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Abstract: The purpose of this study was to develop a robust, fast and markerless mobile
augmented reality method for registration, geovisualization and interaction in uncontrolled outdoor
environments. We propose a lightweight deep-learning-based object detection approach for mobile
or embedded devices; the vision-based detection results of this approach are combined with spatial
relationships by means of the host device’s built-in Global Positioning System receiver, Inertial
Measurement Unit and magnetometer. Virtual objects generated based on geospatial information
are precisely registered in the real world, and an interaction method based on touch gestures is
implemented. The entire method is independent of the network to ensure robustness to poor signal
conditions. A prototype system was developed and tested on the Wuhan University campus to
evaluate the method and validate its results. The findings demonstrate that our method achieves a
high detection accuracy, stable geovisualization results and interaction.

Keywords: geovisualization; outdoor augmented reality; deep learning; object detection; Inertial
Measurement Unit

1. Introduction

Geovisualization, or geographic visualization, is an efficient way to describe the real geographic
world through visual means, thereby making complex geographic data and information intuitive
and easy to understand. An appropriate geovisualization method can provide prompt insight and
understanding to support real-world knowledge construction and decision-making [1]. Recently,
as a tool, a process and a mode of thought, geovisualization has been widely used in environmental
monitoring [2], spatial decision-making [3], urban mobility [4], meteorology [5], and archaeology [6],
among other fields. However, traditional geovisualization methods suffer from several drawbacks
when facing various increasingly challenging representation needs. On the one hand, traditional
geovisualization usually refers to 2D/3D cartographic visualization, which, to some degree, is isolated
from the real world because it involves creating another “world” (such as a map or a virtual
environment) to describe the real world, and this isolation may result in improper spatial cognition
or may even produce incorrect information. For example, the limitation of small screens on mobile
or embedded devices adds difficulty to user’s cognitive mapping [7]. On the other hand, interaction,
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as an important dimension of geovisualization [8], is vital to the user experience. However, the outputs
of traditional geovisualization are usually limited to paper maps or electronic maps, which provide
limited modes of interaction for users.

Augmented Reality (AR) is a promising branch of technology that offers new modes of
visualization, navigation and user interaction [9]. In particular, outdoor AR technology provides
new opportunities for visualizing geographic data and information in a more direct and intuitive way
in an outdoor geographical environment. Many current AR methods and applications are based on
visual fiducial markers [10–12]. However, such methods demand a controlled environment (usually an
indoor environment) and require markers to be placed in advance. In the case of outdoor geographical
environments, it is usually not practical to cover such an uncontrolled environment with markers [13].
To date, many attempts have been made to develop AR methods targeting outdoor environments,
and some of them have already been applied to enhance the results of geovisualization [14–16]. In most
outdoor AR methods and applications, a Global Positioning System (GPS) receiver, inertial sensors
and magnetic sensors are generally used to obtain the relative distances and orientations of users
and geographic objects; however, such sensors suffer from many problems, such as deterioration
in the GPS precision and drift and distortion in the output of inertial and magnetic sensors [17],
which sometimes lead to unsatisfactory results. As an essential area of AR research, vision-based
natural feature detection [17] enables the extraction of object features from uncontrolled environments
for classification and localization and has been widely used in outdoor AR methods for detection
and tracking [18,19]. Traditional vision-based natural feature detection methods, such as natural
keypoint detectors (e.g., SIFT [20], SURF [21], HOG [22], and Haar [23]) or edge-based approaches [24],
can achieve high positional accuracy but are overly sensitive to motion blur, changes in lighting
conditions, occlusion, and other such phenomena and have difficulty coping with multiple objects
or detection at multiple scales or from multiple perspectives, which frequently results in instability
and even failure. As is noted in [9], a single technology is not always sufficient for registration and
interaction in AR; therefore, it is necessary to integrate various technologies together.

The purpose of the study reported in this paper was to develop a robust, fast and markerless
outdoor AR method for execution on mobile or embedded devices in uncontrolled outdoor
environments to achieve registration, geovisualization and interaction that can adapt to various
challenging outdoor conditions, such as motion blur, rotation, occlusion, and multiple objects, scales
and perspectives. To achieve this goal, a lightweight, energy-efficient but powerful vision-based
geographic object detection approach for outdoor mobile AR is needed, and the vision-based detection
results for geographic objects should be combined with their corresponding spatial relationships
to achieve the precise registration of virtual objects, with the help of the host device’s built-in GPS
receiver, Inertial Measurement Unit (IMU) and magnetometer, to serve as the basis for subsequent
AR geovisualization and interaction. Moreover, for robustness against the poor signal conditions
found in many challenging outdoor environments, the method should be sufficiently flexible and
independent; achieving this goal requires a small model size and eliminating any dependence on the
network to the greatest possible extent. Our method can accurately detect geographic objects in near
real time with sufficient robustness and can then augment them by registering and visualizing virtual
objects generated based on geospatial information. Our method provides a new AR-based means of
geovisualization and interaction to assist users in understanding and interacting with the geographical
environment in an intuitive manner, thereby enriching the user experience, which is expected to
be beneficial in many diverse applications, such as urban planning, environmental monitoring and
spatial decision-making.

The remainder of this paper is organized as follows: in Section 2, the development of outdoor
AR systems is introduced, and recent deep-learning-based object detection methods are reviewed.
In Section 3, a lightweight vision-based deep learning object detection approach for outdoor AR on
mobile or embedded devices is proposed and evaluated. In Section 4, we describe our proposed
method of mobile outdoor AR for registration, geovisualization and interaction, which combines
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vision-based detection results and spatial relationships with the help of the host device’s built-in GPS
receiver, IMU and magnetometer. In Section 5, a prototype system we developed using the proposed
method is presented, which was tested on the Wuhan University campus to evaluate the method and
validate its results, and a discussion of the findings is presented. Conclusions and future work are
outlined in Section 6.

2. Related Work

2.1. Outdoor Augmented Reality

Due to the huge range of uncontrolled outdoor environments, a combination of multiple sensors
is required in an outdoor AR system to accomplish the registration process, such as a GPS receiver
for locations and distances, inertial sensors and magnetic sensors for orientations [25–31]. Many early
outdoor AR systems and applications, represented by [26], use wearable computer systems (e.g.,
Head Mount Display devices) to access information. Those works show potential applications of
outdoor AR but have large registration errors. Reference [30] presents an outdoor AR system which
uses rate gyros, compass and tilt orientation sensor to achieve accurate motion-stabilized registration,
while this system assumes that the real-world objects are distant (e.g., 500 + meters), and it is only
operated and tested at static locations.

Due to the serious systematic errors produced by the sensors, many outdoor AR systems currently
employ computer vision technologies for achieving precise registration [32–34]. Some methods utilize
vision tracking technologies to reduce the drift of inertial sensors. Reference [33] proposes an early
hybrid AR system where an inertial system provides frame-to-frame camera orientation predictions to
increase the robustness and computing efficiency, and a vision system corrects the accumulated drift
of the inertial system. Reference [34] presents a real-time gyros-vision hybrid tracking system which
uses line-based vision tracking technology to detect and match line features on buildings that occur in
outdoor environments and to stabilize the gyro drift. Those systems are overly sensitive to the rapid
viewpoint displacement and rotation and run on a workstation or a PC, which limits their mobility.
Reference [35] introduces mobile infrared beacons which are added to outdoor environments as the
references to correct errors in inertial sensors and GPS receiver, while this method requires setting
beacons on vehicles, persons or static locations in advance, and the paper only shows a simulation
experiment. There are also many methods which use model-based tracking technologies to achieve
precise registration for outdoor AR [36–38], but those methods rely heavily on Computer Aided Design
(CAD) models of buildings.

