AEN;, = 0.
On the other hand, it does increase the energy consumption in parallel phases. The energy increment
in parallel phases AEN . is formulated as follows when the number of allocated cores changes from n
to n’ such that n’ > n:

AENpc(n,n',clk) = P(clk) - (n" - Ep(n’,clk) —n - Ey(n,clk)) . ©)
Then, the effectiveness of adding more cores on parallel phases is

EFE,. - Ep(n,clk) — Ep(n’, clk)
’ AENp,c(n,n’, clk)

(10)

Again, adjusting core allocation does not affect the sequential phase; ie., EFF,. = 0.
Thus, gaine = EFFgrr,,. Now that we have both gainy and gain., we can tell which one is the more
suitable reconfiguration policy. As shown in lines 6-10 of Algorithm 1, the one which has a bigger
gain value will be chosen as a reconfiguration policy for the next epoch.

The same principle applies to the case of reconfiguring systems to run slower (lines 11-18). In such
cases, EFFs can be understood as performance loss per energy saving (lines 12-13), and the option with
smaller value is adopted as a next configuration. Namely, when decreasing the clock and releasing a
core have the same energy savings, the one with less execution time increments is chosen. On the other
hand, when they tie in the execution time increments, the system is adjusted to the one with larger
energy savings.

While this study focuses on the frequency scaling and core assignment, the proposed framework
is not limited to any specific control knobs. In other words, the proposed technique can be extended to
consider other control knobs, once the performance and energy of the target system can be properly
modeled with them. For instance, Equations (5) and (6) can be extended to consider voltage scaling
with a modification of function P(-). Likewise, as another example one may consider heterogeneous
multi-cores in the reconfiguration by enhancing Equations (3) and (4).

4. Experiments

Hardware platform and configuration: We conducted experiments on the Tegra-K1 system that
consists of a quad-core ARM Cortex-A15 processor [28]. The clock frequency of the processor scales
from 204 MHz to 2.3 GHz in steps of 100 MHz.

Benchmarks: We took an image processing application—Heart-Wall—from the Rodinia
benchmark suite [29] and a particle filter-based Object tracking application as benchmarks, both of which
exhibit per-frame workload variations. Image processing and object tracking applications are among
commonly used applications for high-end WSNs or sensory swarms [30,31]. Note that the workload
characteristics involved in the benchmarks are different. In particular, Heart-Wall is compute-intensive
with relatively consistent processor utilization, while memory access behavior of Object tracking is
quite nondeterministic due to the stochastic nature of the particle filter. We implemented the proposed

Sensors 2017, 17, 1955 8 of 12

technique described in Algorithm 1 by augmenting the heartbeat APIs [10] into the beginning of
the outer-most loop in the benchmarks to monitor the runtime performance and to perform the
required adaptation.

The superscalar issue width « in Equation (3) is set to two considering the average behavior of
Cortex A-15. We measured instruction counts, I; and Ip(-), using a built-in hardware performance
counter [25], which are non-intrusive and exhibit negligible performance overhead. We empirically
established the power model of a single core P(-) in Equations (5), (6), and (9). Concretely, we ran a
compute-intensive workload Sample_PI repeatedly, in which a processor is known to cause negligibly
little memory accesses [32]. Gradually increasing the core frequency, we measured the system power
consumption, then built a simple prediction model of core power consumption using linear regression.

We compare the proposed approach with a state-of-the-art work [16] where the adaptation is
done by exhaustively searching the energy-optimal configurations combining frequency scaling and
core allocation. In [16], the design space is predetermined to reduce the computation overhead taken
for search, using the notation of distance. In particular, the distance of two configurations is defined
as total disparity in the control knob adjustments, core allocation, and frequency scaling. Taking this
approach, we consider all configurations with less than distance of 8 from the current configuration
during the adaptation. This method is referred to as Exhaustive hereafter. We also take a default Linux
scheduler with the high-performance governor as Baseline.

Figures 3 and 4 show the comparisons of the three approaches in terms of workload adaptation
and corresponding energy consumption over time. The throughput constraints were set to vary as
depicted with the dotted lines in Figures 3a and 4a. We also provide the configuration of the two
control knobs as counterparts at the same epochs for each of the benchmarks in Figures 3b and 4b,
respectively. Note that we exclude a warm-up stage of the first few epochs until which the performance
exhibited with our approach reached the lower bound of the constraints because the configurations
were initially set to the lowest possible compute capability. The performance traces of Baseline are
omitted here because it is not designed to adapt to the given constraints; only its energy consumptions
are shown for comparison in Figures 3c and 4c. When the memory access behavior is stable as shown
in Heart-Wall, the proposed approach and Exhaustive perform similarly in throughput.

