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Abstract: In the last decade, the interest in Indoor Location Based Services (ILBS) has increased
stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for
positioning systems that can be applied anywhere in the world for millions of users, that is,
there is a need for developing IPS for mass market applications. Those systems must provide
accurate position estimations with minimum infrastructure cost and easy scalability to different
environments. This survey overviews the current state of the art of IPSs and classifies them in terms
of the infrastructure and methodology employed. Finally, each group is reviewed analysing its
advantages and disadvantages and its applicability to mass market applications.
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1. Introduction

The estimation of the position of a target in an outdoor environment is usually solved employing
Global Navigation Satellite Systems (GNSS). Notwithstanding, in the case of indoor environments
there is an absence of a standard positioning system that can be worldwide applied. For this reason,
the research efforts of authors working in the field of positioning have been recently focused in indoor
scenarios. Indoor Positioning Systems (IPS) have been designed for providing information about the
position of a person or object inside a building. In fact, the evolution of IPS facilitates the creation
of Indoor Location Based Services (ILBS) which build applications on top of the knowledge of the
position. Examples of these kinds of services are the location of products stored in a warehouse,
the tracking of equipment inside a hospital, the guidance of firemen inside buildings with reduced
visibility due to smoke, among others like the guidance of people inside airports or the development of
assisted living systems for elderly care. Indeed, the predicted market value of indoor location services
for 2020 is USD 10 billion [1]. Therefore, there is a special interest in developing IPS that can be easily
scaled to mass market applications and deployed in millions of buildings in the world. There are three
main requirements for an IPS that aims to be applied to mass market applications: (i) the system must
provide accurate position estimations; (ii) the system must be easily scalable; and (iii) the cost of the
system infrastructure should be reduced.

The current trend to reduce the cost of the systems is to use the wireless infrastructures already
deployed for communications as landmarks for positioning. Among the multitude of available
technologies for communications such us LTE, WiFi, Bluetooth, Wireless Sensor Networks (WSN) or
Ultra Wide Band (UWB), the WiFi technology is the most commonly employed because it is already
worldwide deployed. Although WSNs are also commonly used due to its key role in the Internet of the
Things (IoT) and the future of smart cities. Similarly, the development of the Microelectromechanical
Systems (MEMS) provide us with low cost inertial sensors that can also estimate the position of
a pedestrian without the need of any infrastructure in the building. Note that most of these technologies
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are already available in nowadays smartphones, converting the smartphone in the perfect device for
mass market positioning systems.

Numerous studies have attempted to review the current state of art of IPS. Since the first review in
2001 by Hightower et al. [2], many new reviews have appeared. For example in 2002, Pahlavan et al. [3]
presented a review of the state of the art focusing on systems for indoor environments. More recent
revisions are presented in [4,5] covering hybrid systems of network based technologies. Similarly,
inertial based systems are reviewed in [6]. There are other surveys that cover specific kinds of systems,
like fingerprinting [7,8], or a specific technology, like UWB [9]. Other authors reviewed the state of the
art from a bayesian estimation perspective as in [10] or in [11].

Despite the numerous surveys in IPS, none of them performed a comprehensive analysis of the
state of the art of IPS focusing on its application to the mass market. In this work we overview the
state of the art of IPS analysing the advantages and disadvantages of the reviewed systems and its
applicability to mass market applications. First of all, we classify and review individual IPS and then
we review the most promising hybrid methods for mass market applications.

Traditionally IPS systems can be classified into three groups:

• Network based systems: these systems are build on the top of a wireless network deployed in
the scenario and use the information of the wireless signals to estimate the position of the user
carrying a wireless device.

• Inertial based systems: these systems use self-contained sensors that measure the motion of
the user and estimate its position relative to the starting point without the need of any physical
infrastructure deployed in the building.

• Hybrid systems: these systems jointly combine two or more different methods in order to enhance
the estimation of position.
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Figure 1. Classification of Indoor Positioning Systems. Time [9,12–14], Angle [15,16], RSS [17–23],
Proximity [24–29], Deterministic [30–34], Probabilistic [35–37], Strapdown [38–40], Step and
Heading [41–43] , SLAM [44–46], Hybrid [47–67].



Sensors 2017, 17, 1927 3 of 26

A complete classification of IPS is shown in Figure 1 including references to remarkable works.
Note that hybrid systems are not subclassified. There are lots of possible combinations of IPS that can
form an hybrid system and a general classification of these systems is not feasible. In this work we
only focus on those hybrid systems that can be scaled to mass market applications.

The rest of the paper is organized as follows: Section 2 reviews the network based IPS. Section 3
is focused on the review of inertial based systems whereas Section 4 reviews the state of the art of
hybrid systems for mass market applications. Finally, in Section 5 we present the conclusions and
some possible future lines of work.

2. Network Based Systems

There are many different wireless networks that can be deployed in an indoor environment.
From the typical WiFi networks that are deployed in millions of buildings around the world for
providing internet access, to the WSNs designed for the IoT or the popular Bluetooth beacons among
other alternatives such as the UWB networks. Leaving aside the election of the wireless network,
which obviously will determine the accuracy and precision of the IPS, we can classify the network
based IPS systems according to the information obtained from the wireless signals into two groups:
(i) range based methods and (ii) range free methods.

Range based methods extract geometric information (distance or angle) from the signals of
different anchor nodes in the wireless network and then combine the geometric constraints of
each anchor to obtain the position of the user. Alternatively, the range free methods are based
on the inter-node connectivity information or in the identification of signal features patterns that are
location dependent.

2.1. Range Based

There are different ways for extracting geometric information from the wireless signals,
the most common ones are the methods based on the propagation time of the signal, between the
transmitter and the receiver, the Angle of Arrival (AoA) or the Received Signal Strength (RSS). In the
following, we briefly detail the fundamentals of each class of methods analyzing its advantages
and disadvantages.