Another stream of research focuses on vision-based natural feature detection for object recognition
or localization in the context of AR. Reference [39] describes an early AR system based on SIFT for
object localization, while the system runs on a laptop and is only tested in indoor environments.
Reference [40] demonstrates a streaming mobile AR system using SURF features for recognition and
tracking, but the main computing tasks such as feature extracting and matching are implemented on a
server, and the network(e.g., 3G network) latency between mobile phones and the server accounts
for 31% of total time cost. In [41], the SURF algorithm is implemented on a mobile phone for outdoor
AR. The AR techniques presented in [42] use modified SIFT and Ferns to achieve real-time detection
and tracking on mobile phones. Reference [43] presents a markerless AR detection approach using a
Random Forest classifier for interesting point matching in uncontrolled environments. Reference [44]
combines cloud-offloaded computer vision with a location-free geometric representation to prune
down the visual search space for reducing the latency in mobile AR applications. In summary, most of
those methods either are not very robust to various visual conditions or have difficulty coping with
multiple objects, multiple scales or multiple perspectives phenomena. Some of them are based on the
client/server architecture, resulting in network latency and vulnerability to poor signal conditions.

Compared with the aforementioned researches, our method utilizes a deep-learning-based
object detection approach which can adapt to various challenging outdoor visual conditions with
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sufficient robustness, and the approach is lightweight and energy-efficient enough to be completely
implemented on low-power mobile or embedded devices, eliminating the dependence on the network
and eradicating latency. Besides, our method considers spatial relationships, which can refine the
vision-based detection results of geographic objects and is able to correctly distinguish between
geographic objects with similar visual properties.

2.2. Deep-Learning-Based Object Detection

Object detection is currently attracting considerable attention in many fields, such as AR [45],
autonomous driving [46], remote sensing [47,48], ecology investigation [49], and medical science [50].
There are many commonly used object detection datasets, such as the ImageNet [51], PASCAL VOC [52],
and Microsoft COCO [53] datasets. Over the past few decades, many object detection methods have
continuously emerged, and some of them demonstrate state-of-the-art performance. Traditional object
detection methods, however, have several drawbacks. First, the performance of traditional methods
strongly depends on the design of the feature extractors, which requires careful engineering and
domain expertise [54], and even still, these manually crafted features are not very robust to various
visual phenomena, such as lighting changes, motion blur and different perspectives or scales. Second,
traditional region selection approaches are mainly based on sliding window methods, which have
a high time complexity and produce a large number of redundant windows, leading to a massive
number of useless computations.

Since Krizhevsky et al. [55] won the classification task of ILSVRC 2012 with the lowest top-5 error
rate (15.3%, much lower than that of the traditional machine learning method SIFT+FVs [56], which was
26.2%) using a large deep Convolutional Neural Network (CNN) named AlexNet, the heyday
of deep learning methods in computer vision has arrived. Instead of relying on manual feature
engineering, deep learning methods automatically discover from raw data the representations needed
for classification or detection, thereby taking advantage of the increasing availability of computational
resources and data [54]. It turns out that features extracted from a trained deep CNN can be repurposed
for many computer vision tasks, making a CNN an efficient “black box feature extractor”. OverFeat [57]
is an early object detection method using a CNN with a multi-scale sliding window approach
for classification, localization and detection, which won the Classification + Localization task of
ILSVRC 2013.

Compared with the traditional sliding window algorithm, the region proposal method (also
called the detection proposal method) [58] is a better solution for region selection. The region proposal
method assumes that all objects in an image share common visual properties that distinguish them
from the background, which allows us to develop a method for identifying region proposals, which are
the candidate regions in an image that are more likely to contain objects. Several region proposal
approaches, such as selective search [59] and objectness [60], are widely used in deep learning methods
to reduce the number of regions and the time complexity while maintaining high object recalls.

Recently, many deep learning methods have been proposed that combine the region proposal
method with CNNs for object detection to achieve significant performance. R-CNN [61] (an overview
is shown in Figure 1) combines selective search with a CNN to obtain 2000 region proposals and extract
features from each proposed region for detection and then applies a linear regression model to obtain
bounding boxes with reduced localization errors, thereby achieving a considerable improvement over
OverFeat on the ILSVRC 2013 detection dataset (increasing the mAP from 24.3% to 31.4%). SSP-Net [62]
speeds up R-CNN by extracting features from the entire image only once with the help of a spatial
pyramid pooling layer. Fast R-CNN [63] uses an ROI pooling layer (a simplified spatial pyramid
pooling layer) and multi-task loss to improve training and testing speed as well as detection accuracy.
Faster R-CNN [64] replaces the selective search process with an RPN (Region Proposal Network)
for region proposal generation, thereby combining region proposal, classification and localization
regression to improve speed and accuracy.
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The region-proposal-based deep learning methods represented by the variants of R-CNN are
accurate but still too slow to achieve real-time detection. Another group of methods skips the
time-consuming region selection step by directly predicting confidences for classification and bounding
boxes for localization, thereby dramatically enhancing the speed of detection. One of these methods
is You Only Look Once (YOLO) [65], which achieves real-time performance by reframing object
detection as a single regression problem, computing a global feature map and using a fully connected
layer to predict both confidences and bounding boxes. Another method, Single Shot Detector (SSD,
an overview is shown in Figure 2) [66], achieves faster and significantly more accurate performance
(74.3% mAP at 59 FPS on an NVIDIA Titan X GPU for 300 × 300 pixel input) compared with YOLO by
adding layers of feature maps at each scale and using a convolutional filter for multi-scale detection
with default boxes of different sizes and ratios.
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Figure 1. An overview of R-CNN (from [61]). This method first takes an image as an input, then extracts
approximately 2000 region proposals and computes features from each proposed region using a deep
CNN, and finally uses linear SVMs to classify those proposed regions.
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Figure 2. An overview of SSD. SSD first takes an image as input, then extracts features by means
of a base network (e.g., a truncated VGG-16 [67] network without classification layers) and several
additional feature layers to obtain multi-scale feature maps, subsequently obtains initial detection
results through multiway classification and box regression using a set of convolutional filters, and finally
applies Non-Maximum Suppression (NMS) to eliminate redundant results.

3. A Lightweight SSD for Mobile Outdoor AR

We choose SSD as the visual object detection approach for our mobile outdoor AR method by
virtue of its high detection accuracy and speed. However, because of its enormous computational cost,
it is still too slow and computationally expensive to run the original SSD without a powerful GPU,
let alone on low-power mobile or embedded devices. Moreover, the heavy and complex architecture
of the original SSD requires a weight file of more than 100 MB, which is excessively large for a mobile
application when the storage space is limited or a large number of models are needed. Currently,
a common solution is to first implement SSD on a powerful server and then allow mobile or embedded
devices to send input images to the server and receive output visual detection results from the server
through the network. However, this solution will inevitably lead to dependence on the network,
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resulting in latency and vulnerability to poor signal conditions, which should be avoided to the
greatest possible extent in outdoor AR.

