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Abstract: In this work, we present a dual-band band-pass filter with fixed low-band resonant
frequency and tunable high-band resonant frequency. The proposed filter consists of two split-ring
resonators (SRRs) with a stub and microfluidic channels. The lower resonant frequency is determined
by the length of the SRR alone, whereas the higher resonant frequency is determined by the lengths of
the SRR and the stub. Using this characteristic, we fix the lower resonant frequency by fixing the SRR
length and tune the higher resonant frequency by controlling the stub length by injecting liquid metal
in the microfluidic channel. We fabricated the filter on a Duroid substrate. The microfluidic channel
was made from polydimethylsiloxane (PDMS), and eutectic gallium–indium (EGaIn) was used as
the liquid metal. This filter operates in two states—with, and without, the liquid metal. In the state
without the liquid metal, the filter has resonant frequencies at 1.85 GHz and 3.06 GHz, with fractional
bandwidths of 4.34% and 2.94%, respectively; and in the state with the liquid metal, it has resonant
frequencies at 1.86 GHz and 2.98 GHz, with fractional bandwidths of 4.3% and 2.95%, respectively.
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1. Introduction

The increasing number of multi-standard and multi-application telecommunication systems
including cognitive radios [1], modern transceivers [2], anti-jamming communication systems [3],
and radar systems [4], has led to the development of new tunable filter topologies [5,6]. Such system
require microwave circuits and components that can control variety different frequency bands and
bandwidths. To meet the requirements in a variety of areas, such as the WLAN system, the design of
multi-bandpass filters with tunable frequencies is essential due to their potential to reduce system size
and complexity [7–9].

Tunable filters can be developed electronically, using solid-state varactors or switches, microelectro-
mechanical system (MEMS) [10–13] switches or capacitors, or variable dielectric capacitors; magnetically,
using yttrium–iron–garnet (YIG) [14,15]; or by using RF switches exploiting phase-changing materials [16].
Tunable filters that use new materials such as liquid crystals (LC) or liquid metals have recently been
reported. The LC tunable filter is based on the property wherein the arrangement of the LC changes when
a voltage is applied [17]. In the case of filters that use liquid metals, the filters utilize the properties of
the liquid metal, which possesses properties of both liquids and solids and moved by pressure alone [18].
Using these characteristics, the performance of the device has been improved in various fields, such as
antennas [19], sensors [20], amplifiers [21], baluns [22], and resonators [23]. Especially, single-band tunable
filters using liquid metal as a tunable device have been developed in low-pass filters and band-pass
filters [24,25]. In this work, we propose a dual band tunable bandpass filter using liquid metal. In addition,
the proposed filter can change only the high-band resonant frequency while fixing the low-band resonant
frequency. The fixed frequency is 1.8 GHz band which can be used for wireless communications [26].
On the other hands, the tunable band can be used for sensors to detect liquid materials.
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In this work, the fundamental structure of the filter employed is a dual-band band-pass filter (BPF)
structure using stub-loaded resonators [27,28]. We realized the fixed-low-band and reconfigurable-high-band
filter by changing the stub length, using liquid metal and microfluidic channels. The liquid metal used
was eutectic gallium–indium (EGaIn), consisting of 24.5% indium and 75.5% gallium [29]. EGaIn provides
advantages over other liquid metals. It has a low level of toxicity and has a thin, solid-like oxide skin on
its surface to improve mechanical stability [30]. The microfluidic channels used as the paths for the liquid
metal were made of polydimethylsiloxane (PDMS) elastomer and 3D-printed frames [31]. The performance
of the proposed BPF is validated from both simulation and measurements.