2.1.1. Time

Time based localization algorithms measure the propagation time of a signal between the
transmitter and the receiver, also known as Time of Flight (ToF) and compute the distance between the
user and the anchor node d as follows,

d = ∆t v, (1)

where ∆t is the ToF and v is the propagation speed. The simplest approach is known as Time of Arrival
(ToA). In this case the transmitter includes in the radio packet the time when the signal is transmitted
and the receiver computes the reception time. Thus, the receiver has all the information for computing
the distance. The position of the user can be obtained employing a lateration method, if the distance to
multiple anchors nodes is known. The idea behind lateration methods (see Figure 2) is to estimate the
position as the point of intersection of three circles. These circles have the center situated in the position
of the anchor nodes and the radius is equivalent to the estimation of distance computed. Note that
three different circles are necessary in order to obtain a position estimation in a two dimensional space.
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Figure 2. Lateration method concept.

It is fundamental in a ToA method to take into account that ToA methods require synchronization
between all nodes, as the time of reference must be the same in all cases. This can be a problem for
certain kind of wireless networks with simple low power devices and high restrictions in the algorithm
complexity, as it is the case of WSNs. An alternative method that relaxes the synchronization constraint
is the Time Difference of Arrival (TDoA). There are two main implementations of TDoA:

• The first TDoA method computes the difference in the ToA of a signal transmitted to two different
receivers. For each TDoA measurement the transmitter must be in a hyperboloid with a constant
range difference between the two receiver positions [4]. This method relaxes the synchronization
constraint to the receivers.

• The second TDoA method is based on the difference in the ToA of two different signals with
different propagation times. Usually, the first signal is the radio packet and the second one is
a kind of sound signal due to the difference in the propagation speed between the electromagnetic
waves (propagate at the speed of light ≈300,000 km/s) and the acoustic waves (propagation
speed ≈340 m/s) [68]. This method does not need synchronization but the nodes must include
additional hardware in order to send two kind of signals simultaneously.

One example of a time based positioning system is the Active Bat system [12]. This system is based
on the TDoA of ultrasound signals. The user carries a transmitter and the signals are received by a grid
of ceiling mounted receivers, which are synchronized using a wired connection. The system reports
accuracies within 9 cm for the 95% of measurements. The main disadvantages of the system are related
to the placement of the receivers in the ceiling which increases the cost and reduces the scalability.

Another example based also in ultrasound signals is the Cricket system [13]. The working
principle of the Cricket system is similar to the Active Bat system but in this case the computation of the
position is performed by the user which carries an ultrasound receiver. A set of ultrasound transmitters
are deployed around the building, which also transmit radio frequency signals for synchronization.

More recent works are based on the UWB technology, which improves the ranging accuracy due
to the large bandwidth used [14]. The use of a large bandwidth allows to implement shorter pulses
which increase the time resolution and accuracy of the ToF estimations. Therefore the accuracy of the
positioning system is also improved. The fundamental limits of wide band localization methods are
determined in [69,70] where the problem is extended to cooperative networks. More information about
UWB systems can be found in [9,14]. The main problem of UWB technology when applied to mass
market applications is the level of deployment of these networks around the world. Unlike WiFi, UWB
systems are not worldwide deployed and thus any IPS based on UWB will have additional expenses
due to the infrastructure cost. Nevertheless, this problem will be circumvented with the deployment
of the Fifth Generation (5G) of cellular networks around the world, which will also employ signals
with large bandwidth and centimeter level ranging accuracy [71].

Time based localization methods are susceptible to errors produced for inaccuracies in the clocks
or errors in the time estimation. Take into account that for a signal traveling at light speed 1µs of
error corresponds to an approximate distance error of 300 m. Furthermore, Non Line of Sight (NLOS)
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conditions produce a positive bias in the distance estimation. Therefore time based methods must
include methods for detecting NLOS conditions increasing the complexity of the algorithms.

In general, time based systems obtain highly accurate position estimations and can be scaled to
large areas by adding new nodes to the network. The scalability to multiple users is limited by the
possible collisions when multiple users coexist in the same area. Thus, collision avoidance mechanism
must be implemented increasing the overall complexity of the algorithm. Finally, the cost of the system
is determined by the network technology and the number of nodes required.

2.1.2. Angle

Angle based localization methods use the angle of arrival of a signal to compute the position of
the receiver. The working principle is similar to time based methods but instead of using the distances
to the anchor nodes the angles are used. There are typically two main methods of obtaining the AoA
of a signal [17]:

• Use an array of sensors (for ultrasound systems) whose locations relative to the node center are
known and use the difference in the ToA of the signal at each sensor to compute the AoA of the
anchor node. In the case of using radio signals the array of sensors is replaced by an antenna array.

• Use two or more directional antennas pointing to different directions and with overlapping main
beams. Then compute the AoA as a function of the ratio of the RSS of the individual antennas.

Once the AoA of multiple anchor nodes is estimated, the computation of the position is done using
triangulation. The basic idea is shown in Figure 3. If the position of the vertices of a triangle are known,
it is possible to compute the position of any node inside the triangle knowing the angle at which
the interior point sees the vertices [15]. There are many different ways of solving the triangulation
problem, in [16] the most common methods are reviewed and a new method that does not take into
account the ordering of the anchor nodes is presented.
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Figure 3. Triangulation method concept.

The main disadvantage of AoA based methods is the increase in the cost of the system due
to the additional hardware, as these systems need arrays of sensors or antennas. Furthermore,
the computation of accurate angle estimations is expensive in terms of computational cost and is
negatively affected by low Signal to Noise Ratio (SNR) and small errors in the estimations of the RSS
or the ToA [72]. Therefore, the scalability of the system is limited by the increase of the cost. In general,
AoA systems are not commonly employed for indoor localization due to the additional hardware and
computational power required.

2.1.3. RSS

RSS based localization methods estimate the distance between the user and an anchor node using
the received signal strength. These methods are based on the concept that the attenuation suffered
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by a signal travelling from a transmitter to a receiver depends on the distance travelled. In order to
estimate the distance it is necessary to model the wireless environment using a propagation model.
Traditionally, the log-distance path loss model is employed, where it is considered that the attenuation
(in dB) is proportional to the logarithm of the distance travelled [17], that is,

RSS = P1m − 10α log10 d− γ, (2)

where d is the distance between the receiver and the transmitter, P1m is a reference power measured
in dBm at a distance of 1 m from the transmitter , α is the path loss exponent and γ ∼ N

(
0, σ2

γ

)

models the effects produced by the shadowing. Note that in order to obtain the parameters of the
model, i.e., P1m and α, a small calibration campaign is done at each scenario. The calibration process
consists in the collection of the RSS in predefined positions with known distance to anchors and the
computation of the model parameters, which is usually done using regression methods. Figure 4 shows
the calibration process with the collected samples and the computed log-distance path loss model.
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Figure 4. Calibration of a propagation model.