In brief, a local, energy-efficient and lightweight object detection method that can run on mobile
devices is more suitable than one running on a server for handling various outdoor environments
under poor signal conditions. Therefore, we propose lightweight SSD, a version of SSD that has been
modified by changing the original SSD architecture to make it sufficiently lightweight for mobile
or embedded devices. We greatly reduce the computing cost (and also the size of the weight file)
to achieve near-real-time performance on mobile or embedded devices while maintaining a high
detection accuracy.

3.1. Network Architecture

A large proportion of the computational cost of SSD is due to the base network (e.g., truncated
VGG-16 in the original SSD) and additional feature layers, which are mainly used to extract multi-scale
features from the input image. Thus, we replace the heavy base network with a more lightweight
one and modify the subsequent additional feature layers. SqueezeNet [68] is a very lightweight
classification CNN architecture that achieves AlexNet-level accuracy on ImageNet with 50 × fewer
parameters and a weight file of only 4.8 MB in size. The latest version, SqueezeNet v1.1 (the architecture
is shown in Figure 3), requires 2.4 × fewer computations than the original, without sacrificing accuracy.

Sensors 2017, 17, 1951 6 of 24 

 

embedded devices. We greatly reduce the computing cost (and also the size of the weight file) to achieve  
near-real-time performance on mobile or embedded devices while maintaining a high detection accuracy. 

3.1. Network Architecture 

A large proportion of the computational cost of SSD is due to the base network (e.g., truncated 
VGG-16 in the original SSD) and additional feature layers, which are mainly used to extract multi-scale 
features from the input image. Thus, we replace the heavy base network with a more lightweight one 
and modify the subsequent additional feature layers. SqueezeNet [68] is a very lightweight 
classification CNN architecture that achieves AlexNet-level accuracy on ImageNet with 50 × fewer 
parameters and a weight file of only 4.8 MB in size. The latest version, SqueezeNet v1.1 (the 
architecture is shown in Figure 3), requires 2.4 × fewer computations than the original, without 
sacrificing accuracy. 

 
Figure 3. Macro architectural view of SqueezeNet v1.1 (inspired by Figure 2 in [68]). Processing begins 
with a convolutional layer (conv1), followed by 8 fire modules (structures proposed in [68], which 
have fewer parameters than normal convolutional layers without sacrificing competitive accuracy), 
and ends with a convolutional layer (conv10) and a softmax classifier. SqueezeNet takes as input a 
224 × 224 pixel image with 3 colour channels (R, G and B). 

 
Figure 4. The proposed lightweight SSD architecture (inspired by Figure 2 in [66]). This architecture 
follows a design similar to that of the original SSD. The main differences are that it takes a 224 × 224 
pixel image as input and then uses a truncated SqueezeNet (rather than VGG-16) and a series of 
additional layers (at lower depths than the original) to extract features from the image. The features 
it uses for detection are selected from 5 layers: fire9 (the last fire module in the SqueezeNet), Ex1_2, 
Ex2_2, Ex3_2 (three convolutional layers) and GAP (a global average pooling layer). 
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Figure 3. Macro architectural view of SqueezeNet v1.1 (inspired by Figure 2 in [68]). Processing begins
with a convolutional layer (conv1), followed by 8 fire modules (structures proposed in [68], which have
fewer parameters than normal convolutional layers without sacrificing competitive accuracy), and ends
with a convolutional layer (conv10) and a softmax classifier. SqueezeNet takes as input a 224× 224 pixel
image with 3 colour channels (R, G and B).
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Figure 4. The proposed lightweight SSD architecture (inspired by Figure 2 in [66]). This architecture
follows a design similar to that of the original SSD. The main differences are that it takes a
224 × 224 pixel image as input and then uses a truncated SqueezeNet (rather than VGG-16) and
a series of additional layers (at lower depths than the original) to extract features from the image.
The features it uses for detection are selected from 5 layers: fire9 (the last fire module in the SqueezeNet),
Ex1_2, Ex2_2, Ex3_2 (three convolutional layers) and GAP (a global average pooling layer).
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Therefore, to significantly reduce the computational cost of the proposed lightweight SSD
approach, we use a truncated SqueezeNet architecture (with conv10 and the softmax classifier removed)
as the base network and append several additional feature layers (at lower depths than the original)
with decaying spatial resolution. Furthermore, whereas the original SSD takes input of 300× 300 pixels
in size and selects six layers from among both the base network layers and the additional feature
layers to extract multi-scale features, we use only 224 × 224 pixel input and select only five layers.
All of these modifications allow the method as a whole to achieve energy-efficient and near-real-time
performance when running on mobile or embedded devices. The details of the architecture are shown
in Figure 4.

3.2. Network Performance

As was done for the original SSD, we trained the proposed lightweight SSD on the PASCAL
VOC2007 + VOC2012 trainval datasets and then tested it on the PASCAL VOC2007 test dataset to
evaluate its performance. We characterize the training stage in terms of accuracy and loss values.
The accuracy is the overall accuracy, including foreground object predictions and background object
predictions, and the loss is the overall objective loss function used in [66], which is a weighted sum of
the localization loss and the confidence loss and is defined in Equation (1):

L =
1
N

(
Lcon f + αLloc

)
, (1)

where N is the number of default boxes matched to any ground-truth boxes with a Jaccard overlap
higher than a specific threshold (e.g., 0.5) for training. The loss is set to 0 when N is 0. Lcon f is
the confidence loss, which is the softmax loss over the confidences of multiple classes. Lloc is the
localization loss, which is a Smooth L1 [63] loss between the predicted box parameters and the
ground-truth box parameters. α is a weight term, which is set to 1 through cross validation. Lcon f and
Lloc are defined in Equations (2) and (3), respectively:

Lcon f (x, c) = −
N

∑
i∈Pos

xp
ij log(ĉp

i )− ∑
i∈Neg

log(ĉ0
i ), ĉp

i =
exp(cp

i )

∑p exp(cp
i )

, (2)

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{cx, cy, w, h}

xp
ijsmoothL1

(
lm
i − ĝm

j

)
, (3)

where xp
ij = {0, 1} is an indicator for the matching of the i-th default box to the j-th ground-truth box

for category p. cp
i is the confidence of category p corresponding to the i-th default box. lm

i is one of the
parameters m of the i-th predicted box, and ĝm

j is one of the parameters m of the j-th ground-truth box,
where m can be one of the central coordinates cx and cy or the width w or the height h of the default
bounding box for regression, as presented in [64]. According to the hard negative mining strategy [61],
the ratio between the number of positive examples Pos and the number of negative examples Neg
should be 1:3 to ensure fast and stable training.

We trained our lightweight SSD for 1000 epochs, and the resulting accuracy-epoch and loss-epoch
curves are shown in Figure 5. The SSD showed increasing accuracy and decreasing loss during training
and finally reached convergence at approximately the 1000th epoch, where both the accuracy and loss
values became stable.



Sensors 2017, 17, 1951 8 of 26

Sensors 2017, 17, 1951 7 of 24 

 

and near-real-time performance when running on mobile or embedded devices. The details of the 
architecture are shown in Figure 4. 