2. Frequency-Tunable Band-Pass Filter Design

In this paper, we present a dual-band BPF with a fixed low-band resonant frequency and
a fluidically-tunable high-band resonant frequency. The design of the proposed BPF is based on
a coupled resonator filter that uses two split-ring resonators, as shown in Figure 1a. To realize the
dual-band BPF, we add a stub to the coupled resonator filter, as shown in in Figure 1b. Finally, we add
a microfluidic channel to the coupled-resonator filter with stub to create the frequency-controllable filter
shown in Figure 1c. The detailed design of the microfluidic channel for frequency switching, which is
created using polydimethylsiloxane (PDMS), is shown in Figure 1d. The values of the parameters
in Figure 1 are La = 80, Lr = 17.3, Lf = 4.492, Lq = 17.823, Ls = 9, Lo = 1, Lc = 7.065, Wa = 30, Wr = 1.8,
Wq = 0.83, Wf = 1.5, Ws = 2.1, Wp = 1, Wi = 0.55, Wo = 0.6, Gr = 0.77, Gc = 0.77, and R(SA (θ)) = 0.75 [mm].
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Figure 1. Top view of the proposed filter: (a) using two split-ring resonators (SRR); (b) with stub; 
(c) with stub and microfluidic channel; and (d) an enlarged top view of the microfluidic channel. 

Figure 2 shows the side view of the proposed filter. The proposed filter consists of a copper plate, 
Duroid substrate, adhesive film, and PDMS. The bottom layer is the copper plate, which acts as the 
ground. The substrate for the proposed filter is a 0.51 mm thick Duroid 5880 substrate (Rogers, 
Killingly, CT, USA), with a permittivity of 2.2. The adhesive film bonds the Duroid substrate and the 
PDMS layer. We used 0.05 mm thick ARcare® 92561 (Adhesives Research, Glen Rock, PA, USA) for 
the adhesive film which can be simply attached on the PCB substrate without any post processing. 
PDMS, with a permittivity of 3.2, is used to create the microfluidic channel. The resonant frequency 
of the proposed filter is divided into two types of modes. The lower one is the odd mode and the 
other is the even mode. The odd-mode frequency (fodd) is related to the length of the split-ring 
resonator, which is Lr in Figure 1a. The relationship between the odd-mode frequency (fodd) and Lr is 
given by: 
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Figure 3 shows the simulation results of the proposed filter for different parameters. Figure 3a 
shows the insertion loss (S21) of the proposed filter, for different Lr. When Lr is increased, the odd 
frequency and even frequency are decreased according to Equations (1) and (2), respectively.  
Figure 3b shows the S21 of the proposed filter, for different Ls. When Ls is increased, the even-mode 
frequency is decreased, but the odd-mode frequency is not changed, according to Equations (1) and (2). 
Using this characteristic, the proposed filter can fix the odd frequency and change the even frequency 
by controlling the length of the stub. To control the length of the stub, we add a microfluidic channel 
to the stub of the filter. Due to the limited space inside the SRR, we loaded the microfluidic channel 

Figure 1. Top view of the proposed filter: (a) using two split-ring resonators (SRR); (b) with stub;
(c) with stub and microfluidic channel; and (d) an enlarged top view of the microfluidic channel.

Figure 2 shows the side view of the proposed filter. The proposed filter consists of a copper
plate, Duroid substrate, adhesive film, and PDMS. The bottom layer is the copper plate, which acts as
the ground. The substrate for the proposed filter is a 0.51 mm thick Duroid 5880 substrate (Rogers,
Killingly, CT, USA), with a permittivity of 2.2. The adhesive film bonds the Duroid substrate and the
PDMS layer. We used 0.05 mm thick ARcare® 92561 (Adhesives Research, Glen Rock, PA, USA) for the
adhesive film which can be simply attached on the PCB substrate without any post processing. PDMS,
with a permittivity of 3.2, is used to create the microfluidic channel. The resonant frequency of the
proposed filter is divided into two types of modes. The lower one is the odd mode and the other is the
even mode. The odd-mode frequency (fodd) is related to the length of the split-ring resonator, which is
Lr in Figure 1a. The relationship between the odd-mode frequency (fodd) and Lr is given by:

fodd =
(2n− 1)c
8Lr
√

εe f f
(1)

where c is the velocity of light and n is a positive integer and εeff is the effective permittivity of the substrate.
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The even-mode frequency is related to the length of the split-ring resonator and the length of the
stub; that is, the sum of Ls and Lo in Figure 1b. The relationship between the even-mode frequency
(feven) and Lr, Ls, and Lo is given by:

feven =
nc

(4Lr + 2Ls + 2Lo)
√

εe f f
(2)