Once calibrated, distance is estimated according to the path loss model using the Maximum
Likelihood Estimator (MLE), which for the case of the distance estimation is [18]:

d̂ = 10
RSS−P1m

10α . (3)

As in the case of time based localization algorithms, the position of the user is estimated combining
the distance information of multiple anchor nodes using a lateration method [19]. RSS based methods
are attractive due to its inherent simplicity, as far as the RSS measurements are natively supported by
most transceivers. Unfortunately, the variability of the wireless channel jointly with the attenuation
of the signal due to walls, objects or the human body introduce errors in the distance estimation
and makes the RSS based localization algorithms less accurate than time or angle based algorithms.
A review of the main sources of error of RSS based algorithms can be found in [20] where the authors
also include a list of recommendations for the appropriate implementation of RSS based algorithms.

An example of a RSS based localization system can be found in [19], where authors use the
correlation between the RSS samples in nearby locations to fit different path loss models depending on
the position of the user and therefore adapt to changes of the propagation model between areas of the
same building. In [18] a cooperative method for the localization of the nodes in a WSN is presented.
Other authors employ multiple receivers to enhance the ranging accuracy of RSS measurements and to
provide coarse estimations of the heading of the user [22]. In [23] a Bluetooth based system is presented
employing a stigmergic approach to mitigate the multipath fading. A comparison of the accuracy of
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the RSS based methods versus the time based methods is presented in [21] where the authors compute
the Cramér-Rao bound under Gaussian and log-normal models.

RSS based systems can be easily scaled to large areas and multiple number of users due to the
simplicity of the RSS measurements (note that the RSS measurements can be obtained even without
having to be part of the network). Furthermore, the cost of the system infrastructure is minimum if WiFi
networks are employed as they are already worldwide deployed. Unfortunately, the accuracy provided
by RSS based systems is low and is negatively affected by the distance between the transmitter and
the receiver.

2.2. Range Free

Range free methods are based on the connectivity information of a wireless network, which can be
used to estimate the position without computing any range measurement to an anchor node. There are
mainly two kind of range free algorithms:

• Proximity methods: these methods use the connectivity information to infer directly the position
of the user based on the number of anchors in the neighbourhood.

• Fingerprinting methods: these methods are based on location dependent characteristics of the
signals received from the wireless network. In a first step, a database of the characteristics and
the real location where they were measured is collected. Then, in a second step, the position is
estimated by selecting the position of the database sample that best matches the real data.

2.2.1. Proximity

The proximity algorithms are based on the following simple idea: if a user is receiving a signal
from an anchor node, the position of the user must be near the position of the anchor node.
The operation mode is as follows: first, the user scans the channel looking for the radio signals
from the anchors nodes. Once an anchor node is detected, the position of the user is estimated as the
position of the anchor node. In the case of detecting more than one radio signal, the anchor node with
the strongest received signal is selected.

Figure 5 describes the method, where the circles represent the coverage area of the anchor nodes.
Any user located in the circle of node s1 will estimate its own position as the position of the anchor
node s1 whereas if the object is located in the circle of anchor s2 it will estimate the position as the
position of the anchor node s2. In the intersection of both circles the selection of the anchor node will
be done in terms of the RSS.

s
2

s
1

Figure 5. Proximity method concept.

One of the first systems to employ the proximity method was the Active Badge system [24].
This system uses a network of infrared sensors that detects the signals transmitted by the active badge
and provides a localization estimation with room accuracy. More recently, some authors decided to
employ Bluetooth Low Energy (BLE) beacons. For example in [27] a set of BLE beacons are deployed
in a hospital for the tracking of the patients. Other works employing BLE technology can be found
in [28,29]. It is expected that BLE beacons will be deployed in millions of buildings around the world
in a near future. Thus, there will be no need for investment in infrastructure reducing the cost of the
system at a minimum as modern smartphones are equipped with BLE transceivers and can be used as
positioning devices.
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The error committed by the proximity methods is directly related to the size of the coverage areas.
Furthermore, if the coverage area of the anchor nodes is reduced, the number of anchor nodes needed
for a total coverage of an indoor area increases. For this reason, the Radio-Frequency Identification
(RFID) technology is particularly interesting for proximity methods because the deployment of a large
number of tags in a building does not escalates the cost of the system [25]. Moreover, the use of passive
RFID tags reduces the maintenance cost of the network as the battery of the anchor nodes must not be
regularly replaced.

A more general way of using connectivity information is employed in the centroid algorithm,
where the estimation of position is computed as the centroid of the position of the anchor nodes
received [26], that is,

m̂ =

[
1
N

N

∑
i=1

xi,
1
N

N

∑
i=1

yi

]
, (4)

where m̂ is the estimated position of the mobile node and xi, yi are respectively the x and y coordinates
of the i-th anchor node. In the centroid method the accuracy of the position estimation is also dependent
on the number of nodes. In general, proximity based methods cannot obtain highly accurate position
estimations, since the obtained accuracy is in the order of the average distance between the anchors
deployed in the building. However, the simplicity of these methods offers a good solution for room
accuracy systems based on low complex wireless networks.

Examples of proximity methods based on RFID can be found in [73–75] where the authors review
the RFID based localization methods available in the literature.

Proximity methods provide position estimation with room accuracy using low complex
algorithms. The scalability of the system can be achieved by adding more nodes to the network
in order to increase the area of coverage. Finally, the cost of the system is low if passive RFID tags are
employed as a large number of tags can be deployed at a low price.