3.2. Network Performance 

As was done for the original SSD, we trained the proposed lightweight SSD on the PASCAL 
VOC2007 + VOC2012 trainval datasets and then tested it on the PASCAL VOC2007 test dataset to 
evaluate its performance. We characterize the training stage in terms of accuracy and loss values. The 
accuracy is the overall accuracy, including foreground object predictions and background object 
predictions, and the loss is the overall objective loss function used in [66], which is a weighted sum 
of the localization loss and the confidence loss and is defined in Equation (1): ܮ = 1ܰ ൫ܮ௖௢௡௙ ൅ ௟௢௖൯ܮߙ , (1) 

where ܰ is the number of default boxes matched to any ground-truth boxes with a Jaccard overlap 
higher than a specific threshold (e.g., 0.5) for training. The loss is set to 0 when N is 0. ܮ௖௢௡௙ is the 
confidence loss, which is the softmax loss over the confidences of multiple classes. ܮ௟௢௖  is the 
localization loss, which is a Smooth L1 [63] loss between the predicted box parameters and the 
ground-truth box parameters. ߙ is a weight term, which is set to 1 through cross validation. ܮ௖௢௡௙ 
and ܮ௟௢௖ are defined in Equations (2) and (3), respectively: 

,ݔ)௖௢௡௙ܮ ܿ) = 	− ෍ ௜௝௣ݔ log൫ܿ̂௜௣൯ே
௜∈௉௢௦ − ෍ log(ܿ̂௜଴) ,௜∈ே௘௚ ܿ̂௜௣ = exp൫ܿ௜௣൯∑ exp൫ܿ௜௣൯௣ 	, (2) 

,ݔ)௟௢௖ܮ ݈, ݃) = 	 ෍ ෍ ℎ௅ଵ൫݈௜௠ݐ݋݋݉ݏ௜௝௣ݔ − ො݃௝௠൯௠∈ሼ௖௫,௖௬,௪,௛ሽ
ே

௜∈௉௢௦ , (3) 

where ݔ௜௝௣ = ሼ0, 1ሽ is an indicator for the matching of the i-th default box to the j-th ground-truth box 
for category ݌. ܿ௜௣ is the confidence of category ݌ corresponding to the i-th default box. ݈௜௠ is one 
of the parameters ݉  of the i-th predicted box, and ො݃௝௠  is one of the parameters ݉  of the j-th 
ground-truth box, where ݉ can be one of the central coordinates ܿݔ and ܿݕ or the width ݓ or the 
height ℎ of the default bounding box for regression, as presented in [64]. According to the hard 
negative mining strategy [61], the ratio between the number of positive examples ܲݏ݋  and the 
number of negative examples ܰ݁݃ should be 1:3 to ensure fast and stable training. 

(a) Accuracy-Epoch (b) Loss-Epoch 

Figure 5. The accuracy and loss values for each epoch of training of the proposed lightweight SSD: (a) 
the accuracy-epoch curves; (b) the loss-epoch curves. 

We trained our lightweight SSD for 1000 epochs, and the resulting accuracy-epoch and  
loss-epoch curves are shown in Figure 5. The SSD showed increasing accuracy and decreasing loss 

Figure 5. The accuracy and loss values for each epoch of training of the proposed lightweight SSD:
(a) the accuracy-epoch curves; (b) the loss-epoch curves.

After the training stage, we obtained a trained model with a weight file of only 17.8 MB in size,
which is much smaller than that of the original and very suitable for mobile or embedded devices and
applications. We then evaluated the trained lightweight SSD on the PASCAL VOC2007 test dataset to
determine its mAP. Finally, we compared our approach with two popular object detection approaches:
the original SSD and Fast YOLO (the fast version of YOLO with a simplified architecture). The details
of this comparison are shown in Table 1.

Table 1. Comparison between original SSD, Fast YOLO and lightweight SSD.

Framework mAP Model Size FPS on GPU (PC) 1 FPS on CPU (PC) 2 FPS on CPU (Mobile) 3

Original SSD 74.3% 104.3 MB 11.6 1.5 0.2
Fast YOLO 52.7% 64.7 MB 30.1 5.9 -

Lightweight SSD 53.7% 17.8 MB 66.7 9.1 2.0
1 The GPU we used in the PC was an NVIDIA GeForce GTX 1060 with 6 GB of video memory.
2 The CPU we used in the PC was an Intel® Core™ i7-6700K CPU @ 4.00 GHz × 8 with 8 GB of memory.
3 The CPU we used on the mobile phone was a Qualcomm Snapdragon 821 with 6 GB of memory.

As shown in Table 1, our approach has a lower mAP than that of the original SSD because of
its less accurate base network, fewer feature layers and smaller input size; however, its mAP value
is still higher than that of the other fast object detection approach, Fast YOLO, by 1%. By virtue of
its lightweight architecture, the size of its weight file is only 17.8 MB, which is approximately 17%
of the size of the original SSD weight file and approximately 27% of that of the Fast YOLO weight
file. Regarding speed, our approach runs at 66.7 FPS on an NVIDIA GTX 1060 GPU, almost 5 times
faster than the original SSD and approximately 2 times faster than Fast YOLO. On an Intel® Core™
i7-6700K CPU, our approach runs at 9.1 FPS, still faster than the others. On the mobile phone, we tested
only our approach and the original SSD because we did not implement a mobile version of Fast
YOLO. Our framework runs at approximately 2 FPS on a Qualcomm Snapdragon 821 mobile CPU,
10 times faster than the original SSD. In summary, compared with the other two object detection
approaches, our approach has the fastest speed and the smallest model size while maintaining a
competitive accuracy.

4. A Mobile Outdoor AR Method for Geovisualization

We propose a mobile outdoor AR method for geovisualization that integrates the vision-based
detection results for geographic objects obtained using the proposed lightweight SSD with their
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corresponding spatial relationships with the help of a GPS receiver, an IMU and a magnetometer.
Important functionalities such as registration, visualization through superimposition of virtual objects
and interaction are realized.

4.1. Overview of the Method

An overview of the proposed mobile outdoor AR method is shown in Figure 6. Overall,
the proposed method can be divided into three important phases:

1. Training and detection with the lightweight SSD.
2. Combination of vision-based detection results and spatial relationships.
3. Registration, geovisualization and interaction.

The entire framework of the method is designed for outdoor AR on mobile or embedded devices
without reliance on the network. Consequently, it takes full advantage of mobile computing capabilities
and can adapt to various outdoor environments with poor signal conditions.Sensors 2017, 17, 1951 9 of 24 
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4.2. Training and Detection with the Lightweight SSD

To apply the lightweight SSD in the proposed AR method for geographic object detection, we first
need to train it on a suitable geographic object detection dataset. A geographic object detection dataset
should consist of a large number of images of geographic objects and their corresponding annotations,
including classification labels and bounding box coordinates on the images. After appropriate training
parameters have been set, such as the learning rate and weight decay, the lightweight SSD should reach
convergence after training (e.g., after 1000 epochs), meaning that it has achieved a stable accuracy and
is ready to be used for geographic object detection.

Afterwards, we can use this trained lightweight SSD to detect geographic objects. From the
video stream generated by the visual sensor of a mobile or embedded device, we continuously and
instantaneously capture frames to serve as input images. Before detection, all images need to be
resized to 224 × 224 pixels because of the input size requirement of the lightweight SSD, which is
almost the only necessary preprocessing step. Then, the lightweight SSD takes those images as inputs
for visual detection and returns a set of results containing the information on the detected geographic
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objects, such as their classifications and their bounding box coordinates. Finally, the bounding box
coordinates on the 224 × 224 pixel images are stretched to match the screen-size video frames (e.g.,
1920 × 1080 pixels) for further registration usage.