—QoS_min —QoS_max —0-Proposed -©-Exhaustive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
epochs

@)

= Number of cores -#-Frequency
5 r 900000

- 800000
- 700000
£
[~ 600000 s
- 500000
- 400000
0 -~ 300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
epochs

(b)

cores
w IS

~

-

Figure 3. Cont.

Sensors 2017, 17, 1955

4 Proposed -®-Exhaustive -A-Baseline

7.000

6.000

5.000

Energy (J)

2000 ¢ L > >

w s
o 9
S 9o
s °©

* O—O—0—0—9

1.000

0.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
epochs

(©)

9o0f12

Figure 3. Comparisons of our proposed approach with the Baseline and Exhaustive approaches

under smooth workload (Heart-Wall):

(c) energy consumptions.

epochs/s

w

0

4

epochs/s
w

~

0

0.20

0.10

0.00

Figure 4. Comparisons of our proposed approach with the Baseline and emphExhaustive approaches
under heavily varying workload (Object-tracking): (a) performance, (b) hardware configurations, and

I

—QoS_min —QoS_max —o-Proposed -©-Exhaustive

21,23 ,45.,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37

(@)

= Number of cores -®-Frequency

1,23 ,4.5,6.,7,8.9 ,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 7

~4-Proposed -#-Exhaustive -#-Baseline

é)

123 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

(©)

(c) energy consumptions.

epochs

750000
700000
650000
600000
550000
500000 =
450000
400000
350000

}‘5300000

epochs

(a) performance, (b) hardware configurations, and

The reason why Exhaustive performs relatively well partly in Figure 3a is largely due to the fact
that the stable and compute-intensive workload of Heart-Wall is favorable for the performance model
in [16], which unlike ours ignores the impact of memory-intensity on performance. However, in the
cases where the memory-intensity of workload severely changes in a nondeterministic way (as is
in Object tracking), the performance model of Exhaustive becomes inaccurate, and thus the adaptation

Sensors 2017, 17, 1955 10 of 12

tends to oscillate as shown in Figure 4a. On the other hand, our approach adapts to the workload
variations smoothly compared to Exhaustive. In turn, such better adaptivity leads to a higher energy
efficiency, as is quantified in Figure 4b.

We observe that the different patterns of resource management appear according to workload
characteristics, as shown in Figures 3b and 4b. The proposed technique adapts for Heart-Wall by
primarily changing core allocation over epochs. Since Heart-Wall has a compute-intensive workload,
it is advantageous to use more cores while keeping clock frequency in terms of energy efficiency as
demonstrated by our approach. As a result, the gap between the energy consumptions with the two
approaches is marginal as shown in Figure 3c. On the other hand, much complicated behavior of the
adaptation appears in the case of Object tracking. Both control knobs are active in use over epochs,
meaning that workload exhibited in the benchmark has much more memory-centric epochs than
those of Heart-Wall, requiring careful reconfiguration in the consideration of memory-intensiveness
of the workload. Consequently, Figure 3c shows that—unlike the case of Heart-Wall—our approach
outperforms Exhaustive in terms of energy by large margin.

Note that there is still room for further improvement; due to the incremental nature of our
approach, there is the potential for resource over-provisioning or constraint violation with steep
change in the constraint as shown in epochs 7 and 19 of Figure 4a. More aggressive adjustment could
alleviate such drawbacks, which is left as future work.

Figure 5 shows the energy efficiency of the proposed approach and Exhaustive in terms of
performance per watt. We sum up the achieved throughput of each epoch and divide it by the
accumulated power consumption over epochs. Note that we take the maximum of the constraints as
the throughput of an epoch if it actually surpasses the constraints in order to avoid exaggerating the
result from the proposed technique. As discussed, Exhaustive performs sightly better for the stable
and compute-intensive workload, Heart-Wall; in spite of its expensive computational cost, Exhaustive
is just 4.5% better in energy savings, as shown in Figure 5. Note that Exhaustive should endure more
than 5% of CPU utilization for exploring an optimal configuration candidates [16]. However, our
approach is robust in more realistic scenarios, nondeterministic memory-intensity, which leads to
the energy saving of 45% compared to Exhaustive. In terms of CPU utilization overhead, by limiting
the search space of the reconfiguration candidates in Algorithm 1, the CPU utilization overhead is
always negligible. This reveals that the accurate modeling of system performance is a key to effective
and efficient runtime resource adaptation.

| B Exhaustive Proposed |

Normalized
e

performance/watt

COO0O0 PRt
onvPOORNRO®O

heart-wall object tracking

Figure 5. Energy efficiency of two approaches in performance per watt.