2.2.2. Fingerprinting

Fingerprinting methods are based on the uniqueness of radio signals received at different
positions, which is due to the propagation issues in the complex indoor environment. Usually, in indoor
environments different kinds of radio signals can be received , such as the ones received from WiFi,
WSN or Bluetooth networks deployed in the buildings among other signals as for example GSM or
LTE signals. The complexity of the indoor environment produces big differences between the signals
received at different locations due to multipath, shadowing or the propagation in NLOS environments.
Figure 6 shows the distribution of the RSS in an indoor environment with three deployed anchor nodes
under ideal propagation conditions. The color changes from blue to red as a function of the aggregated
received power of the three anchors. The received power generates different subareas that can be
easily identified. Note that this effect can be magnified by including the multipath and NLOS to the
propagation model considered.

Figure 6. Simulated distribution of RSS in an indoor scenario.
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The main idea behind the fingerprinting method is to generate a database of the characteristics of
the signals at different positions (fingerprints) and then compare the signals received by the user with
the database and estimate the position of the user as the position of the fingerprint that best matches
the received signals.

There are two kind of fingerprinting methods: (i) deterministic and (ii) probabilistic. One of
the first deterministic fingerprinting system was the RADAR system developed by Microsoft [30].
The system collects the RSS and SNR as fingerprints from a WiFi network and reports an accuracy of
3 m. The position is estimated as the position of the fingerprint that minimizes the Euclidian distance
between the online measurements and the fingerprints. The search methodology employed is the
k Nearest Neighbours (kNN) approach. Similarly, in [31] authors present a fingerprinting method
based on the weighted extension of the kNN algorithm. The advantage of the kNN approaches is
the reduced computational complexity of these algorithms. There are other systems that increase the
accuracy of the position estimation at the expense of a higher computational cost, such as systems
based on Support Vector Machines (SVM) [76] or linear discriminant analysis [32].

In the group of the probabilistic approaches the aim is to find the location with maximum
likelihood. The Horus system [35] uses a probabilistic model of the signal distribution in the
environment and computes the position with maximum posterior probability. There are other systems
based on Bayesian networks [36] or on the Kullback-Leibler divergence [37].

The collection of fingerprints is not reduced to the measurement of the characteristics of radio
signals, recent works proved that it is possible to use the magnetic field [77]. A study of the feasibility
of magnetic fingerprints is performed in [78]. The main advantage of magnetic field fingerprinting
methods over RSS fingerprinting methods is that the magnetic field is more stable with time. However,
the discernibility of the magnetic field is lower, the same value of the magnetic field can be found in
many different parts of the building. Typically, the fingerprinting methods based on the magnetic
field compare sequence of fingerprints instead of point to point comparisons. Then, the Dynamic
Time Warping (DTW) algorithm is used to identify the correspondence between the online sequence of
magnetic fingerprints and the stored database [33]. Similarly, in [34] authors propose the use of the
Smith-Waterman algorithm for the alignment of the sequences. Alternatively, the signals transmitted
by communications systems like GSM, LTE or Digital Audio Broadcast (DAB) also known as Signals
of Opportunity (SOP) can be employed as fingerprints for a positioning system. A comparison of
different opportunistic signals for localization can be found in [79].

The creation of the database samples requires an intensive campaign of measurements in order
to collect the fingerprints of the radio signals and create a radio map of the indoor environment.
This process is time consuming and vulnerable to environmental changes. Furthermore, the accuracy
of the system depends on the assumption of similar wireless conditions between the collection of
the fingerprints and the current signals [8]. The movement of humans or objects inside the building
will produce differences between the database and the online collected measurements that will cause
an increase in the positioning error.

The accuracy of a fingerprinting method is related to the number of points of the calibrated radio
map [80]. However, the dimension of the radio map is determined by the application and type of
fingerprinting method employed. For example, deterministic methods generally imply less calibration
effort than probabilistic methods because the later imply the computation of the statistics of the
signals at each calibration point [81]. Similarly, the localization of a person moving around an indoor
environment will require a larger calibration campaign than the localization of a static object. Recently
researchers have shown an increasing interest in reducing the effort of the calibration process [8].
Besides the typical point to point calibration process that involves a larger calibration effort, the authors
proposed different calibration procedures as for example the collection of measurements through
a walking path or crowdsourcing between the measurements collected by different users. In [82]
authors evaluate the performance of different radio map construction methods. More information
about calibration methods for fingerprinting systems can be found in [8].
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Independently of the source of fingerprints the main disadvantage of fingerprinting methods
is the effort needed for the collection of the database samples, which increases the cost and reduces
the scalability.

3. Inertial Based Systems

In previous section, we have seen that the network based systems estimate the position of the
user measuring the features from the signals received from a wireless network; however, inertial based
systems compute their own position without any help from a physical infrastructure. The inertial
sensors measure the forces applied to the sensor and thus the movement of the object where the
sensor is mounted can be computed. Usually, inertial sensors are mounted together forming Inertial
Measurement Units (IMU), which are formed by a 3 axis accelerometer, a 3 axis gyroscope and a 3 axis
magnetometer (The magnetometer is not an inertial sensor, however in this work we group it into the
inertial measurement unit as this is the typical term used in the literature.). There are two main kinds
of inertial navigation systems [6]:

• Strapdown systems: these systems integrate twice the acceleration of the user in order to estimate
the position.

• Step and Heading Systems (SHS): these systems estimate the position by adding to the initial
position estimation vectors representing the step length and the step heading of the user.

Regardless of the approach used, the first step of an inertial navigation system is the computation
of the relative orientation of the sensor and the body of the user. The measurements of an IMU
are expressed in the sensor coordinate frame, whenever we attach the IMU to the body of the user,
the axes of the sensor coordinate frame may not coincide with the axes of the navigation frame.
Any misalignment in the axes produces errors in the measurements; therefore the estimation of the
relative orientation is a crucial part of an inertial navigation system. The relative transformation
between two coordinate frames can be obtained by sequentially rotating around three axis, where the
angles of rotation are expressed as Euler angles, that is, the roll (φx), pitch (θy) and yaw (ψz).
The definition of the Euler angles is shown in Figure 7.

Y

Z

X
X

Y

Z

X

Y

Z

Roll Pitch Yaw

Figure 7. Roll, pitch and yaw angles.