4.3. Combination of Vision-Based Detection Results and Spatial Relationships

Lightweight SSD is a purely vision-based approach and therefore does not consider spatial
relationships, which are vital to the validity of vision-based detection results when applied to the real
geographic world. A vision-based object detection approach has no concern for the distances and
directions from the visual sensor to the objects; consequently, it may commit certain errors, such as
identifying some geographic objects that are either too far away or in completely incorrect directions
such that they cannot actually appear in the image at all. Even when the distances and directions are
appropriate, some difficulties may still arise in obtaining precise results. For example, it is common for
multiple buildings in the same housing estate to share nearly identical visual properties. An efficient
object detection approach can detect these buildings with state-of-the-art performance but usually fails
to distinguish individual specific buildings. Thus, it is necessary to combine vision-based detection
results for geographic objects with their spatial relationships with the help of a GPS receiver, an IMU
and a magnetometer to achieve the subsequent precise registration of virtual objects. In our method,
we consider three aspects of the problem (examples are shown in Figure 7):Sensors 2017, 17, 1951 10 of 24 
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Figure 7. Three examples of the combination of vision-based detection results with the corresponding
spatial relationships with the help of a mobile or embedded device’s built-in GPS receiver, IMU and
magnetometer: (a) using distance thresholds to eliminate geographic object B from the vision-based
detection results; (b) using horizontal directions and the actual horizontal field of view to eliminate
geographic object B from the vision-based detection results; (c) matching included angles to the
vision-based detection results to distinguish geographic objects A and B, which share similar
visual properties.
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4.3.1. Distance

We consider the concept of a distance threshold, which represents the maximum valid distance
between the visual sensor and a geographic object. When the vision-based detection results are
generated, GPS locations are queried to calculate the distance from each object to the visual sensor.
The distance calculated from a pair of GPS locations is defined in Equation (4):

distance = 2arcsin

√
(sin

Lata − Latb
2

)
2
+ cos(Lata)× cos(Latb)× (sin

Lona − Lonb
2

)
2
× R, (4)

where Lata and Lona are the latitude and longitude of GPS location A, Latb and Lonb are the latitude
and longitude of GPS location B, and R is the radius of the Earth (km). The result is the distance (km)
between locations A and B. The distances thus computed are compared with their corresponding
distance thresholds, and any geographic object that does not satisfy the requirement will be discarded.
An example is shown in Figure 7a.

4.3.2. Direction

We also calculate the direction from the visual sensor to each geographic object using GPS
locations. The direction is calculated as defined in Equation (5):

direction = arctan
(

cos(Lata)× sin(Latb)− sin(Lata)× cos(Latb)× cos(Lonb − Lona)

sin(Lonb − Lona)× cos(Latb)

)
× 180

π
, (5)

where Lata and Lona are the latitude and longitude of GPS location A, Latb and Lonb are the latitude
and longitude of GPS location B, and π is the ratio between the circumference of a circle and its
diameter. The result is the azimuth of location B relative to location A, which represents the direction
from A to B.

Then, we determine the actual horizontal field of view of the image from the horizontal view
angle of the visual sensor and the information on the pose of the mobile or embedded device acquired
from the IMU and magnetometer. All geographic objects whose directions lie within the actual field
of view will be reserved, and the others will be eliminated from the vision-based detection results.
An example is shown in Figure 7b.

4.3.3. Order

To distinguish similar geographic objects with nearly identical visual properties, we determine the
order of those similar objects based on their GPS locations. First, we determine the orientation of the
visual sensor using the IMU and magnetometer in the mobile or embedded device. Then, we calculate
the included angles between the directions from the visual sensor to each geographic object and
the orientation of the visual sensor. Finally, we sort those similar geographic objects in ascending
order of their included angles (i.e., from negative to positive, where the positive direction of rotation
is considered to be clockwise) and then associate those geographic objects with their vision-based
detection results in the image in order (e.g., from left to right). In this way, similar geographic objects
can be correctly distinguished. An example is shown in Figure 7c.

It is notable that there have been many works that focus on learning spatial relationships, using
spatial relationships for object recognition or refining object detection results [69–73]. Reference [69]
presents a probabilistic model which uses the joint statistics of local appearance and position on objects
for face recognition. This method achieves high detection rate on face detection while it focuses on
the spatial arrangement of the features of the objects rather than the spatial relationships between the
objects. Reference [70] introduces the 3D Geometric Phrase (3DGP) model that learns and reasons
spatial relationships between the objects in the same 3D spatial configuration, thereby obtaining
an accurate scene composition. Reference [71] describes a method using the proposed face-centric
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geometric descriptors and an unsupervised learning algorithm for learning object-to-object spatial
relationships. However, these two methods are designed for indoor scenes and are not suitable for
outdoor scenes because it is not practical to annotate objects by, for example, oriented rectangular
bounding volumes [71] in an outdoor unprepared environment. Also, an additional training stage is
required and a training dataset is needed in these methods. In [72], a framework is provided using
a single image to model the interdependence of objects, surface orientations and camera viewpoint
simultaneously in the context of the 3D scene, while one assumption of this framework is that all
objects rest on the same ground plane, which is not true in many outdoor environments. Besides,
this framework requires the estimation of the viewpoint (involving the horizon position and the
camera height), which means the framework may not work well when the ground plane is not
visible. Reference [73] presents a coherent framework with three modules for jointly detecting objects,
estimating the scene layout and segmenting the supporting surfaces, thereby capturing the contextual
geometrical relationship to refine the results. However, one necessary condition for this framework is
that at least three objects coexist in the same image for estimating the layout.

Compared with the aforementioned methods, our method uses a simpler but still effective way
which can be easily implemented on low-power mobile or embedded devices to refine the object
detection results in unprepared outdoor environments. One of the advantages of our method is
that there is no additional training stage (except for the training for object detection) required for
generating spatial relationships, thereby allowing instantaneous calculation or modification for the
spatial relationships just with the help of the sensors and the geospatial information database; Also,
our method has few assumptions or prerequisites, making it a general solution to various outdoor
conditions; Moreover, our method helps to correctly distinguish individual specific objects with nearly
identical visual properties, which is rarely considered in other methods.

After this combination procedure, the vision-based detection results will be integrated with the
corresponding spatial relationships and can be further distinguished by their order, and any that
do not satisfy the specified distance and direction requirements will be discarded. Finally, with the
help of a GPS receiver, an IMU and a magnetometer, we obtain a more authentic set of geographic
object detection results that includes spatial relationships for registration, geospatial information
visualization and interaction.

4.4. Registration, Geovisualization and Interaction

An authoritative definition of AR, proposed by Azuma et al. [13], is that an AR system
supplements the real world with virtual (computer-generated) objects that appear to coexist in the
same space as the real world. This means that the purpose of AR is not to replace the real world
but to enhance it. Thus, we use a geospatial information database prepared in advance to generate
virtual objects that contain geographic data and information, and these virtual objects are registered
with respect to their corresponding geographic objects in the real world in accordance with their GPS
locations and detected bounding box coordinates. In fact, they are also integrated with the spatial
relationships of those objects because they coexist with the geographic objects in the same locations
in reality.