Figure 3 shows the simulation results of the proposed filter for different parameters. Figure 3a
shows the insertion loss (S21) of the proposed filter, for different Lr. When Lr is increased, the odd
frequency and even frequency are decreased according to Equations (1) and (2), respectively. Figure 3b
shows the S21 of the proposed filter, for different Ls. When Ls is increased, the even-mode frequency
is decreased, but the odd-mode frequency is not changed, according to Equations (1) and (2). Using
this characteristic, the proposed filter can fix the odd frequency and change the even frequency by
controlling the length of the stub. To control the length of the stub, we add a microfluidic channel to
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the stub of the filter. Due to the limited space inside the SRR, we loaded the microfluidic channel to
change Lo instead of Ls. Therefore, we can minimize electromagnetic coupling. When liquid metal is
injected into the microfluidic channel, the length of the stub is increased depending on the length of
the microfluidic channel, which is given by Lc in Figure 1d. Figure 3c shows the S21 of the proposed
filter, for different Lc, when liquid metal is injected into the microfluidic channel. When Lc is increased,
the odd frequency shows no change, but the even frequency is decreased.
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The S-parameters of the proposed filter are shown in Figure 4, for the different cases where
liquid metal is injected and not injected into the microfluidic channel. The odd-mode frequency of the
proposed filter without liquid metal is 1.85 GHz, and the fractional bandwidth is 4.32%. The even-mode
frequency of the proposed filter without liquid metal is 3.05 GHz, and the fractional bandwidth is
2.96%. The odd-mode frequency of the proposed filter with liquid metal is 1.85 GHz, and the fractional
bandwidth is 4.32%. The even-mode frequency of the proposed filter with liquid metal is 2.9 GHz,
and the fractional bandwidth is 2.75%. From these results, it can be inferred that, when liquid metal is
injected into the microfluidic channel, the odd-mode frequency is not changed, while the even-mode
frequency is shifted by approximately 150 MHz.

The fractional bandwidth is defined by the following equation [32]:

f f h − f f l

fc
× 100% (3)

where ffh and ffl are higher and lower 3 dB frequency and fc is center frequency.
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sample are realized using copper. Microfluidic channels made by the process in Figure 5 are attached 
onto the pattern and substrate. The difference between Figure 6a,b is the liquid metal is not injected 
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3. Fabrication and Measurement

Figure 5 shows the fabrication of the PDMS microfluidic channel. First, we make a mold for the
PDMS microfluidic channel, before fabricating it, because we cannot fabricate the PDMS channel using
a 3D printer alone. To make the mold for the channel, we design a mold using a 3D modeler program,
as shown in Figure 5a. The designed mold is realized using a 3D printer (Ultimaker2, Geldermalsen,
The Netherlands), as shown in in Figure 5b. Then, we fabricate the PDMS channel using the mold.
Figure 5c shows the fabricated mold. We create PDMS by solidifying the liquid made by mixing
Sylgard184 Base and Sylgard184 Agent in the ratio of 10:1. We then fabricate the PDMS channel by
pouring the mixed liquid into the mold and solidifying by heating for 30 min. Figure 5d shows the
fabricated microfluidic channel.
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Figure 5. Process of fabricating the microfluidic channel: (a) design; (b) 3D printing; (c) PDMS
solidification; and (d) the fabricated microfluidic channel.

Figure 6a,b shows pictures of samples of the fabricated proposed filter. The substrate is realized using
Duroid 5880 board (Rogers, Killingly, CT, USA). The patterns on the top and ground of the sample are
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realized using copper. Microfluidic channels made by the process in Figure 5 are attached onto the pattern
and substrate. The difference between Figure 6a,b is the liquid metal is not injected in the microfluidic
channel in Figure 6a and injected in the microfluidic channel in Figure 6b. We use eutectic gallium–indium
(EGaIn) for the liquid metal. For injecting EGaIn into the microfluidic channel and extracting EGaIn from
the microfluidic channel, we use an injector named Pipetman, shown in Figure 6c.
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Table 1 shows comparisons of the measured and simulated result of the proposed filter.
The S-parameters of the filter are measured using an Anritsu MS2038C. When the proposed filter
without EGaIn, the odd-mode frequency of the proposed filter is 1.85 GHz, and is the same in both the
results. The even-mode frequency of the measured result is 3.06 GHz, and the even-mode frequency
of the simulation result is 3.05 GHz, which show a very small difference. When the proposed filter
with EGaIn, the odd-mode frequency of the measured result is 1.85 GHz, and the odd-mode frequency
of the simulation result is 1.86 GHz. The even-mode frequency of the measured result is 2.98 GHz,
whereas the even-mode frequency of the simulation result is 2.9 GHz.