The transformation between coordinate frames is done using the following rotation matrices [83]:

Oφx =




1 0 0
0 − cos(φx) sin(φx)

0 sin(φx) cos(φx)


 , (5)
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Oθy =




cos(θy) 0 sin(θy)

0 1 0
− sin(θy) 0 cos(θy)


 , (6)

Oψz =




cos(ψz) sin(ψz) 0
− sin(ψz) cos(ψz) 0

0 0 1


 , (7)

where O represents the rotation matrix. The rotations are applied in the following order:

OT = Oφx Oθy Oψz , (8)

and the measurements of the IMU in the navigation frame zNF
IMU are obtained by multiplying the IMU

measurements in the sensor frame zSF
IMU by the rotation matrix OT , that is,

zNF
IMU = OT zSF

IMU . (9)

In order to estimate the rotation angles, the earth gravitational field, measured by the
accelerometers, is typically employed. In the absence of any external acceleration, the output of
an accelerometer corresponds to the earth gravitational field. Therefore it is possible to estimate the
roll and pitch angles knowing that if the sensor coordinate frame is aligned with the earth coordinate
frame, the gravitation vector must fall in the z axis [83], that is,

tan φx =
ay

az
, (10)

tan θy =
−ax√
a2

y + a2
z

, (11)

where ax, ay and az are the outputs of the accelerometer in the x, y and z axis, respectively.
Unfortunately the gravitational field is invariant to the rotation of the yaw angle and therefore the yaw
angle remains unknown using this method. This fact is circumvented in indoor positioning systems by
assuming knowledge about the initial orientation of the user or by computing the initial orientation
using the earth magnetic field.

3.1. Strapdown Systems

Strapdown inertial navigation systems are based on the concept that the position is the
double integration of the acceleration. Thus, the first integration of the acceleration signal
a(t) =

[
ax(t), ay(t), az(t)

]
produces the velocity and the integration of the velocity produces the

position [84], that is,

v (t) = v (0) +
∫ t

0
(a (t)− g) dt, (12)

m (t) = m (0) +
∫ t

0
v (t) dt, (13)

where v is the velocity, g the gravity and m the position, all of them related to the navigation frame.
Figure 8 shows the block diagram of a strapdown navigation system. First, the angular velocity
measured by the gyroscope is integrated in order to track the orientation of the sensor frame with
respect to the navigation frame. Note that once the initial orientation is known, the orientation at
any time can be known by accumulating the rotation done in each axis, which is measured by the
gyroscope. Once the orientation is known, the signal from the accelerometer is rotated to the navigation
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frame and the gravitation force is subtracted before the integration of the acceleration signal to obtain
the velocity and the position.

Rotation

∫

∫ ∫
accelerometer

gyroscope

orientation

gravity

velocity position

initial 
velocity

initial
position

Figure 8. Strapdown navigation system.

The errors in the measurements of the sensors affect differently to the estimation of position.
On the one hand, the errors of the accelerometer produce a drift in the position because the integration
procedure accumulates the errors over time. On the other hand, the errors of the gyroscope result
in an erroneous rotation matrix and therefore the measurements of the accelerometer are incorrectly
projected into the navigation frame. Furthermore, the strapdown navigation systems subtract the
value of the earth gravitational field before the integration. Any error in the alignment of the frames
will produce a bias due to a gravitational component projected to the horizontal plane. This source
of error cannot be neglected as the magnitude of the acceleration caused by the gravity is usually
greater than the acceleration produced by the movement of the user. In fact, the errors in the gyroscope
measurements are the ones limiting the accuracy of the inertial strapdown systems. In general, the error
in the estimation of position grows cubically with time due to the integration of the accelerometer and
gyroscope signals. Using the current MEMS technology, the estimation of position will deviate over the
meter in seconds making the estimation of the trajectory of a human in the long term unfeasible [85].

Recently, Foxlin et al. [38] demonstrated that using a foot mounted IMU the time dependency of
the position estimation errors in strapdown systems, which typically grows cubically with time, can be
reduced to a linear growth if the Zero Velocity Update (ZUPT) is applied. The idea behind ZUPT is to
detect the stance phases of the human walking, when the foot is firmly planted on the ground and
the velocity is zero, and apply these zero velocity measurements to an extended Kalman filter that
estimates the errors of the inertial measurements. However, the ZUPT strategy cannot correct the
errors in the yaw angle. In order to amend this, several authors proposed techniques for reducing
the gyroscope bias, such as the zero angular rate update [86] or the heuristic heading reduction [87].
An example of a inertial strapdown system using theses techniques can be found in [39]. Similarly,
the authors in [40] applied these updates using an Unscented Kalman Filter (UKF) for the estimation
of the inertial measurement errors.

3.2. Step and Heading Systems

Contrarily to the strapdown navigation systems, the step and heading systems do not use the
integration of the acceleration signal to compute the position of the user. Instead, these systems detect
the steps and estimate the length and heading of each step from the accelerometer and gyroscope
signals. Then recursively estimate the position of the user by accumulating vectors that represent the
movement of the user at each step, that is,

mx (k) = mx (k− 1) + lstep (k) cos(θ (k)), (14)

my (k) = my (k− 1) + lstep (k) sin(θ (k)), (15)

where mx and my are respectively the x, y components of the position, k is the time index, lstep the step
length and θ the heading. The fundamental cycle for a step and heading system is [6]:
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• Identification of the subset of data of an individual step.
• Estimation of the step length.
• Estimation of the heading.

Typically, the step of a pedestrian is divided into two phases: (i) the stance phase where the foot is
firmly planted on the ground and (ii) the swing phase where the foot is in the air. Most of the algorithms
designed to identify step events are based on the detection of the stance phase. Usually, threshold
based methods are used to identify the lack of activity measured by the IMU during the stance phase.
Traditionally these methods are based on the magnitude of the acceleration but the angular velocity has
also been employed [6]. Alternatively there are methods that detect repetitive events on the walking
data. Figure 9 shows the module of the acceleration during a walk of a pedestrian, the raw data and the
filtered data is shown as many methods filter the data to eliminate high frequencial noise components
of the accelerometer measurements. The detection of the steps can be done by counting the number of
peaks produced by the strike of the heel in the floor [88]. Other methods compute the zero crossings of
the acceleration signal after subtracting the gravity [89]. More complex methods correlate the received
signal with a pre-stored template of the acceleration during a step [90]. Due to the repetitive behavior
of the acceleration during the steps, spectral analysis is also employed to detect peaks in the typical
stepping frequencies [91]. Recently, in [41] authors present a step detection method based on the pitch
angle measured by the gyroscope of a smartphone placed in the pocket of the user.
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Figure 9. Acceleration signal measured on the hip of a pedestrian during a walk.