To enable the registration of virtual objects, the location of the geographic object in the 3D
coordinate system of the real world must first be determined. Theoretically, if the size of the geographic
object is known, we are able to determine the location of the geographic object in the 3D real world
coordinate system just with the help of the GPS location and device posture information inferred by
sensors. However, especially in the outdoor uncontrolled environment, the devices usually suffer
from the deterioration in the GPS precision and the drift and distortion in the output of sensors,
resulting in serious visual position deviation between the geographic object and registered virtual
objects on the screen. Thus, the conversion of the coordinates of the detected bounding boxes from the
2D screen coordinate system into the 3D coordinate system of the real world is required to avoid the
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visual position deviation and achieve accurate registration. These two coordinate systems and their
relationships are illustrated in Figure 8.
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Figure 8. The 2D screen coordinate system, the 3D real world coordinate system and the relationships
between them. A detected bounding box is described in the 2D screen coordinate system. The 3D real
world coordinate system is established on the basis of the view frustum created by the visual sensor,
with the origin at the centre of the visual sensor. The X and Y axes are parallel to the screen. The Z axis,
which corresponds to the negative direction of the visual sensor’s orientation, is perpendicular to the
screen. The 2D coordinates of the detected bounding box can be converted into target bounding box
coordinates on the target plane in the 3D real world coordinate system for virtual object registration.

A bounding box in the vision-based detection results is defined by four pairs of coordinates,
(x1, y1), (x1, y2), (x2, y1) and (x2, y2), in the 2D screen coordinate system, whose origin is at the top left
of the screen. By contrast, the origin of the 3D real world coordinate system lies at the centre of the
visual sensor, which can be assumed to coincide with the centre of the screen; therefore, the coordinates
of the bounding box must first be converted into the screen-centred coordinate system, whose origin is
at the centre of the screen. The conversion formula is given in Equation (6):{

Xc = x− Widths
2

Yc =
Heights

2 − y
, (6)

where Xc and Yc are the coordinates of the bounding box in the screen-centred coordinate system,
x and y are the coordinates of the bounding box in the original screen coordinate system, and Widths

and Heights are the width and height of the screen.
Then, these coordinates must be converted into target bounding box coordinates on the target

plane in the view frustum, which is defined by two clipping planes in the 3D real world coordinate
system. The target plane is perpendicular to the LookAt direction (the orientation of the visual sensor
as determined by the IMU and magnetometer; also the negative direction of the z axis); therefore, the z
coordinate value of the target plane is defined as shown in Equation (7):

Zr = D× cos(θ) , (7)

where D is the distance between the geographic object and the coordinate origin as calculated from
the GPS locations, θ is the included angle between the direction from the coordinate origin to the
geographic object and the LookAt direction, and the result Zr is the Z coordinate value of both the
target plane and the target bounding box.
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When the height and width of the target plane and the screen are properly matched, the x and y
coordinates of the detected bounding box can be easily converted from the screen coordinates to the
target plane coordinates. The conversion ratio is defined in Equation (8):

ratio =
Heights

2× tan( β
2 )× Zr

, (8)

where Heights is the height of the screen; β is the vertical view angle of the visual sensor; and Zr,
obtained from Equation (7), is the Z coordinate value of the target plane in the real world and is also
the distance between the origin of the coordinate system and the target plane. Therefore, the x and y
coordinates of the target bounding box are defined as shown in Equation (9):{

Xr =
Xc

ratio
Yr =

Yc
ratio

, (9)

where Xr and Yr are the coordinates of the target bounding box in the 3D real world coordinate system,
Xc and Yc are the coordinates of the detected bounding box in the screen-centred coordinate system,
and ratio is the conversion ratio from the screen coordinates to the target plane coordinates.

In this way, every pair of coordinates (x, y) of the bounding box in the 2D screen coordinate
system is converted into the corresponding coordinates (Xr, Yr, Zr) of the target bounding box in
the 3D real world coordinate system. Then, registration can be achieved by selecting locations near
the target bounding box for the placement of virtual objects, thereby allowing those virtual objects to
coexist with the detected geographic object in the same place in the real world.

After registration, these virtual objects are instantaneously superimposed in accordance with
their registration locations, and all virtual objects in the view frustum are projected and superposed
on every image frame of the video stream. Because the information available for the virtual objects
includes their spatial relationships, objects at closer distances will be automatically placed in front
of farther objects on the screen, thereby avoiding potential problems with overlay order among the
virtual objects.

With regard to interaction, because of the size limitations of the screens of mobile or embedded
devices, it is nearly impossible to visualize all of the available geospatial information for these small
virtual objects at once; doing so would be both unnecessary and overly crowded. Therefore, we have
designed an interactive way to allow users to interact with their devices using our mobile outdoor AR
method by touching the screen to acquire more information or even to request additional geospatial
services. Initially, all of the detected geographic objects are enhanced only with virtual labels indicating
their names. When the user touches a geographic object on the screen, several additional corresponding
virtual objects will fade in and present some concise geospatial information. More detailed geographic
data and information can be accessed and visualized by touching these virtual objects. Other extensions,
such as editing, querying and spatial analysis of geographic data and information, can also be easily
executed through this mode of interaction.

5. Application, Validation and Discussion

We developed a prototype system using our proposed method on the Android platform.
The functional modules, the geographic object detection dataset, the geospatial information database
and the virtual objects were designed and built, and a performance optimization scheme targeted at
mobile or embedded devices was implemented to speed up the image capture process of the visual
sensor. We tested the prototype system on the Wuhan University campus to evaluate the proposed
mobile outdoor AR method and validate its results. In this section, the prototype development and
experiments are reported, and then a discussion is presented.
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5.1. Prototype System Development

Our AR system was developed using Android Studio v2.2 on the Ubuntu 14.04 LTS desktop
OS. Our proposed lightweight SSD approach was implemented using MXNet [74] v0.9.0, an efficient
machine learning and deep learning library. We compiled the entire MXNet library into a single
dynamic link library file (*.so) through the Android amalgamation method to enable its use on
Android mobile or embedded devices for object detection with the help of Java Native Interface (JNI)
technology. The geospatial information database for mobile or embedded devices was established using
SQLite, a popular native lightweight database engine. We used OpenGL ES v2.0, a powerful graphics
library, to create visual elements such as labels, virtual objects, and animation effects. The interaction
functionalities were designed and implemented using Android Gestures APIs, which can recognize
users’ gestures on a screen and return responses.

We optimized the image capture process for mobile or embedded devices to speed up performance.
The raw data of the frames captured from the video streams produced by the visual sensors of most
mobile or embedded devices are YUV data, and the default format is YCbCr_420_SP (NV21). These raw
data need to be converted into 3-channel RGB data before they can be used as inputs to the lightweight
SSD for detection. However, YUV-to-RGB conversion algorithms are commonly run on the CPU by
default and consequently incur a high time cost (nearly 1 second for each captured image). We instead
implemented this conversion on a mobile GPU by means of off-screen rendering technology, which
enables rapid processing or rendering of data in an off-screen buffer with the help of the parallel
computing capability of a GPU. We implemented the conversion algorithm in OpenGL Shading
Language (GLSL) using OpenGL ES v2.0, and we found that our optimized method requires only
approximately 15 ms to convert a YUV image into an RGB image on a mobile GPU, which represents a
significant reduction in time cost.