5. Conclusions

We presented a runtime management technique for DVFS-enabled multi-core sensory swarms,
aiming at minimizing energy consumption under performance constraints. In order to adjust compute
capability in response to the dynamically varying workload of an application, the proposed technique
considers the runtime adjustment of two control knobs: task-to-core allocation and clock frequency
scaling. In order to make an accurate and effective decision, we devised a set of simple performance and
energy models for each of the adjustment options. The experimental results showed the considerable

Sensors 2017, 17, 1955 11 of 12

energy savings of the proposed technique by up to 45% over the state-of-the-art work. In particular,
it was proven to be further effective when the application had a highly varying memory-intensity
behavior, which is a realistic and challenging case in real-life sensory swarm systems.

Acknowledgments: This research was supported by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) support program (II'TP-2017-2015-0-00378) supervised by
the IITP(Institute for Information & communications Technology Promotion), by the industrial infrastructure
program for fundamental technologies (N0002312) funded by the Ministry of Trade, Industry & Energy (MOTIE,
Korea), and by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT)
(No. 2016R1C1B1015869).

Author Contributions: S. Kim devised the reconfiguration algorithm and designed the experiments. H. Yang
performed the experiments and analyzed the results; S. Kim and H. Yang wrote and revised the paper together.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rabaey,].M. The Swarm at the Edge of the Cloud—A New Perspective on Wireless. In Proceedings of the
2011 Symposium on VLSI Circuits (VLSIC), Honolulu, HI, USA, 15-17 June 2011; pp. 6-8.

2. Martinez-Julia, P.; Garcia, E. T.; Murillo, J. O.; Skarmeta, A. F. Evaluating Video Streaming in Network
Architectures for the Internet of Things. In Proceedings of the 2013 Seventh International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Taichung, Taiwan, 3-5 July 2013;
pp. 411-415.

3. Pereira, R,; Pereira, E.G. Video Streaming Considerations for Internet of Things. In Proceedings of the 2014
International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 27-29 August
2014; pp. 48-52.

4. Lee, J.H;Jang, K. S.; Kim, B. G,; Jeong, S.; Choi, J. S. Fast Video Encoding Algorithm for the Internet of
Things Environment Based on High Efficiency Video Coding. Int. . Distrib. Sens. Netw. 2015, 11, 146067 .

5. Pang, Z. Technologies and Architectures of the Internet-of-Things (IoT) for Health and Well-being.
Ph.D. Thesis, KTH Royal Institute of Technology, Kista, Sweden, 2013.

Wootton, C. Samsung ARTIK Reference: The Definitive Developers Guide; Apress: Berkely, CA, USA, 2016.

7. Marculescu, R.; Bogdan, P. Cyberphysical systems: Workload modeling and design optimization. IEEE Des.
Test Comput. 2011, 28, 78-87.

8. Gao, J; Ling, H.; Blasch, E.; Pham, K.; Wang, Z.; Chen, G. Pattern of Life from WAMI Objects Tracking based
on Context-Aware Tracking and Information Network Models. Proc. SPIE 2013, 8745, 87451K.

9. Fradi, H.; Dugelay,].L. Towards Crowd Density-Aware Video Surveillance Applications. Inf. Fusion 2015,
24, 3-15.

10. Hoffmann, H.; Eastep,].; Santambrogio, M.D.; Miller,].E.; Agarwal, A. Application Heartbeats for Software
Performance and Health. ACM Sigplan Not. 2010, 45, 347-348.

11. Sironi, F; Bartolini, D.B.; Campanoni, S.; Cancare, F; Hoffmann, H.; Sciuto, D.; Santambrogio, M.D.
Metronome: Operating System Level Performance Management Via Self-Adaptive Computing.
In Proceedings of the 49th Annual Design Automation Conference, San Francisco, CA, USA, 3-7 June
2012; ACM: New York, NY, USA, 2012.

12. Sarma, S.; Muck, T.; Bathen, L. A.; Dutt, N.; Nicolau, A. SmartBalance: A Sensing-Driven Linux Load Balancer
for Energy Efficiency of Heterogeneous MPSoCs. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 8-12 June 2015.

13. Al Faruque, M.A_; Rudolf, K,; Jérg, H. ADAM: Run-Time Agent-Based Distributed Application Mapping
for on-Chip Communication. In Proceedings of the 2008 45th ACM/IEEE Design Automation Conference,
Anaheim, CA, USA, 8-13 June 2008.

14. Hoffmann, H.; Sidiroglou, S.; Carbin, M.; Misailovic, S.; Agarwal, A.; Rinard, M. Dynamic Knobs for
Responsive Power-Aware Computing. ACM Sigplan Not. 2011, 46, 199-212.