The estimation of the step length can be obtained from the vertical displacement of the pelvis as
shown by Weingberg et al. in [92]. Following this procedure the step length is estimated as,

lstep = K 4
√

azmax − azmin , (16)

where K is a user-specific constant and azmax , azmin are respectively the maximum and minimum of the
acceleration in the vertical axis. The step length can also be estimated as a linear function of the step
frequency considering that the step length and frequency increase with the speed of the user [91].

Finally, the last point of the fundamental cycle of step and heading systems is the estimation of
the heading of each step. The heading estimation of these systems is equal to the strapdown systems,
that is, the heading is obtained by the integration of the gyroscope signal. Thus, the final position
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estimation is drifted by the errors accumulated during the integration. Fortunately, in the step and
heading systems the growth of the error is linear with time instead of the cubic error of strapdown
systems. The heading can be obtained also using a magnetometer but in indoor environments that
include ferromagnetic materials, the accuracy of the heading estimation is degraded. The fusion
of both measurements has shown relatively good accuracy in [54] as both measurement errors are
complementary, that is, the gyroscope produce high accurate measurements in the short term and the
magnetometer gives low accurate measurements but stable in time.

An example of a step and heading system is found in [42], where the authors design a system for
hand held smartphones. Similarly, in [41] a SHS for smartphones placed in the pocket of the user is
designed where the steps are detected using the gyroscope signal. A comparison of the performance
of different systems using low cost sensors is presented in [43].

Despite the improvements of the SHS in the reduction of the drift, it is still present and therefore
these kind of systems cannot be applied for a long period of time without any correcting strategy.

Inertial based systems are completely scalable in terms of size and number of users as there is no
need of deploying infrastructure in the environment. Furthermore, nowadays smartphones already
include an embedded IMU and thus the cost of the system is minimum. However, as has been said,
it is important to take into account the accuracy reduction produced by the inertial drift.

3.3. Simultaneous Localization and Mapping

The Simultaneous Localization and Mapping (SLAM) extends the localization problem including
the estimation of a map. It was developed by the robotics community and the key idea is that a mobile
robot moving in and indoor environment can build a consistent map of the building at the same time
that determines its own position without prior information about the position or the map [93,94].

In 2012, Angermann et al. developed the FootSLAM system resulting from the application of the
SLAM problem to the localization of a pedestrian in an indoor environment [44]. The FootSLAM system
maps the environment with a regular grid of hexagons and builds a probabilistic map computing the
probability that a pedestrian crosses the transition between two adjacent hexagons. The idea beyond
this system is that it is probable that a pedestrian walking in an indoor environment passes different
times by the same place and thus the estimation can be enhanced considering that the user goes
and returns along the same path. Figure 10 shows the concept of the FootSLAM where the more
likely hexagons are highlighted. The FootSLAM system computes the odometry of the user using
a foot mounted IMU and uses the movement of the user between two epochs to update the particles
of a Rao-Blackwellized particle filter. Each particle takes into account a possible path of the user
and computes the corresponding hexagonal probabilistic map. At every epoch, the estimated path
and probabilistic map of each particle are updated with the measured movement of the user, that is,
the probabilities of the transitions between hexagons crossed due to the movement of the user are
increased. Thus, whenever the user closes the loop and returns to the origin the filter will reward those
particles that have gone and returned along the same path. With this method the drift of the inertial
sensors can be eliminated but the filter has the dependence on the closure of the loops. If the walk
of the pedestrian does not return to the same place the error in the position estimations will grow as
in the typical step and heading systems. The main disadvantage of the system is the computational
complexity as every particle must store a probabilistic map of all the environment which can lead to
high computational complexity for large environments.

Recently, there appeared works in the literature based on the FootSLAM system, such as the
FeetSLAM where the maps of different users are combined [45] or the PocketSLAM where the inertial
measurements are obtained from an smartphone placed on the pocket of the user [46].

Although SLAM approaches obtain highly accurate position estimations when the user walks
in loops and the cost of the systems is reduced to the cost of the IMU, the computational complexity
grows with the size of the map and therefore the scalability of the system is limited by the area of
the environment.
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Table 1. Overview of Indoor Positioning Systems.

System Type Cost Scalability Anchors Area (m2)
Error

Type Value

Harter et al. [12] Time Expensive Limited 100 280 95th 0.09 m
Priyantha et al. [13,95] Time Medium Limited 6 <10 90th 0.3 m
Correa et al. [22] RSS Low Yes 6 530 RMSE 1.4 m
Palumbo et al. [23] RSS Low Yes 8 36 75th 1.8 m
Yang et al. [19] RSS Low Yes 5 3400 median 3 m
Lin et al. [27] Proximity Low Yes 12 300 room detection 97.2 %
Bolic et al. [25] Proximity Low Yes 24 8 RMSE 0.32 m
Bahl et al. [30] Fingerprinting Medium Limited 3 980 75th 4.69 m
Han et al. [31] Fingerprinting Medium Limited 3400 192,200 75th 3–9 m
Youssef et al. [35] Fingerprinting Medium Limited 21 1700 90th 1.4 m
Wu et al. [34] Magnetic fingerprinting Low Limited 0 4000 90th 2.5 m
Foxlin et al. [38] Inertial Low Yes 0 75 % travelled path 0.3 %
Jimenez et al. [39] Inertial Low Yes 0 3600 % travelled path 0.3–1.5 %
Angermann et al. [44] Inertial Low Limited 0 600 RMSE 1–2 m
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Figure 10. Simultaneous localization and mapping.

4. Hybrid Positioning Systems

An hybrid positioning system by definition is a system that combines two or more systems in
order to enhance the performance offered by these systems individually. Currently, there are myriads
of hybrid positioning systems in the literature that combine the different IPS reviewed so far.