5.2. Application and Validation

5.2.1. Data Acquisition

We tested the prototype system on the Wuhan University campus to evaluate the method and
validate its results. We selected 10 representative geographic objects on the campus, including
buildings, famous statues, and pavilions. Some of the selected objects are located very close to
each other and often appear together in the same image, thereby allowing us to evaluate the
method’s multiple-object detection performance. Some of the objects also share very similar visual
properties, allowing us to evaluate the ability to further precisely distinguish them based on their
spatial relationships with the help of the built-in GPS receiver, IMU and magnetometer. Moreover,
most of these geographic objects are of various sizes, appearances and colours, and various outdoor
environmental conditions were encountered during the test, allowing us to thoroughly test the
robustness of the method. The distribution of the selected geographic objects is shown in Figure 9.

A corresponding database was established to store geospatial information on these geographic
objects. The current geospatial information database stores ID, name (assigned code), category (e.g.,
building), area (estimated area of the geographic object), height (maximum height of the geographic
object), longitude (east longitude), latitude (north latitude) and text introduction of the geographic
object. Additional types of information could easily be added by extending the table entries of the
database. The structural details of the geospatial information database are shown in Table 2.
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Table 2. Structural details of the geospatial information database.

Item Data Type Example 1

ID Integer 1
Name Text SRES

Category Text Building
Area (m2) Real 2344.41
Height (m) Real 16.00

Longitude (East) Real 114.360602
Latitude (North) Real 30.525398

Introduction Text The School of Resources and Environmental Sciences is an academic
department at WHU.

1 The example data and information are just for reference.

To train the proposed lightweight SSD for vision-based detection, we acquired an enormous
number of photographs of the geographic objects. Each geographic object corresponds to at least
200 images, and each image contains at least one of the geographic objects, sometimes multiple.
We captured approximately 2000 photographs at multiple scales (mainly from different distances) and
from multiple perspectives (from different directions) as well as under many different conditions to
assist the detector in learning the essential features of the geographic objects. The objective was to
allow these geographic objects to be detected in images at any possible size, from various possible
view directions and under many possible conditions by a successfully trained detection algorithm.

5.2.2. Preprocessing and Training

To train the proposed lightweight SSD, images alone are not sufficient. Annotations specifying
classifications and bounding box coordinates for each geographic object in the images are needed.
We produced a detection dataset in the VOC2007 format for the selected geographic objects (the entire
process is illustrated in Figure 10). First, we resized all images to dimensions of 224 × 224 pixels,
and then, we manually created annotations by labelling classifications and bounding box coordinates
for all of the geographic objects in the images. Those annotations are organized in accordance with the
VOC2007 format requirements and are stored in XML files together with all of the resized images in
the VOC2007 format. We designated 1000 of the annotated images as the training set, another 500 as
the validation set, and the rest as the test set. The training and validation sets were both used to train
the detector, and the test set was used to calculate the mAP to evaluate its performance.
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We trained the lightweight SSD on a desktop PC with an NVIDIA GTX 1060 GPU (with 6 GB of
video memory) and an Intel® Core™ i7-6700K CPU @ 4.00 GHz x 8 (with 8 GB of memory). The detector
was implemented and trained using MXNet v0.9.0, which supports CUDA, a parallel computing
platform for General-Purpose computing on Graphical Processing Units (GPGPU). This hardware
and these platforms significantly reduced the time cost for training. We trained the approach
for 1000 epochs using the same training configuration that was used in the preliminary network
performance evaluation, and the resulting accuracy-epoch and loss-epoch curves are presented
in Figure 11. This figure shows that convergence was reached at approximately the 800th epoch,
after which the accuracy-epoch and loss-epoch curves remained stable.
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5.2.3. Results and Validation

We evaluated the trained lightweight SSD on the test set of the geographic object detection dataset
by calculating AP and mAP values. None of the images in the test set was used in the training stage;
therefore, this evaluation provides a fair estimate of the actual performance of the proposed detection
method. The results are shown in Table 3. Our approach achieves a mAP value of 0.97, which indicates
very high vision-based detection accuracy for the selected geographic objects.

Table 3. AP and mAP values achieved on the test set by the trained lightweight SSD for the selected
geographic objects.

SRES DITS TLB PVLN LIBI DM GT SBIO LIBN TB5

AP 0.97 0.95 0.96 0.95 0.98 0.89 0.99 0.99 0.99 0.99
mAP 0.97
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Subsequently, we returned to the campus to test the prototype system using the mobile outdoor
AR method. The mobile device we used was an Android mobile phone with a Qualcomm Snapdragon
821 mobile CPU, an Adreno 530 mobile GPU, 6 GB of memory, a 16-megapixel Sony IMX 298 sensor,
a 5.5-inch Optic AMOLED capacitive touchscreen, a built-in GPS receiver and several inertial/magnetic
sensors, including a magnetometer, an accelerometer, and a gyroscope.

We tested the overall performance under many challenging uncontrolled outdoor conditions,
including motion blur, rotation, occlusion, lighting changes, multiple scales, multiple perspectives and
multiple objects, and we also tested the performance in distinguishing geographic objects with similar
visual properties. All of the test results are presented in Figure 12.Sensors 2017, 17, 1951 17 of 24 
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Figure 12. All of the results of the spot tests are shown, covering various conditions, including
motion blur (in different directions), rotations, occlusions (by trees and a basketball stand), lighting
changes, multiple scales (from different distances), multiple perspectives (from different directions),
multiple geographic objects and examples of distinguishing between geographic objects with similar
visual properties. During the tests, the geographic objects were simply enhanced with virtual objects
indicating their names (purple), GPS locations (yellow) and brief information (blue).

The first four rows in Figure 12 show that our method can cope with intense motion blur, rotation,
occlusion and various lighting conditions. The fifth and sixth rows show that our method can
precisely detect the selected geographic objects regardless of which side is facing the visual sensor
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or at what distance the object lies from the visual sensor, thereby confirming its robust detection
performance from multiple perspectives and at multiple scales. The seventh row shows that our
method is capable of detecting multiple objects. In the last row, two geographic objects, DM 3 and
DM 4 (two dormitories with similar visual properties, which both belong to the “DM” class in the
geographic object detection dataset but for which information is separately stored in the geospatial
information database), are correctly distinguished, and the corresponding virtual objects superimposed
on the screen are displayed with the proper locations and overlay order. The interaction method was
also tested; several example screenshots illustrating this process are shown in Figure 13.
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Figure 13. The interactions implemented in the prototype system: (a) the system first detects the
geographic object labelled SRES and then enhances it with a virtual label; (b) after the user touches the
label reading “SRES” on the screen, several virtual objects are superimposed on the detected object,
displaying some concise geospatial information; (c) after the user touches the brief information label
(blue), more specific geospatial information is shown.

In the spot tests, all of the geographic objects were correctly detected, and the system always
exhibited high-accuracy registration as well as stable AR geovisualization and interaction. Finally,
the average time cost of our method, divided into several basic stages, when running on a mobile
phone is reported in Table 4.

Table 4. The average time cost of the method divided into different stages when running on a mobile
phone 1.