The measurement resonant frequency with EGaIn is slightly higher than the simulated resonant
frequencies. As shown in Figure 3c, the insertion loss is increased with lower resonant frequency
because of larger EGaIn. Therefore, the measured insertion loss with EGaIn is higher than the simulated
insertion loss with EGaIn.

Figure 7 shows the measured results of the S-parameters of the proposed filter without and with
EGaIn. For the odd mode, the filter without EGaIn has the insertion loss of 2.72 dB at 1.85 GHz and
a fractional bandwidth of 4.34%. The filter with EGaIn has the insertion loss of 2.5 dB at 1.86 GHz and
a fractional bandwidth of 4.3%.
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Table 1. Summary of simulated and measured results of the proposed filter.

Without EGaIn With EGaIn

Simulation Measurement Simulation Measurement

Odd Mode
Resonant Freuqnecy (GHz) 1.85 1.85 1.85 1.86

Insertion Loss (dB) 2.15 2.72 2.17 2.45
Fractional Bandwidth (%) 4.32 4.34 4.32 4.3

Even Mode
Resonant Freuqnecy (GHz) 3.05 3.06 2.9 2.98

Insertion Loss (dB) 2.57 3.21 3.9 2.93
Fractional Bandwidth (%) 2.75 2.94 2.96 2.95
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In this graph, when EGaIn is injected into the microfluidic channel, the odd-mode frequency and
fractional bandwidth are not changed. For the even mode, the filter without EGaIn has the insertion
loss of 3.21 dB at 3.06 GHz and a fractional bandwidth of 2.94%. The filter with EGaIn has the insertion
loss of 2.5 dB at 2.98 GHz and a fractional bandwidth of 2.95%.

In this graph, when EGaIn is injected into the microfluidic channel, the even-mode frequency is
shifted by 0.11 GHz and the fractional bandwidth is slightly decreased.

4. Conclusions

In this paper, we proposed a dual-band BPF with fixed low-band resonant frequency and
fluidically-tunable high-band frequency. The filter consisted of two split-ring resonators, a stub
for providing dual-band operation, and a microfluidic channel for tuning the frequency. The proposed
filter was based on the characteristic that the lower resonant frequency was determined by the length
of the SRR and the higher resonant frequency by the lengths of the SRR and the stub. We controlled the
length of the stub using a microfluidic channel and EGaIn, to fix the lower-band frequency and tune
the higher-band frequency. The filter was fabricated on a Duroid 5880 substrate and the microfluidic
channel was fabricated using a 3D Printer. From the measurement results, the lower band frequency
was found to be fixed at 1.85 GHz and the higher band frequency was found to be shifted from
3.06 GHz to 2.95 GHz, when EGaIn was injected into the microfluidic channel.

In Table 2, we compared the performances of the proposed filters with those of other tunable
filters using liquid metal. Although insertion losses is higher than other filters, the propose filter
operates at dual band. In addition, only high band resonant frequency can be controlled while fixing
the low band resonant frequency. The tuning range is defined by the following equation:

Tuning Range =
fhigh − flow

fhigh
× 100 [%] (4)

where flow and fhigh are lowest and highest resonant frequencies, respectively. The tuning range can be
increased by increasing the length of the microfluidic channel and injecting more liquid metal in the
microfluidic channel.

Table 2. Comparison table of the proposed filter performance with other liquid metal tunable filters.

[18] [24] [25] Proposed Work

Filter type Lowpass Band-pass Band-pass Dual Band-pass
Insertion Loss (dB) N/A <3 <1.5 <2.72, <3.21

Bandwidth (%) N/A 5 9.38 4.34, 2.95
Tuning Range (%) 38 25.3 14 2.7
Number of band Single Band Single Band Signle Band Dual Band
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