A complete classification of hybrid positioning systems is not feasible due to the large amount
of possible combinations of IPS that can form an hybrid system. Therefore, in this section we
will only review the most interesting systems for mass market applications. Table 2 and Table 1
present a comparison between the IPS methods reviewed in the previous sections including the main
characteristics of each method. Furthermore, the main problems in the scalability of the systems are
included. For example, angle and time based methods require additional hardware and therefore the
cost of the system increases. Moreover they cannot be applied to a wireless network if they are not
synchronized with the nodes of the network. Therefore, those systems are not the best option for mass
market applications. Similarly, fingerprinting methods require a laborious calibration campaign for
every indoor environment and thus they are also not valid for mass market applications. The rest of
the systems, that is, RSS, proximity, PDR and SLAM, are valid for mass market applications but the
combination of the RSS with the PDR is the most interesting one as it provides accurate results with
low monetary cost and low/medium computational cost. In particular, we will focus on the following
three groups:

• RSS-IMU hybrid systems: here we include the methods that combine inertial measurements
with RSS measurements either by using a propagation model or a fingerprinting approach.

• Map hybrid systems: here we embrace the methods that in addition to the RSS and/or IMU
measurements also use the map of the building to enhance the performance of an IPS.

• Smartphone hybrid systems: here we include those RSS-IMU and Map hybrid systems that have
been specifically designed for smartphones.

4.1. RSS-IMU Hybrid Systems

The availability of wireless networks deployed inside millions of buildings around the world
make RSS based positioning systems an attractive option for mass market hybrid systems because
there is no need of investing in a wireless infrastructure. Note that, as stated in Section 2.1.3 the RSS
can be computed just listening to the network, i.e., without any additional hardware, as far as most of
the wireless standards of communication already include the RSS field in the radio packets.

The most common kind of RSS hybrid system is one that combines it with inertial sensors.
The motivation is clear: both systems have complementary errors. The inertial based systems obtain
highly accurate positions estimations in the short term while the RSS based systems are less accurate
but the estimations of position are time invariant. An example of this kind of hybrid systems is
found in [47] where the authors developed a system that combines the position estimation of a WiFi
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probabilistic fingerprinting with the information of a foot mounted SHS using an Extended Kalman
Filter (EKF) for the fusion of the systems. Similarly, in [48,49,64] the step information of a hip mounted
IMU is combined with the position estimations of a range based RSS system. Jimenez et al. [50] combine
a strapdown foot mounted inertial system with the RSS of RFID tags using an EKF. Table 3 summarizes
the RSS-IMU hybrid positioning systems showing the main characteristics of the underlying RSS and
IMU systems as well as the parameters and results of the experimental evaluation.

4.2. Map Hybrid Systems

The high complexity of the indoor environments with different distributions of walls and furniture
that produces NLOS communications between the user and the wireless networks is an inconvenient
for IPS because it produces less accurate estimations of the position. However, if the map of the
building is a priori known by the user, the high complexity can be an advantage to the IPS as it can
constrain the possible positions and improve the accuracy of the estimations. Commonly, the map
information is used to enhance the performance of the RSS-IMU hybrid systems. Figure 11 shows the
estimated trajectory from an inertial system that is affected by drift and how the map information can
help us to recover the original path. Typically, the map information is included in the fusion of the
measurements using a particle filter. During the calculation of the weights of each particle, the map
constraints are calculated and those particles that have been propagated to impossible locations (as for
example crossing a wall) receive a weight of zero preventing the resampling of this particle in the
following epoch. For example, in [51] the measurements of an RSS probabilistic fingerprinting are
combined with the measurements of a belt mounted SHS. Then a PF fuses the measurements with
the map information. Similarly, in [52] the authors use an equivalent system but the IMU is placed on
the foot of the user. There are other examples of hybrid systems with map information as in [53,54].
Table 4 summarizes all of them for the purpose of comparison including the main characteristics of the
underlaying systems employed and the experimental evaluation.

Figure 11. Inertial position estimation with drift (red) and corrected path (dashed).
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Table 2. Comparison of Indoor Positioning Systems.

System Accuracy Drift
Cost

Calibration Integration with Network Hardware Scalability problems
Computational Monetary

Time High No Low Medium No Yes Transceiver, accurate clocks Synchronisation
Angle High No Low Medium No Yes Transceiver, multiple antennas Synchronisation
RSS Low No Low Low Easy No Transceiver No
Proximity Poor No Low Low No No Transceiver No
Fingerprinting Medium No High Low Laborious No Transceiver Calibration
PDR High Yes Medium Low No No IMU No
SLAM High Closed loops High Low No No IMU No

Table 3. RSS-IMU hybrid positioning systems.

System Technologies RSS
IMU

Anchors Area (m2) Error (m) Cost Scalability
Position Method

Frank et al. [47] WiFi, MEMS Fingerprinting Foot SHS 11 Floor 1.65 Medium Limited by calibration
Schmid et al. [48] WSN, MEMS Propagation model Hip SHS 62 1125 4 Low Yes
Tarrío et al. [49] WSN, MEMS Propagation model Waist SHS 9 100 2.3 Low Yes
Correa et al. [64] WSN, MEMS Propagation model Waist SHS 8 155 0.9 Low Yes
Jiménez et al. [50] RFID, MEMS Propagation model Foot Strapdown 71 2200 1.35 Low Yes

Table 4. Map hybrid positioning systems.

System Technologies RSS
IMU

Anchors Area (m2)
Error

Cost Scalability
Position Method Type Value (m)

Evennou et al. [51] WiFi, MEMS Fingerprinting Belt SHS 4 1600 RMSE 1.53 Medium Limited by calibration
Woodman et al. [52] WiFi, MEMS Fingerprinting Foot SHS 33 8725 90th 0.73 Medium Limited by calibration
Wang et al. [53] WiFi, MEMS Fingerprinting N/A Step 5 1000 RMSE 4.3 Medium Limited by calibration
Klingbeil et al. [54] WSN, MEMS Proximity Belt SHS 9 Floor RMSE 1.2 Low Yes
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4.3. Smartphone Hybrid Systems

The popularization of smartphones among the world converted the smartphone in the perfect
device for positioning. Any IPS that can be implemented in a smartphone has the potential to be used
by millions of people, granting access to the mass market without the need of investing in devices
for positioning. For this reason the research efforts of authors working in the field of pedestrian
positioning focused on the smartphone technology during the last years. Furthermore, the different
technologies included in the nowadays smartphones allow to implement hybrid systems using a single
device. Note that a smartphone usually includes WiFi, GSM, LTE and Bluetooth radios as well as
an IMU among other technologies like GPS.