Basic Steps Average Time Cost (ms)

Image Capture 2
Image Resizing 6

YUV-to-RGB Conversion 15
Lightweight SSD Detection 520

Spatial Relationships Combination 15
AR Visualization 2

Total Time Cost (ms) 560
1 The CPU of the mobile phone we used is a Qualcomm Snapdragon 821 mobile CPU. On other mobile phones with
higher-performance CPUs, the time cost is expected to be lower.
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5.3. Discussion

The experimental results show that our mobile outdoor AR method achieves excellent
performance in detecting and enhancing geographic objects in uncontrolled outdoor environments
and enriches the user experience. Our method achieves a high detection success rate and accuracy for
several reasons. On the one hand, the detection approach we use, the proposed lightweight SSD, is a
vision-based deep learning approach, which can learn essential and robust features from image data to
achieve highly accurate detection performance that is superior to that of many traditional approaches
based on manually crafted features. On the other hand, when constructing the geographic object
detection dataset, we used images that captured the selected geographic objects from all perspectives
and scales and under many conditions to the greatest possible extent. Doing so facilitated the ability of
the lightweight SSD to learn essential and robust features, thereby improving the detection success rate
and accuracy. Moreover, the integration of the vision-based detection results with the corresponding
spatial relationships with the help of the mobile or embedded device’s built-in GPS receiver, IMU
and magnetometer significantly reduces detection errors and enables precise distinction between
geographic objects with similar visual properties, which is quite difficult for a purely vision-based
detection algorithm to achieve.

Notably, although the lightweight SSD approach achieves a mAP value of 97% on our geographic
object detection dataset, its mAP value on the standard VOC2007 test dataset is only 53.7%. The key
reason for this enormous difference is that the types of objects in the VOC2007 dataset are abstract,
such as “car” and “bottle”, and the purpose of the VOC2007 dataset is to train an algorithm that can
detect, for example, all kinds of cars and all kinds of bottles; consequently, it is generally a difficult task
to achieve a very high mAP on this dataset. By contrast, the objects included in our geographic object
detection dataset are quite specific, and specific objects are much easier to train a detector to detect;
consequently, our trained detector can achieve state-of-the-art detection performance and a high mAP.

In addition, the detection and AR geovisualization results of our system are stable. This is
because the two essential components of the detection task—classification and localization—are both
vision-based and are therefore less susceptible to interference from various outdoor variables, such as
electromagnetic fluctuations, and thus more stable than methods based purely on inertial/magnetic
sensors, which suffer from drift and distortion. Our AR geovisualization is based on stable detection
results combined with spatial relationships, and consequently, the final visualization results satisfy
visual expectations.

Furthermore, the weight file of the trained lightweight SSD is much smaller (17.8 MB for one
model) than those of most detection frameworks and is thus compatible with the limited storage
space of various mobile or embedded devices. With the application of compression technologies,
such as deep compression [75], the model size could be further reduced. In addition, the entire AR
method is independent of the network; all computing tasks are performed offline by the user’s mobile
or embedded device, thereby eliminating the effects of network latency and making the method
very flexible and robust for application in challenging uncontrolled outdoor environments with poor
signal conditions.

The method also has several limitations. First, the detection approach we adopt in this method
is a vision-based approach; consequently, it cannot handle very poor lighting conditions (e.g., night).
Second, although our method can detect geographic objects at multiple scales from different distances,
it still may fail when the distance between the visual sensor and a geographic object is excessively
long or short. When the object is too near, the appearance of the geographic object may be too large
to be completely captured by the visual sensor, and thus, the incomplete object in the image may fail
to be detected. When the object is too far, the appearance of the geographic object in the image may
be too small for successful detection. Therefore, although our lightweight SSD framework is able to
detect geographic objects at multiple scales in most cases, it is still necessary to avoid extreme distances
between the visual sensor and the geographic objects of interest when using this method. Third,
the overall method does not run very fast on a mobile CPU. We simplified the detection approach
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and optimized the image capture process, and as a result, we achieved near-real-time performance
with a rate of approximately 2 FPS; this is faster than many server-based methods, which all suffer
from network latency, but it is still not very fast. The most time-consuming step of the method is the
lightweight SSD detection; further simplifying the lightweight SSD architecture would reduce the time
cost but might also decrease the detection accuracy, leading to a trade-off between speed and accuracy.
However, it should be noted that the mobile CPU we used in the test was not the most up-to-date model
available; therefore, it is expected that with a higher-performance CPU, the time cost will be further
reduced, allowing the method to run at a higher speed. Fourth, the spatial relationships we use such
as distances, directions, and orders are effective but still not sufficient for the refinement. For example,
our method lacks the application of scene segmentation and the understanding of the spatial layout of
outdoor environments, thus it may fail to eliminate some unreasonable results (e.g., it may think that a
building floating in the air is reasonable); Also, the spatial relationships we infer rely heavily on the
GPS receiver and other sensors, making them vulnerable to the deterioration in the GPS precision and
drift and distortion in the output of sensors; Besides, the location of a geographic object is represented
only by a pair of GPS coordinate in our method, therefore it will be very challenging to construct
correct spatial relationships when the geographic objects with complex structures entangles together.

6. Conclusions and Future Work

Traditional forms of geovisualization, such as paper maps and digital maps, are limited by
their insufficiently intuitive use and generally provide limited modes of interaction. Outdoor AR
is, in principle, a suitable way to visualize geographic data and information by supplementing
the real world with virtual objects that users can easily understand and interact with. However,
many traditional AR methods have several drawbacks when applied in various outdoor environments:
fiducial-marker-based methods are inappropriate for use in uncontrolled environments, whereas
sensor-based methods can be overly sensitive to certain variables in outdoor environments, such as
magnetic fields, which can easily cause errors and even failures.

In this paper, we proposed a robust, markerless and near-real-time mobile outdoor AR method
for geovisualization. We adopted SSD, a vision-based deep learning object detection approach, for the
detection of geographic objects based on their natural features under various outdoor conditions.
To reduce the computational burden and weight of this approach for mobile outdoor AR, we modified
its original structure to obtain lightweight SSD, a energy-efficient, less computationally expensive but
still powerful approach. To facilitate registration, we combined the vision-based detection results of
the proposed lightweight SSD with the corresponding spatial relationships between objects in the
real world with the help of the host device’s built-in GPS receiver, IMU and magnetometer, thereby
significantly reducing detection errors and achieving the ability to correctly distinguish between
similar geographic objects. Then, we designed and implemented methods of AR geovisualization
and interaction based on virtual objects generated from geospatial information and the recognition of
touch gestures on mobile or embedded devices. Because of the poor signal conditions found in many
challenging outdoor environments, we chose to take full advantage of mobile computing capabilities
by means of a performance optimization scheme that allows all computational tasks to be executed
on the user’s mobile or embedded device, thereby eliminating any dependence on the network and
eradicating latency. Finally, we developed a prototype system on the Android platform and tested
it on the Wuhan University campus using several representative geographic objects to evaluate the
method and validate its results.

The findings demonstrate that our method has a high detection success rate and accuracy,
produces stable AR geovisualization results, and is lightweight and flexible by virtue of its small model
size and network independence. All of these features make it very suitable for use in uncontrolled
outdoor environments. The system benefits from the combination of geovisualization with mobile
outdoor visual-IMU-magnetometer AR, and it also reflects the potential, high accuracy and robustness
of deep-learning-based approaches for geographic object detection. Furthermore, this work offers
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a new way to visualize geographic data and information and to interact with such information in
the real world through mobile outdoor AR, which enriches the user experience and is expected to be
beneficial for various applications related to geospatial information.

Our future research will focus on modifying the architecture of the detection approach to make it
lighter, faster and more accurate; Using layout estimation and scene segmentation to generate more
robust and powerful spatial relationships for understanding the outdoor environment and refining
detection results; integrating a high-speed object tracking algorithm into the system to further reduce
the time cost; and incorporating a pose estimation algorithm to precisely estimate the orientations of
geographic objects.
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