15. Rangan, K.K.; Wei, G.Y.; Brooks, D. Thread Motion: Fine-Grained Power Management for Multi-Core
Systems. In ACM SIGARCH Computer Architecture News; ACM: New York, NY, USA, 2009; pp. 302-313.

Sensors 2017, 17, 1955 12 of 12

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Yun, J.; Park, J.; Baek, W. Hars: A Heterogeneity-Aware Runtime System for Self-Adaptive Multithreaded
Applications. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA,
7-15 June 2015; ACM: New York, NY, USA, 2015; p. 107.

Li, X.; Xie, N.; Tian, X. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for
Energy Harvesting Multi-Core WSN Node SoC. Sensors 2017, 17, 310.

Lukefahr, A.; Padmanabha, S.; Das, R.; Sleiman, FM.; Dreslinski, R.; Wenisch, T.F.; Mahlke, S. Composite
cores: Pushing Heterogeneity into a Core. In Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, Vancouver, BC, Canada, 1-5 December 2012; pp. 317-328.

Pricopi, M.; Muthukaruppan, T. S.; Venkataramani, V.; Mitra, T.; Vishin, S. Power-Performance Modeling on
Asymmetric Multi-Cores. In Proceedings of the 2013 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), Montreal, QC, Canada, 29 September—4 October 2013;
pp- 1-10.

Mok, A.K,; Chen, D. A Multiframe Model for Real-Time Tasks. IEEE Trans. Softw. Eng. 1997, 23, 635—-645.
Lea, D. A Java Fork/Join Framework. In Proceedings of the ACM 2000 Conference on Java Grande,
San Francisco, CA, USA, 3—4 June 2000; ACM: New York, NY, USA, 2000; pp. 36-43.

Dagum, L.; Menon, R. OpenMP: An Industry Standard API for Shared-Memory Programming. IEEE Comput.
Sci. Eng. 1998, 5, 46-55.

CUDA C Programming Guide. Available online: http://docs.nvidia.com/cuda/cuda-c-programming-guide
(accessed on 24 August 2017).

Khronos Opencl Working Group. The Opencl Specification, version 1.2. Available online: https://www.
khronos.org/registry /OpenCL/specs/opencl-1.2.pdf (accessed on 24 August 2017).

Weaver, VM. Linux Perf Event Features and Overhead. In FastPath 2013: Proceedings of the 2nd
International Workshop on Performance Analysis of Workload Optimized Systems, 21 April 2013, Austin,
TX, USA.

Rodrigues, R.; Annamalai, A.; Koren, I.; Kundu, S.; Khan, O. Performance Per Watt Benefits of Dynamic
Core Morphing in Asymmetric Multicores. In Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques (PACT), Galveston, TX, USA, 10-14 October 2011; pp. 121-130.
Kumar, V.; Fedorova, A. Towards Better Performance per Watt in Virtual Environments on Asymmetric
Single-Isa Multi-Core Systems. ACM SIGOPS Oper. Syst. Rev. 2009, 43, 105-109.

Tegra K1. 2015. Available online: http://www.nvidia.com/object/tegra-kl1-processor.html (accessed on
24 August 2017).

Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer,] W.; Lee, S.H.; Skadron, K. Rodinia: A Benchmark Suite
for Heterogeneous Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), Austin, TX, USA, 4-6 October 2009; pp. 44-54.

Paek, J.; Hicks, J.; Coe, S.; Govindan, R. Image-Based Environmental Monitoring Sensor Application Using
an Embedded Wireless Sensor Network. Sensors 2014, 14, 15981-16002.

Arora, A.; Dutta, P,; Bapat, S.; Kulathumani, V.; Zhang, H.; Naik, V.; Mittal, V.; Cao, H.; Demirbas, M.;
Gouda, M,; et al. A Line in The Sand: A Wireless Sensor Network for Target Detection, Classification, and
Tracking. Comput. Netw. 2004, 46, 605-634.

Zhao, X; Yin, J.; Chen, Z.; He, S. Workload Classification Model for Specializing Virtual Machine Operating
System. In Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD),
Santa Clara, CA, USA, 28 June-3 July 2013; pp. 343-350.

@ (© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://docs.nvidia.com/cuda/cuda-c-programming-guide
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
http://www.nvidia.com/object/tegra-k1-processor.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Self-Adaptive Framework
	System Model
	Overall Framework

	Proposed Self-Adaptive Reconfiguration Policy
	Predicting Energy Impact of Core Allocation Policy

	Experiments
	Conclusions