Many different examples of IPS based on smartphones can be found in the literature. For example
in [55] an IPS for underground public transport systems is developed based on the information
about the routes and inertial sensors. Another example can be found in [56], where the authors use
a Least Square Support Vector Machine (LS-SVM) for the classification of the smartphone position
(hand, pocket, head, etc.) and then combine the inertial data with the measurements from a WiFi
fingerprinting method using a Hidden Markov Model (HMM). Notwithstanding, typically the position
of the smartphone is fixed by the designer of the system. In [63] the authors combine the inertial
measurements with RSS and magnetic fingerprinting using an EKF. Other authors employ the
SLAM approach in the smartphone combining the inertial measurements with WiFi and magnetic
fingerprints [57,58]. In [65] authors combine inertial sensors with a WiFi fingerprinting method and
employ BLE beacons for the correction of the inertial drift. Similarly, in [66] authors combine inertial
sensors with BLE and WiFi measurements employing and Extended Kalman Filter. More accurate
results can be obtained if the map information is available. In [59] the authors also use a HMM for the
fusion of the WiFi and inertial measurements and incorporate the map information. Similarly, [60,61]
combine the WiFi fingerprints with the inertial measurements using a particle filter and in [62] the
fusion is done with a Kalman filter. Authors in [67] combine the inertial measurements of a smartphone
with the RSS measurements of a smartphone and a smartwatch through an EKF. The performance of
these systems is summarized in Table 5.
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Table 5. Smartphone positioning systems.

System
Technologies

Fusion Method Area (m2)
Error

Cost Scalability
WiFi IMU Magnetic Map Type Value (m)

Pei et al. [56] Yes Yes No No HMM Building RMSE 4.55 Medium Limited by calibration
Faragher et al. [57] Yes Yes Yes Yes SLAM 450 95th 2.7 Medium Limited by calibration and complexity
Liu et al. [59] Yes Yes No Yes HMM Floor RMSE 3.1 Medium Limited by calibration
Radu et al. [60] Yes Yes No Yes PF Floor 90th 6 Medium Limited by calibration
Moder et al. [61] Yes Yes No Yes PF Building 90th 2.3 Medium Limited by calibration
Chen et al. [62] Yes Yes No Yes KF 3800 RMSE 1 Medium Limited by calibration
Li et al. [63] Yes Yes Yes No EKF 8400 RMSE 2.9 Medium Limited by calibration
Correa et al. [67] Yes Yes No No EKF 6000 RMSE 1.4–3.4 Low Yes
Zou et al. [65] Yes Yes No No PF 600 Mean 0.6 Medium Limited by calibration
Chen et al. [66] Yes Yes No Yes KF 425 RMSE 1.28 Low Yes
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5. Conclusions

This work has surveyed the Indoor Positioning Systems (IPS) with a special interest in those IPS
that can be applied to mass market applications. First a general classification of IPS is performed
and each group is reviewed analysing the advantages and disadvantages of each system in terms of
accuracy, cost and scalability. Then the hybrid systems are reviewed focusing on the current solutions
available in the literature that can be applied to mass market applications. Finally, we also reviewed
the state of the art of IPS based on smartphones because the popularization of the smartphones
around the world is a key advantage for reducing the cost of the implementation of an IPS for mass
market applications.

Considering the special requirements of mass market applications, that is, accuracy, cost and
scalability, we can conclude that over the large amount of IPS available in the literature, the most
interesting ones for mast market applications are the RSS-IMU based hybrid systems combined
with map information whenever it is available. These systems, can provide accuracies in the order
of 1 meter in large indoor scenarios. Furthermore, the cost of the system is reduced if the WiFi
network already deployed in lots of buildings is employed for positioning or low cost technologies are
employed as RFID or BLE beacons. The scalability of the system can be guaranteed if range based or
proximity methods are employed because these methods require little or no calibration effort. Note that
these systems can be implemented with nowadays commercial smartphones and that in the case of
employing smartphones different wireless technologies can be employed (WiFI, BLE, ...) increasing the
positioning accuracy without increasing the cost of the system.

Although there have been great advantages in the research of IPS and the current technology is
increasing the positioning accuracy continuously, the positioning problem in indoor environment is far
from being solved and more research is needed in order to reach the positioning accuracy demanded by
indoor location based services. From the timely and comprehensive review of the literature, this survey
may further encourage new research efforts and for this reason we briefly suggest here some future
research lines. In particular, we focus on the open research problems of IPS based on smartphones as
we consider the smartphone as the most promising device for indoor positioning systems applied to
mass market applications.

Adaptability to smartphone placement: Smartphones are devices employed for many different
applications that involve many different positions of the smartphone with respect to the body of
the user. Typically a smartphone can be held in the pocket, in the hand, next to the head, in a bag
or purse among many other possible positions. New IPS should take into account the position of
the smartphone in order to compute the relative orientation of the inertial sensors embedded in the
smartphone with respect to the navigation frame.

Heterogeneity of transceivers: In a mass market application based on smartphones, each user will
employ its own smartphone as a positioning device. With the large amount of different smartphone
available in the market, we encounter devices with different sensitivities, different antenna patterns,
etc. Thus, different smartphones will measure different RSS in the same conditions and this fact should
be taken into account in the design of new IPS.

Battery life: It is well known that battery lifetime in many commercial smartphones is not as
good as desired. The use of fusion algorithms like the Kalman filter or the Particle filter increases the
computational complexity of the IPS and reduce the battery life of the smartphones. Therefore, it is
crucial to develop new energy efficient algorithms with reduced computational complexity which do
not drain the battery of the smartphones.

Smartwatches: As it happened with the smartphones years ago, the popularity of smartwatches is
increasing every day. Most of them already include inertial sensors and WiFi and Bluetooth transceivers
so we encourage the development of IPS based on multiple devices.
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